• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Possibility of Detecting our Solar System through Astrometry

    2024-01-06 06:41:08DongHongWu
    Research in Astronomy and Astrophysics 2023年11期

    Dong-Hong Wu

    Department of Physics, Anhui Normal University, Wuhu 241000, China; wudonghong@ahnu.edu.cn

    Abstract Searching for exoplanets with different methods has always been the focus of astronomers over the past few years.Among multiple planet detection techniques, astrometry stands out for its capability to accurately determine the orbital parameters of exoplanets.In this study,we examine the likelihood of extraterrestrial intelligent civilizations detecting planets in our solar system using the astrometry method.By conducting injection-recovery simulations,we investigate the detectability of the four giant planets in our solar system under different observing baselines and observational errors.Our findings indicate that extraterrestrial intelligence could detect and characterize all four giant planets, provided they are observed for a minimum of 90 yr with signal-noise ratios exceeding 1.For individual planets such as Jupiter, Saturn, and Neptune, a baseline that surpasses half of their orbital periods is necessary for detection.However, Uranus requires longer observing baselines since its orbital period is roughly half of that of Neptune.If the astrometry precision is equal to or better than 10 μas, all 8707 stars located within 30 pc of our solar system possess the potential to detect the four giant planets within 100 yr.Additionally, our prediction suggests that over 300 stars positioned within 10 pc from our solar system could detect our Earth if they achieve an astrometry precision of 0.3 μas.

    Key words: astrometry – planets and satellites: detection – Planetary Systems

    1.Introduction

    More than 5400 exoplanets have been detected and confirmed to date (exoplanets.nasa.gov, 2023 July).Earthsized habitable-zone planets turn out to orbit about one out of ten stars(Dressing&Charbonneau 2013;Petigura et al.2013),and the search for life outside the solar system has experienced substantial impetus.Whether a planet is habitable or not depends on how far it is from the central star and its composition (Kasting et al.1993; Gómez-Leal et al.2018).Nowadays,more than 60 planets has been found to be habitable(Jones et al.2006; Lovis et al.2006; Anglada-Escudé et al.2012; Barclay et al.2013; Borucki et al.2013; Tuomi et al.2013;Robertson et al.2014;Jenkins et al.2015;Dittmann et al.2017; Gilbert et al.2023), most of which are detected by the transit and radial velocity method.Neither the transit nor radial velocity method provides complete physical parameters of one planet, and both methods prefer to detect planets close to the central star.On the contrary, the astrometry method can provide three dimentional characterization of the orbit of one planet (Perryman et al.2014; Wu et al.2016) and has the advantage to detect planets far away from the host star.

    To date, only one giant planet has been detected by the astrometry method (Sahlmann et al.2013) because of the limitation of detection precision.The detection of a habitable Earth-sized planet orbiting around a Sun-like star located 10 pc away from us would require a precision of sub-μas, which is hardly achieved by the current astrometry observation such as Gaia (Perryman et al.2014).However, it is very promising in the near future with the coming of a new era with high astrometry precision of μas (Yu et al.2019; Ji et al.2022; Jin et al.2022; Tan et al.2022).

    Here we propose a probing question that supposing the extraterrestrial observers are using the astrometry method and are also surveying the Galaxy for habitable worlds, which of them could discover the planets in the solar system, even the Earth? Previous works have investigated the region in which the Earth will be observed transiting in front of the Sun(Heller& Pudritz 2016; Kaltenegger & Pepper 2020; Kaltenegger &Faherty 2021)and the frequency that the Earth will be detected by other civilisations through photometric microlensing(Suphapolthaworn et al.2022).

    In this work, we study the possibility that extraterrestrial lives detect the planets in the solar system via the astrometry method with different observational precisions.We describe how we simulate astrometric data in Section 2.In Section 3,we present how to identify planetary signals and how to fit the orbital parameters of the planets.The detection of the four giants in the solar system by nearby stars are discussed in Section 4.We briefly conclude our results in Section 5.

    2.Simulation of Astrometric Data

    The astrometry method measures the movements of the stars projected onto the celestial sky.Following the method described in previous works (Black & Scargle 1982;Wu et al.2016;Yu et al.2019),the projected movement of the star in the R.A.(x) and decl.(y) at time t can be modeled as:

    where x0and y0are the coordinate offsets, μxand μyare the proper motions of the star, Pxand Pyare the parallax parameters which will be provided by the observation.π is the annual parallax of the star.X(t)and Y(t)are the movements of the host star around the barycenter of the system due to the planetary companions.σxand σyare single-measurement astrometric errors.

