• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studying the Equilibrium Points of the Modified Circular Restricted Threebody Problem: The Case of Sun–Haumea System

    2024-01-06 06:41:22NurulHudaDermawanSaputraSadikinandHidayat
    Research in Astronomy and Astrophysics 2023年11期

    I.Nurul Huda, B.Dermawan, M.B.Saputra, R.Sadikin, and T.Hidayat

    1 Research Center for Computing, National Research and Innovation Agency, Bogor, Indonesia; ibnu.nurul.huda@brin.go.id

    2 Department of Astronomy and Bosscha Observatory, FMIPA, Institut Teknologi Bandung, Bandung, Indonesia

    Abstract We intend to study a modified version of the planar Circular Restricted Three-Body Problem (CRTBP) by incorporating several perturbing parameters.We consider the bigger primary as an oblate spheroid and emitting radiation while the small primary has an elongated body.We also consider the perturbation from a disk-like structure encompassing this three-body system.First,we develop a mathematical model of this modified CRTBP.We have found there exist five equilibrium points in this modified CRTBP model,where three of them are collinear and the other two are non-collinear.Second,we apply our modified CRTBP model to the Sun–Haumea system by considering several values of each perturbing parameter.Through our numerical investigation,we have discovered that the incorporation of perturbing parameters has resulted in a shift in the equilibrium point positions of the Sun–Haumea system compared to their positions in the classical CRTBP.The stability of equilibrium points is investigated.We have shown that the collinear equilibrium points are unstable and the stability of non-collinear equilibrium points depends on the mass parameter μ of the system.Unlike the classical case, non-collinear equilibrium points have both a maximum and minimum limit of μ for achieving stability.We remark that the stability range of μ in non-collinear equilibrium points depends on the perturbing parameters.In the context of the Sun–Haumea system, we have found that the non-collinear equilibrium points are stable.

    Key words: celestial mechanics – Kuiper Belt: general – planets and satellites: dynamical evolution and stability

    1.Introduction

    Celestial mechanics plays an important role in understanding the dynamics of solar system bodies (see, e.g., Murray &Dermott 1999; Souchay & Dvorak 2010; Lei 2021; Pan &Hou 2022).One of the problems in celestial mechanics is the Circular Restricted Three-Body Problem (CRTBP).The study of CRTBP has the aim to investigate the movement of an infinitesimal object under the gravitational influence of two primaries that have a circular orbit around their center of mass.CRTBP has several applications, such as for deep space exploration and satellite navigation.The classical version of CRTBP assumes the primaries are point masses and it only considers the gravitational interaction between them.There are five equilibrium points in the case of planar.Three of them are collinear (L1, L2, and L3) and the other two are non-collinear(L4and L5) (Murray & Dermott 1999).In order to make the CRTBP model more realistic, the classical version has been modified by considering several additional parameters.

    A stellar object, including the Sun, emits radiation.This radiation exerts pressure on objects in its path.There have been numerous studies that have considered radiation pressure force as another additional force in the restricted three-body problem (see, e.g., Haque & Ishwar 1995; Ishwar & Elipe 2001; Kushvah et al.2007; Kushvah 2008a; Das et al.2009;Yousuf&Kishor 2019;Patel et al.2023).For instance,the first study on this topic was done by Radzievskii(1950).Chernikov(1970) extended the study by considering the relativistic Poynting–Robertson effect.Simmons et al.(1985) examined the effect of radiation pressure force in all ranges of value.More recently, Idrisi (2017) and Idrisi & Ullah (2018)considered the effect of planetary albedo on CRTBP as a consequence of solar radiation pressure force.

    Since the stars and planets are not perfectly spherical,another aspect that has been considered in the CRTBP is the oblateness of the primaries.Early studies about the impact of an oblate primary on the dynamics of restricted three-body problem were published by Danby (1965), Sharma & Subba Rao (1978, 1986).More recently, the effect of oblateness on the dynamics of CRTBP has been studied in detail by several authors (see, e.g., Markellos et al.1996; Douskos &Markellos 2006; Safiya Beevi & Sharma 2012; Abouelmagd et al.2013; Zotos 2015; Yousuf et al.2022).Moreover, some authors have considered the effect of both oblateness and radiation force in their calculation.For instance, Singh &Ishwar (1999) studied the linear stability of triangular equilibrium points when both primaries are oblate and emitting radiation.This study was extended by Singh (2009) for the nonlinear stability of L4.AbdulRaheem & Singh (2006)investigated the dynamics of CRTBP when both of the primaries are oblate and emit radiation, together with perturbations in the Coriolis and centrifugal force.Other authors, such as Nurul Huda et al.(2015), Dermawan et al.(2015) and Mia et al.(2023), considered the effect of oblateness and radiation force in the Elliptic Restricted Three-Body Problem.