    In our fiducial simulations, we made several assumptions regarding the extraterrestrial observer’s location and observational parameters.As part of our simulations, we placed the observer at a distance of 10 pc from our Sun.The observer orbits its central star in a circular orbit with a period of 1.25 yr and measures the coordinates of the Sun (x(t) and y(t)) every 0.2 yr.We also conducted simulations with data cadence of 0.1 yr and found that the results change very little.To account for the astrometry precision, we assumed that the observer has a measurement uncertainty of 10 μas.Therefore,the individual coordinate uncertainties σxand σy, were chosen from a Gaussian distribution with a median value of 0 and a standard deviation of 10 μas.For the coordinate offsets x0and y0, we assume both to be 10 mas.Additionally, the proper motion of the Sun with respect to the observer is assumed to be 50 mas yr?1and –30 mas yr?1for the x and y directions,respectively.To model the parallax effect, we used the observer’s orbit and defined the functions Pxand Pyas follows:Px(t) =sin (1.6πt+φ),Py(t) =cos (1.6πt+φ), where φ represents the orbital phase of the observer.Finally, we assumed an observing baseline of 170 yr for the simulations.

    The movements of the Sun due to the presence of the eight planets X(t) and Y(t) are simulated using the REBOUND code(Rein & Liu 2012).All eight planets in the solar system are included.The orbital parameters of the planets are given by the JPL Solar System Dynamics website,1http://ssd.jp.nasa.gov/with respect to the mean ecliptic and equinox of J2000.In our fiducial simulation, the line of sight of the extraterrestrial observer is assumed to be perpendicular to the mean ecliptic.We integrate the solar system over a duration of 170 yr and record the coordinates of the Sun (X(t) and Y(t)) relative to the barycenter of the solar system every 0.2 yr.

    3.Planetary Signal Identification and Orbital Parameter Fitting

    Assuming that we are extraterrestrial civilizations and we have measured the movement of the Sun for 170 yr.Now we analyze the data to see if we have any detection.Although we have included the gravitational interaction between planets when we simulate the astrometric data of the host star, it is ignored when we fit the orbital parameters since it has little influence on the motion of the host star (Sozzetti et al.2001;Casertano et al.2008).In our parameter fitting procedure, X(t)and Y(t) are modeled as (Catanzarite 2010):

    where N is the number of planets orbiting around the central star,i represents the ithplanet,Eiis the eccentric anomaly,eiis the orbital eccentricity, Ai, Fi, Biand Giare Thiele–Innes constants, given as:

    where αiis the astrometric signature of the host star due to the reflex motion in the presence of the ithplanet.Ω,ω and I are the longitude of ascending node, arguments of pericenter and the orbital inclination of the planets, respectively.

    We search for the planetary signal and then fit the orbital parameters of the planets following the procedures as we described in Wu et al.(2016).Here we briefly describe the steps.

    Step 1,ignore the planetary influence on the star and use the linear least squares method to fit the five stellar parameters x0,y0, μx, μyand π.

    Step 2, remove the coordinate offsets, stellar proper motion and parallax from the data and search for periodical signals in the residuals using the Lomb–Scargle periodogram (Black &Scargle 1982).We calculate the periodogram of the residuals in the x and y directions and record the most significant peak in each direction.Then we choose the peak with smaller false alarm probability (FAP).If the peak has an FAP <10?4, we claim that we have identified a certain planet signal and the corresponding orbital period is adopted as P1.

    Step 3,fit x0,y0,μx,μy,π,P1,e1and t01.t01is the perihelion moment of the planet.This is processed via the Levenberg–Marquardt (LM) algorithm (Marquardt 1963) and the Markov Chain Monte Carlo (MCMC) fitting procedure.Given P1, e1and t01, the terms cosE1-e1andcan be determined.Then Equations (3) and (4) are easily inverted by linear least squares to yield the Thiele–Innes constants.The motions of the Sun produced by the planet are calculated using Equations(3)and(4).Together with the five stellar parameters,we can calculate the fitted projected motion of the star using Equations(1)and(2).We first fit x0,y0,μx,μy,π,P1,e1and t01using the LM method.Initial values of x0, y0, μx, μy, π and P1are given by Step 1 and 2,while e1is randomly chosen between 0 and 1, t0,1is randomly chosen between 0 and P1.The LM fitting process is repeated for 100 times.Then we choose the best-fit parameters with the smallest reduced χ2as initial values of the following MCMC fitting procedure.We adopt the opensource Python package emcee (Goodman & Weare 2010;Foreman-Mackey et al.2013) to sample the parameter space and estimate the posterior distribution of parameters.We run emcee with 64 walkers for 20000+30000×N iterations(N is the number of planets identified).The initial positions of the walkers are drawn from Gaussian distributions with median values given as the best-fit parameters of the LM fitting process and standard deviations of 10?3to accelerate the fitting process.We conduct autocorrelation analysis and find that all chains are converged in our fitting procedure.