    Table 1 The Abscissa Position of Collinear Equilibrium Points (L1, L2, and L3) in Sun–Haumea System with μ=2×10-9 and T=0.11

    Our solar system contains several types of celestial bodies.Among them are elongated objects like a few asteroids,comets,and dwarf planets.These celestial bodies can be approximately described as finite straight segments.Previous studies of CRTBP have been enriched by assuming one or both primaries have an elongated body.At first, Riaguas et al.(1999) and Riaguas et al.(2001) analyzed the dynamics of a two-body problem by considering one of the primaries as a finite straight segment.These works were extended by, e.g., Jain & Sinha(2014), Kaur et al.(2020), and Kumar et al.(2019), into the restricted three body-problem assuming both or one of the primaries have elongated shapes.In more recent studies,Verma et al.(2023a) examined the perturbed restricted three-body problem,where the smaller primary has an elongated shape and the larger primary is oblate and emits radiation.Verma et al.(2023b) considered the effect of a finite straight segment and oblateness to study the dynamics of the restricted 2+2 body problem.

    Meanwhile,the effect of a disk-like structure as a perturbing force near a three-body system has been well studied by several authors (see, e.g.,?Jiang & Yeh 2004; Kushvah 2008b;Kushvah et al.2012; Kishor & Kushvah 2013; Mahato et al.2022a).Jiang & Yeh (2004) considered CRTBP by analyzing the influence of a disk-like structure near the three-body system.Yousuf&Kishor(2019)analyzed the effect of a disklike structure, oblateness, and albedo on the CRTBP.Mahato et al.(2022a) extended the study of classical CRTBP by considering a disk-like structure and an elongated body.Mahato et al.(2022b) investigated the stability of equilibrium points within a framework of the perturbed restricted 2+2 body problem, taking into account the influence of a disk-like structure.

    This study aims to obtain the collinear and non-collinear equilibrium points and investigate their stability under a framework of modified CRTBP incorporating the effect of radiation pressure,oblateness,finite straight segment,and disklike structure.We intend to extend the work of Yousuf &Kishor (2019) by assuming the small primary to be a finite straight segment rather than being oblate.It is also an extension of Mahato et al.(2022a) since we consider the effect of oblateness and radiation from the bigger primary.

    Here we apply our modified CRTBP model to the Sun–Haumea system by assuming the Sun is a bigger primary with an oblate shape and emitting radiation and Haumea is a smaller primary which has an elongated body.We also consider the Kuiper Belt as a disk-like structure surrounding the Sun–Haumea system.Haumea was chosen as our case study because of its unique characteristics, which have captured the attention of scientists since its discovery in 2003.The surface of Haumea is dominantly covered by water ice (Barkume et al.2006;Pinilla-Alonso et al.2009; Noviello et al.2022).There is also evidence that organic material exists on Haumea’s surface(Lacerda et al.2008; Gourgeot et al.2016).Recently, it was discovered that Haumea has a ring and two satellites named Namaka and Hi’iaka (Ortiz et al.2017).Moreover, previous studies have proposed Haumea as a destination for space missions in the coming decades (see, e.g., Grundy et al.2009;Sanchez et al.2014).

    Besides the Sun–Haumea system, this modified CRTBP model can be applied to other cases.For instance, many planetary systems outside of our solar system have beendiscovered, and some systems have been found to have dust particle disks or asteroid belts,which are believed to be similar to the Kuiper Belt or main belt in our solar system (see, e.g.,Greaves et al.1998; Matrà et al.2019).Meanwhile, previous studies explained the presence of extrasolar asteroids or dwarf planets near the host star (see, e.g., Jura 2003; Dufour et al.2010).Moreover, some space explorations have been devoted to exploring small solar system bodies near the main belt or Kuiper Belt region.It is known that several solar system bodies have an irregular shape.Therefore,it is reasonable to study the combined effects of perturbations from a disk, an elongated body, and an oblate radiating body on the motion of an infinitesimal mass in the CRTBP.

    Table 2 Positions of Non-collinear Equilibrium Points (L4 and L5) in Sun–Haumea System with μ=2×10-9 and T=0.11

    The structure of this paper is as follows.In the next section,we present a mathematical formulation of the dynamical model.The position and stability of equilibrium points are elucidated in Section 3.Section 4 describes the implementation of the dynamical model in the Sun–Haumea system.Finally, the conclusion is provided in Section 5.Here, MATLAB’s Symbolic Toolbox is used to conduct certain algebraic calculations and find numerical solutions.

    2.Mathematical Formulation of the Dynamical System

    In this work, we consider a system where an infinitesimal mass moves under the influence of a bigger primary with mass m1and a small primary with mass m2.The primaries of this system have circular orbits around their center of mass.We treat the bigger primary as a source of radiation with an oblate spheroid shape, while the small primary has an elongated shape.The unit of time is normalized to make the Gaussian constant of gravitation equal to one.The mass parameter is represented by μ=m2/(m1+m2) where m1=1-μ and m2=μ.In the case of a restricted three-body problem, it is more convenient to introduce the system in the rotational coordinate Oxy.The primaries are located on the x-axis with the distance between primaries chosen as the unit of length.The coordinates of the bigger primary, small primary, and the third body are (μ, 0), (μ-1, 0), and (x, y), respectively.The oblateness factor of the bigger primary can be represented by A=(AE2-AP2)/5R2where A ?1, AE and AP represent the equatorial and polar radii, respectively, and R is the effective radius when assuming the primary to be a spherical object.Meanwhile, the radiation force Fpacts opposite to the gravitational force and diminishes with respect to distance.The total force acting on the bigger primary can be written as Fg-Fp=qFg, hence q=1-(Fp/Fg).Here q is called the mass reduction factor where 0<1-q ?1.The small primary is assumed to be a finite straight segment with length 2l.The effect of a disk-like structure surrounding the system is also considered in this study.Following Miyamoto&Nagai(1975),the planar version of unitless potential disk-like structure is given byV(x,y) =Mbr2+T2, where Mbis the total mass of disk-like structure,r2=x2+y2is the radial distance of the infinitesimal mass,and T=a+b is the total of flatness and core parameters.Let the distance of primaries to the center of mass be s1and s2.Considering the previous works such as Kushvah (2008b), Yousuf & Kishor (2019), and Mahato et al.(2022a), the motion of the primaries is given by

    3.Equilibrium Points

    3.1.Position of Equilibrium Points

    In the following, we solve Equations (5) and (6) to find the position of equilibrium points.

    The collinear points are located in a line with the primaries,thus we have y=0.Equation (5) becomes

    In order to find the solution, we divide the region into three parts, i.e., (-∞, μ-1-l), (μ-1-l, μ), and (μ, ∞).Here L1, L2, and L3are the solution located in (-∞, μ-1-l),(μ-1-l, μ), and (μ, ∞), respectively.Hence we have

    These three equations have been solved numerically to find each collinear equilibrium point.Only the real solution is considered for the position of equilibrium points.

    Meanwhile, there are two non-collinear equilibrium points,i.e., L4and L5.The additional condition of these equilibrium points is y ≠0.Equations (5) and (6) can be rewritten in the form

    The calculations of ?1and ?2are done by substituting Equation (13) into Equation (12) and Equation (11) and solving these equations.By approximating with series and neglecting higher order terms of ?1, ?2, l2, and A, we have:

    3.2.Linear Stability

    Let us assume a small displacement in an equilibrium point by defining

    where “o” corresponds to the equilibrium points.The equation of motion from this small displacement is expressed as follows:

    where

    Here Ωomeans the pseudo-potential is evaluated at equilibrium points.Hence it is constant.Equation(18)has general solutions

    where αiand βiare constants while λiis the root of the characteristic equation.Substituting Equation (22) into Equation (18) produces