    Step 4, remove the coordinate offsets, proper motion,parallax and stellar motion due to the planet identified in Step 2 using the best-fit parameters calculated in Step 3 from the original astrometric data.Then we continue to search for periodic signals in the new residuals.If there is one,then we fit the data with a two-planet reflex motion model.

    Step 5, repeat Step 2 to Step 4 until no periodic signals are identified.

    In our fitting procedure, we have a total of 5+3×N parameters to fit since we have assumed Keplerian orbits for each planet, which largely reduce the parameters to be fitted and ensure the parameter precision at the same time.The semimajor axis of the planets can be obtained using the Kepler’s third law giving the orbital period of the planets,while the planetary masses are calculated via miai=m⊙a⊙,i, where m⊙is the solar mass (assumed to be precisely determined via other methods by the extraterrestrial intelligence, like the spectrometry or astroseismology)and a⊙,iis the semimajor axis of the Sun when orbiting around the barycenter determined by the Sun and the ithplanet(which is obtained in Step 3).Readers are refereed to Catanzarite (2010) and Wu et al.(2016) for more detail.

    In Figure 1, we present the data residuals and power spectrum for each step of the fitting process in our fiducial simulations.After Step 1 and Step 2,the power spectrum of the data residuals (labeled as 1stO ?C)exhibits a prominent peak at approximately 11.9 yr, indicating the successful identification of Jupiter.Then we move to Step 3 and Step 4,the updated data residuals (labeled as 2edO ?C) are also shown in Figure 1,with their power spectrum peaking around 28.8 yr.This peak signifies the detection of Saturn.Continuing this iterative process, we repeated the aforementioned steps, ultimately leading to the identification of Neptune and Uranus.After the detection of the four giants, no peak with FAP<10?4appears in the final residuals, suggesting that none of the small planets in the solar system is detectable in our fiducial simulations.

    4.Results

    4.1.The Characterization of the Four Giants in the Solar System

    The amplitude of the astrometric motion of the Sun produced by a planet with mass mpand semimajor axis a observed by an observer with a distance of d is:

    With an observing baseline of 170 yr and an observational error down to 10 μas, all the four giants are successfully detected and characterized.This is expectable since the signalnoise-ratios (S/Ns, defined as α/σ, where σ is the observational error) of the four giants calculated using Equation (6) are far larger than 3, according to the detection criterion given by Wu et al.(2016).Other small planets in the solar system are hardly detectable because of their small S/Ns.We show the posterior distributions for all parameters that are fitted in Figure 2.The first half iterations are thrown as burn-in.We find that the five stellar parameters(x0,y0,μx,μyand π)and orbital parameters of the inner three giants(Jupiter,Saturn and Uranus) are all well-constrained with nearly Gaussian distributed posteriors, indicating that the parameters converge well.For the outermost planet Neptune,the orbital eccentricity(e3)and perihelion moment(t03)are not well-constrained since the planet only finishes one complete orbit during 170 yr.The planetary mass and semimajor axis of the planets can be easily calculated using the best-fit parameters as we have mentioned in Section 3.All the four giants are well characterized with relative fitting errors smaller than 1%for both the orbital period and planet mass.The relative fitting error of parameter θ is given as ?θ=|θfit?θtrue|/θtrue.θfitis calculated as the median value of the posterior distribution of θ.

    4.2.The Influence of Observing Baseline and Observational Error

    We also investigated the detection of the four giants with different observational errors and observing baselines.In our fiducial simulations described in Section 2, we fix the observing baseline to be 170 yr and the observational error to be 10 μas.Now we gradually decrease the observing baseline from 170 to 10 yr, with a step of 20 yr.To account for the detection of our solar system by missions like Gaia (Perryman et al.2014) and CHES (Ji et al.2022), we further extend the observing baseline down to 4 yr.We also considered different observational errors: 1, 3, 10, 30, 100, 300, 1000, 3000 and 10,000 μas.Other assumptions such as the distance of the observer and the sampling cadence remain the same.In the new simulations, we assume that the coordinates offsets, proper motion and parallax of our Sun are already well determined and carefully removed from the astrometric data by extraterrestrial intelligence before the fitting process starts.This assumption will largely reduce the computational time.(We have conducted a small group of simulations including the coordinate offsets, proper motion and parallax, and we find that they have little influence on the characterization of the planets.) Then we start the fitting procedure as described in Section 3 but now we skip step 1.

    Figure 1.Data residuals and power spectrum of the four giants after each fitting step.Top:the simulated astrometric data on the x(shown in red)and y(shown in blue)directions.Left:The data residuals after each fitting step.Right: the power spectrum of the data residuals shown on the left.

    We show the relative fitting errors of planet mass as a function of the observing baseline and observational error for each of the four giants in Figure 3.Only planets with relative fitting errors of orbital period smaller than 0.1 (?P<0.1) are shown.For planets with ?P<0.1, their planetary mass are mostly well-fitted with ?m<0.1.Only a few exceptions with large observational errors or short observing baselines have large fitting errors of planet mass.There are several cases that planets are detected with ?P>0.1, however, their planet mass are generally poorly fitted with ?m>1.Therefore, we claim a planet is well characterized if it has ?P<0.1.

    As we have pointed out in Wu et al.(2016),the detection of a planet using astrometry method relys on the S/N of the planet and the observing baseline.Here we show the contours of the S/Ns in Figure 3.We find that all the four giants can be successfully detected and well-characterized as long as their S/Ns>1 and the observing baseline exceeds 90 yr.In general,planets with S/Ns > 1 and observing baseline longer than about half an orbital period could be detected.However,this is not the case for Uranus.Because the fitting of the orbital period of Uranus is largely influenced by that of Neptune, whose orbital period is about two times that of Uranus.Not until the orbital period of Neptune is successfully identified will Uranus be well-characterized.There are exceptions that planets are detected with S/N <1.However, these detections generally have large fitting errors of planet mass.

    If astrometric missions conducted by extraterrestrial civilizations are similar to Gaia or CHES, with typical observing baselines ranging from 5 to 10 yr,the detectability of the giant planets in our simulations would be limited.Specifically, only Jupiter would be detectable under these circumstances.However, if Gaia were able to achieve an observational error down to 100 μas, it would be possible to characterize Jupiter with an accuracy of ?m<0.5.Alternatively, if CHES, with an observational error down to 1 μas and and an observational time of approximately 6 yr, conducted the mission, Jupiter could be characterized with an accuracy of ?m~0.3.

    Figure 2.Posterior distribution of x0,y0,μx,μy,π,P1,e1,t0,1,P2,e2,t0,2,P3,e3,t0,3,P4,e4,and t0,4.Four planets are detected by extraterrestrial intelligence located 10 pc away with an observing baseline of 170 yr and observational precision of 10 μas.

    4.3.Which Stars Could Detect the Four Giants in the Solar System

    Figure 3.The relative fitting errors of the planet mass ?m as a function of observing baseline and observational error.Different colors represent different ?m.Gray circles represent none detection of planet signals or the identified planet has large fitting errors of orbital period (i.e., ?P>0.1).The gray dashed lines represent the contours of different S/Ns.

    We move forward to estimate how many neighboring stars in the Galaxy could detect the four giants in our solar system.We identify 8707 stars from the Gaia Catalog of Nearby Stars(Gaia Collaboration et al.2021) that lie within 30 pc to the solar system.We calculate the S/N of each giant planet observed by each star with different assumed observational errors.We find that all 8707 stars have the possibility to detect and wellcharacterize the four giants if they could achieve an astrometric error down to 10 μas and observe the solar system for enough long time (such as 90 yr).If the observational error is as large as 100 μas,only 183 neighboring stars could detect all the four giants,but all of them could detect the Jupiter within 10 yr.We also estimate the number of neighboring stars that could detect our Earth.About 310 neighboring stars located within 10 pc from our Sun have the potential to detect the Earth if the observational error is as small as 0.3 μas.With a larger observational error,such as 1 μas,only 8 stars located within 3 pc from the Sun could possibly detect the Earth.

    5.Conclusion

    In this paper, we study the possibility that extraterrestrial intelligence detect the planets in our solar system.We find that all the four giants in our solar system could be detected and well-characterized as long as they are observed for at least 90 yr with S/N>1.For all 8707 stars lying within 30 pc to the solar system, all of them have the potential to detect the four giants within 100 yr if they could achieve an observational precision down to 10 μas.If the astrometry method can achieve sub μas precision like 0.3 μas,then even our Earth will be detectable by extraterrestrial intelligence.

    In each of our simulations, we assume a constant observational error during the long observing baseline for simplicity.A more reasonable assumption may be a decreasing observational error with the increase of observing baseline.Besides, the sampling cadence is fixed to be 0.2 yr in our simulations.This is hardly achieved in real observations.Finally, our simulations is truncated at 170 yr since longer observing baseline requires longer computational time to fit the orbital parameters of the planets.However, we expect that longer observing baseline would allow the detection of plants with larger observational errors.These should be further considered in future works.

    This study primarily addresses the likelihood of extraterrestrial civilizations in the vicinity of our solar system detecting our own system.However,it is important to note that the existence of extraterrestrial lives remains uncertain, and if they do exist in planetary systems similar to ours, their presence could be incredibly rare.Cumming et al.(2008)demonstrated that the occurrence rate of cold Jupiters around stars similar to the Sun is only 10%.Consequently,the chances of our solar system being in proximity to a significant population of extraterrestrial civilizations are currently considered to be very small.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC) (grant No.12103003), and the Doctoral research start-up funding of Anhui Normal University.

    中文字幕av成人在线电影| 最后的刺客免费高清国语| 国产免费福利视频在线观看| 黄片wwwwww| 欧美+日韩+精品| 中文在线观看免费www的网站| 午夜福利在线在线| 日日啪夜夜爽| 能在线免费看毛片的网站| 精品久久久久久久久av| 日韩av在线免费看完整版不卡| 亚洲不卡免费看| 热re99久久精品国产66热6| 亚洲成色77777| 我的女老师完整版在线观看| 美女主播在线视频| 在线观看国产h片| 免费黄频网站在线观看国产| 亚洲国产av新网站| 欧美高清性xxxxhd video| 国产69精品久久久久777片| 天堂俺去俺来也www色官网| 一区二区三区精品91| 成人鲁丝片一二三区免费| 国产精品偷伦视频观看了| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 男人和女人高潮做爰伦理| 亚洲人与动物交配视频| 老师上课跳d突然被开到最大视频| 99re6热这里在线精品视频| 亚洲成色77777| av在线观看视频网站免费| 国产精品久久久久久精品电影| 国产av不卡久久| 欧美性猛交╳xxx乱大交人| 午夜福利视频1000在线观看| 欧美成人午夜免费资源| 国产又色又爽无遮挡免| 美女脱内裤让男人舔精品视频| 久久精品人妻少妇| 国产精品人妻久久久影院| 久久人人爽av亚洲精品天堂 | 日韩 亚洲 欧美在线| 国产v大片淫在线免费观看| 国产大屁股一区二区在线视频| kizo精华| www.av在线官网国产| 国产乱人视频| 91aial.com中文字幕在线观看| 丰满人妻一区二区三区视频av| 日本爱情动作片www.在线观看| 久久久久网色| 久久久久久久亚洲中文字幕| 亚洲成色77777| 中文欧美无线码| 一级毛片 在线播放| 亚洲av一区综合| 好男人视频免费观看在线| 亚洲国产色片| 国产淫语在线视频| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 九九爱精品视频在线观看| 免费看不卡的av| av.在线天堂| 最新中文字幕久久久久| 欧美日韩视频高清一区二区三区二| 2021少妇久久久久久久久久久| 18禁动态无遮挡网站| 久久久欧美国产精品| 寂寞人妻少妇视频99o| 男女下面进入的视频免费午夜| 综合色av麻豆| 最近的中文字幕免费完整| 国产大屁股一区二区在线视频| 人妻制服诱惑在线中文字幕| 亚洲自拍偷在线| 国产亚洲91精品色在线| 王馨瑶露胸无遮挡在线观看| 午夜精品国产一区二区电影 | 九九久久精品国产亚洲av麻豆| 欧美日韩在线观看h| 草草在线视频免费看| 午夜福利高清视频| 七月丁香在线播放| 在现免费观看毛片| 久久这里有精品视频免费| 身体一侧抽搐| 一级毛片电影观看| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 如何舔出高潮| www.av在线官网国产| 精品久久久久久久久亚洲| 亚洲,一卡二卡三卡| 永久免费av网站大全| 国内揄拍国产精品人妻在线| 精品久久久精品久久久| 精品久久久噜噜| 麻豆久久精品国产亚洲av| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 午夜老司机福利剧场| 乱码一卡2卡4卡精品| 美女脱内裤让男人舔精品视频| 亚洲一级一片aⅴ在线观看| 高清欧美精品videossex| 国产色爽女视频免费观看| 美女脱内裤让男人舔精品视频| 免费电影在线观看免费观看| 国产黄片视频在线免费观看| 日日啪夜夜爽| 国产永久视频网站| 国产精品女同一区二区软件| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| 亚洲怡红院男人天堂| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 久久久久久久久久人人人人人人| 又粗又硬又长又爽又黄的视频| 精品人妻熟女av久视频| 国产伦在线观看视频一区| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 国产午夜福利久久久久久| 久久人人爽人人爽人人片va| 如何舔出高潮| 波野结衣二区三区在线| 五月玫瑰六月丁香| 国产 精品1| 亚洲人成网站在线观看播放| 亚洲成人中文字幕在线播放| 久久久久九九精品影院| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 亚洲精品影视一区二区三区av| 国产综合懂色| 偷拍熟女少妇极品色| 18禁动态无遮挡网站| 国产男女超爽视频在线观看| 国产黄a三级三级三级人| 国产精品99久久99久久久不卡 | av在线天堂中文字幕| 禁无遮挡网站| 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 性色avwww在线观看| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 婷婷色综合www| 日韩欧美一区视频在线观看 | 亚洲电影在线观看av| 一边亲一边摸免费视频| 亚洲成人一二三区av| 九草在线视频观看| av又黄又爽大尺度在线免费看| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看| 国产精品无大码| 深爱激情五月婷婷| 最近最新中文字幕大全电影3| 午夜福利网站1000一区二区三区| 搡女人真爽免费视频火全软件| 欧美xxxx黑人xx丫x性爽| 国产亚洲av片在线观看秒播厂| 寂寞人妻少妇视频99o| 亚洲最大成人av| 香蕉精品网在线| 久久久久久久久久人人人人人人| 激情 狠狠 欧美| 亚洲精品456在线播放app| 一个人看的www免费观看视频| 亚洲av福利一区| 建设人人有责人人尽责人人享有的 | 中文欧美无线码| 久久久久久久久久久免费av| 伊人久久国产一区二区| 又黄又爽又刺激的免费视频.| 国产伦理片在线播放av一区| 亚洲在线观看片| 日韩视频在线欧美| 一个人看视频在线观看www免费| 亚洲最大成人中文| 亚洲精品乱码久久久久久按摩| 精品一区二区免费观看| 超碰av人人做人人爽久久| 毛片女人毛片| 韩国av在线不卡| 一级爰片在线观看| h日本视频在线播放| 日韩欧美 国产精品| 99久久精品热视频| 中文精品一卡2卡3卡4更新| 久久97久久精品| 人妻少妇偷人精品九色| 最近最新中文字幕大全电影3| 夫妻性生交免费视频一级片| 国产精品成人在线| 国产精品三级大全| 超碰97精品在线观看| 国产精品一区二区在线观看99| 国产成人精品婷婷| 中文字幕制服av| 国产高清不卡午夜福利| av在线天堂中文字幕| 又爽又黄a免费视频| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 在线观看人妻少妇| 日本色播在线视频| 高清欧美精品videossex| 日日摸夜夜添夜夜添av毛片| 日日撸夜夜添| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 国产精品久久久久久av不卡| 国产伦在线观看视频一区| 欧美激情在线99| 水蜜桃什么品种好| 黄色日韩在线| 欧美性感艳星| 精品一区二区三卡| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 午夜免费观看性视频| 日韩中字成人| 韩国av在线不卡| 欧美激情高清一区二区三区 | 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 一级黄片播放器| 黄色一级大片看看| 欧美精品一区二区免费开放| 啦啦啦中文免费视频观看日本| 亚洲第一av免费看| 精品一区二区免费观看| 飞空精品影院首页| 国产精品国产三级专区第一集| 精品卡一卡二卡四卡免费| 亚洲精华国产精华液的使用体验| 色综合欧美亚洲国产小说| 999精品在线视频| 国产成人精品久久二区二区91 | 久久久欧美国产精品| 99久久精品国产亚洲精品| 日韩中文字幕欧美一区二区 | 久久久久国产一级毛片高清牌| 另类精品久久| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 亚洲精品国产区一区二| 亚洲国产欧美一区二区综合| 人妻人人澡人人爽人人| 国产欧美亚洲国产| 国产人伦9x9x在线观看| 日韩视频在线欧美| 国产精品亚洲av一区麻豆 | 国产麻豆69| 少妇 在线观看| 久久国产精品大桥未久av| 欧美久久黑人一区二区| 新久久久久国产一级毛片| 国产免费福利视频在线观看| 各种免费的搞黄视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久午夜综合久久蜜桃| 少妇人妻精品综合一区二区| 亚洲国产毛片av蜜桃av| 在线天堂最新版资源| 桃花免费在线播放| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 国产女主播在线喷水免费视频网站| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 人妻一区二区av| 亚洲色图 男人天堂 中文字幕| 久久99热这里只频精品6学生| 亚洲精品国产区一区二| 性高湖久久久久久久久免费观看| 精品一区二区三区四区五区乱码 | √禁漫天堂资源中文www| 秋霞在线观看毛片| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 在线观看一区二区三区激情| 日韩av不卡免费在线播放| xxxhd国产人妻xxx| 丝瓜视频免费看黄片| 香蕉丝袜av| 青春草亚洲视频在线观看| 999久久久国产精品视频| 肉色欧美久久久久久久蜜桃| 成人三级做爰电影| 中国国产av一级| 激情五月婷婷亚洲| 亚洲精品国产区一区二| 午夜福利在线免费观看网站| 国产精品欧美亚洲77777| 欧美 日韩 精品 国产| 亚洲国产毛片av蜜桃av| 亚洲av欧美aⅴ国产| 久久久久久久久免费视频了| 久久久久久人人人人人| 丝袜美腿诱惑在线| 日韩中文字幕视频在线看片| 狂野欧美激情性bbbbbb| 熟女av电影| 国产极品粉嫩免费观看在线| 国产福利在线免费观看视频| 91精品三级在线观看| 亚洲免费av在线视频| 91精品国产国语对白视频| 免费黄频网站在线观看国产| 国产精品 国内视频| 观看美女的网站| 性色av一级| 在线天堂最新版资源| 国产精品免费大片| 黄网站色视频无遮挡免费观看| 国产成人一区二区在线| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 在现免费观看毛片| av卡一久久| 蜜桃国产av成人99| 王馨瑶露胸无遮挡在线观看| 中文字幕色久视频| 亚洲精品国产av成人精品| 国产成人免费无遮挡视频| 悠悠久久av| 51午夜福利影视在线观看| 国产成人av激情在线播放| 无遮挡黄片免费观看| 亚洲av国产av综合av卡| 人人澡人人妻人| 曰老女人黄片| 超碰成人久久| 亚洲伊人色综图| 看免费成人av毛片| 欧美日韩一级在线毛片| 99久国产av精品国产电影| 国产av一区二区精品久久| 免费观看a级毛片全部| 亚洲欧美中文字幕日韩二区| 午夜福利乱码中文字幕| 日韩av在线免费看完整版不卡| 一二三四中文在线观看免费高清| 亚洲精品第二区| 五月开心婷婷网| 在线观看三级黄色| 少妇 在线观看| 日韩一区二区视频免费看| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 九草在线视频观看| 亚洲成人手机| 成人免费观看视频高清| 国产免费视频播放在线视频| av有码第一页| 色播在线永久视频| 成人亚洲欧美一区二区av| 王馨瑶露胸无遮挡在线观看| 色94色欧美一区二区| 亚洲,一卡二卡三卡| 九草在线视频观看| 久久97久久精品| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 亚洲欧美色中文字幕在线| e午夜精品久久久久久久| 国产乱人偷精品视频| 视频区图区小说| 亚洲精品国产区一区二| 看非洲黑人一级黄片| 老汉色∧v一级毛片| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 女性被躁到高潮视频| 午夜福利网站1000一区二区三区| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 国产亚洲一区二区精品| 美女主播在线视频| 亚洲精品一区蜜桃| 成人国产av品久久久| 高清在线视频一区二区三区| 国产精品亚洲av一区麻豆 | 一级片'在线观看视频| av在线app专区| 韩国高清视频一区二区三区| 成年美女黄网站色视频大全免费| 成年人午夜在线观看视频| 欧美日韩亚洲综合一区二区三区_| 啦啦啦中文免费视频观看日本| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 精品酒店卫生间| 亚洲婷婷狠狠爱综合网| 成年美女黄网站色视频大全免费| 777久久人妻少妇嫩草av网站| 亚洲国产欧美一区二区综合| 天堂俺去俺来也www色官网| 成人手机av| 欧美成人午夜精品| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 国产爽快片一区二区三区| 最近手机中文字幕大全| 伊人久久国产一区二区| 久久久欧美国产精品| 最新在线观看一区二区三区 | 成人漫画全彩无遮挡| 久久久久久人人人人人| 欧美激情高清一区二区三区 | 亚洲男人天堂网一区| 最新在线观看一区二区三区 | 亚洲欧美一区二区三区久久| 精品少妇黑人巨大在线播放| 国产片内射在线| 国产xxxxx性猛交| 成人免费观看视频高清| 看非洲黑人一级黄片| 免费黄色在线免费观看| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 免费高清在线观看日韩| 国产av国产精品国产| 欧美激情 高清一区二区三区| 激情五月婷婷亚洲| 秋霞伦理黄片| 精品免费久久久久久久清纯 | 亚洲精品美女久久久久99蜜臀 | 午夜91福利影院| 大香蕉久久网| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 日本一区二区免费在线视频| 高清欧美精品videossex| 男人爽女人下面视频在线观看| 亚洲精品成人av观看孕妇| 久久免费观看电影| 女性被躁到高潮视频| 亚洲av中文av极速乱| 老汉色∧v一级毛片| 亚洲av日韩在线播放| 亚洲欧美日韩另类电影网站| 婷婷色综合大香蕉| 国产亚洲av片在线观看秒播厂| 国产亚洲欧美精品永久| 免费看不卡的av| 综合色丁香网| 国产av精品麻豆| 曰老女人黄片| 国产精品一国产av| 91成人精品电影| √禁漫天堂资源中文www| 亚洲精品一二三| 黄色毛片三级朝国网站| 欧美激情高清一区二区三区 | 欧美日韩视频精品一区| 亚洲av成人不卡在线观看播放网 | 国产国语露脸激情在线看| 日日啪夜夜爽| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 国产成人免费无遮挡视频| 狠狠婷婷综合久久久久久88av| 亚洲欧美精品综合一区二区三区| 午夜av观看不卡| 日韩制服丝袜自拍偷拍| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 热re99久久国产66热| 中文字幕人妻丝袜制服| 日韩一区二区三区影片| 国产极品粉嫩免费观看在线| 精品一区二区三卡| 精品一区二区三区av网在线观看 | 国产高清国产精品国产三级| 国产在线免费精品| 亚洲四区av| 免费人妻精品一区二区三区视频| 亚洲精品一区蜜桃| 国产成人啪精品午夜网站| 欧美人与善性xxx| 欧美乱码精品一区二区三区| 亚洲精品自拍成人| 伊人久久大香线蕉亚洲五| xxx大片免费视频| 久久天堂一区二区三区四区| 中文字幕高清在线视频| 欧美精品人与动牲交sv欧美| 黄网站色视频无遮挡免费观看| 欧美日韩一级在线毛片| 无遮挡黄片免费观看| 搡老乐熟女国产| 女人久久www免费人成看片| 热99国产精品久久久久久7| 日韩人妻精品一区2区三区| 亚洲精品国产区一区二| 爱豆传媒免费全集在线观看| 亚洲欧美成人精品一区二区| 9191精品国产免费久久| 日韩av不卡免费在线播放| 中文字幕制服av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美老熟妇乱子伦牲交| 天天躁日日躁夜夜躁夜夜| 一级片免费观看大全| 国产成人欧美| 国产男人的电影天堂91| 亚洲精品美女久久av网站| 久久精品亚洲熟妇少妇任你| 国产精品国产三级专区第一集| 成年av动漫网址| 国产男女内射视频| 精品酒店卫生间| 夜夜骑夜夜射夜夜干| 人成视频在线观看免费观看| 纯流量卡能插随身wifi吗| 最近最新中文字幕免费大全7| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| av.在线天堂| 性色av一级| av片东京热男人的天堂| 欧美激情 高清一区二区三区| 午夜91福利影院| 视频在线观看一区二区三区| 美女视频免费永久观看网站| 国产男人的电影天堂91| 欧美黑人欧美精品刺激| 欧美 亚洲 国产 日韩一| 日本av免费视频播放| 免费黄网站久久成人精品| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人人人人人| 国产男女内射视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 91aial.com中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 高清欧美精品videossex| 街头女战士在线观看网站| 国产成人系列免费观看| 日本爱情动作片www.在线观看| 满18在线观看网站| 国产欧美日韩一区二区三区在线| 亚洲精品乱久久久久久| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 看非洲黑人一级黄片| 欧美黑人精品巨大| 王馨瑶露胸无遮挡在线观看| 超色免费av| 国产亚洲精品第一综合不卡| 国产精品免费大片| 欧美黑人欧美精品刺激| 国产免费视频播放在线视频| videosex国产| 男女边摸边吃奶| 在线观看一区二区三区激情| 午夜久久久在线观看| 久久久欧美国产精品| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 亚洲欧美一区二区三区久久| 国产免费福利视频在线观看| 国产精品一区二区精品视频观看| 欧美日韩成人在线一区二区| 美女视频免费永久观看网站| 久久久精品国产亚洲av高清涩受| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产一区二区| 蜜桃在线观看..| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 热99国产精品久久久久久7| 亚洲av中文av极速乱| 悠悠久久av| av片东京热男人的天堂| 精品视频人人做人人爽| 欧美精品av麻豆av| 亚洲久久久国产精品| 亚洲国产欧美网| 久久精品国产亚洲av高清一级| 亚洲精品第二区| av福利片在线| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 日本黄色日本黄色录像| 国语对白做爰xxxⅹ性视频网站| 午夜福利网站1000一区二区三区| 亚洲熟女毛片儿| 少妇人妻 视频| 亚洲国产看品久久| 国产精品女同一区二区软件| 波野结衣二区三区在线| 国产精品久久久久久精品电影小说|