    4.The Case of Sun–Haumea System

    In this work,we model the Sun–Haumea system through the framework of the restricted three-body problem with the Sun as the bigger primary and Haumea as the small primary.Here we also consider the Kuiper Belt in this system.We assume Haumea has a circular orbit and orbits in the same plane as the Kuiper Belt.The mass of the small primary is a combination of Haumea’s mass and the mass of Haumea’s satellites: Namaka and Hi’iaka.The Sun has a mass around 1.989×1030kg.Haumea has a length of ~2300 km for its largest axis and a mass of 4×1021kg (Ragozzine & Brown 2009).Meanwhile,Namaka and Hi’iaka have masses of 1.79×1018kg and 17.9×1018kg,respectively(Ortiz et al.2017).Hence we have μ=2×10-9and l=3.5×10-7.Following Yousuf & Kishor(2019),here we assume that the Sun has A=2.6×10-11while the Kuiper Belt has T=0.11 and Mb=3×10-7.According to Sharma (1987), the photogravitational parameter q can be expressed in the CGS unit system as q=1-(5.6×10-5/aρ)where a and ρ are the radius and density of a moving body,respectively.Assuming a spacecraft has a=700 cm and ρ=0.05 gr cm-3, 1-q=1.6×10-6.

    Characteristic Roots of Collinear EquilibriumT a Pbolien t3 s in Sun–Haumea System with μ=2×10-9

    Figure 1.Plot of μ vs.characteristic roots(λ1,2,3,4)for L1,L2,and L3,with l=3.5×10-7,Mb=3×10-7,A=2.6×10-11,and 1-q=1.6×10-6.The real and imaginary parts of characteristic roots are marked by solid and dotted lines, respectively.Here we used T=0.11.

    We calculated the position of the collinear equilibrium points of the Sun–Haumea system.By substituting the property of the system into Equation (8) and solving it numerically, we found L1, L2, and L3.Table 1 shows the position of collinear equilibrium points.Here we vary the value of each perturbation parameter to examine the impact on the equilibrium point position.In the case of L1, the position gets closer to the primaries if A and 1-q increase.Decreasing A and increasing 1-q make L2be closer to the bigger primary.The position of L3is nearer with respect to primaries if the bigger primary emits stronger radiation pressure.According to Table 1, the position of collinear equilibrium points depends on the value of Mband l.Increasing Mband decreasing l make the location of L1become nearer to the smaller primary.The increment of Mband l affects the position of L2to become closer to the bigger primary.L3gets closer to the primaries if we increase the value of Mb.

    The positions of non-collinear equilibrium points are calculated from Equation (16).Table 2 shows the positions of non-collinear equilibrium points with respect to the chosen value of several parameters.When there are no perturbing factors, the triangular points have the same coordinates as in the classical case.The inclusion of perturbation parameters has resulted in a shift in the location of non-collinear equilibrium points.The increment of A makes the position of these equilibrium points closer to the small primary.In contrast,if we reduce q or increase Mb,the positions of equilibrium points are shifted toward the bigger primary.The positions are closer to the bigger primary in line with the increase of l.

    Figure 2.Plot of μ vs.characteristic roots(λ1,2,3,4)in L4 with different parameter configurations.The real and imaginary parts of characteristic roots are marked by solid and dashed lines respectively.Here we use T=0.11.The details of the parameters that are used in each subfigure are as follows.(a) A=0, 1-q=0, l=0,Mb=0.(b) A=2.6×10-11, 1-q=1.6×10-6, l=3.5×10-7, Mb=3×10-7.(c) A=2.6×10-6, 1-q=1.6×10-6, l=3.5×10-7, Mb=3×10-7.(d)A=2.6×10-11, 1-q=1.6×10-4, l=3.5×10-7, Mb=3×10-7.(e) A=2.6×10-11, 1-q=1.6×10-6, l=3.5×10-7, Mb=3×10-4.(f)A=2.6×10-11, 1-q=1.6×10-6, l=3.5×10-4, Mb=3×10-7.

    We now analyze the linear stability of each equilibrium point in the Sun–Haumea system.Collinear equilibrium points lie in the abscissa.Hence we have Ωoxy= 0.In order to study the stability, we divide the abscissa into three regions, i.e., L1(-∞, μ-1-l), L2(μ-1-l, μ), and L3(μ, ∞), and calculate the sign of b and b2-4c numerically for each region.First, we estimate the stability by considering the perturbation parameters in the Sun–Haumea system.As shown in Figure 1,there exist pure real and pure imaginary characteristic roots for μ between 0 and 0.5.Hence,all collinear equilibrium points of the Sun–Haumea system are unstable.Furthermore, we conducted the calculation by varying the value of perturbation parameters.Table 3 displays the result of the calculation.All regions have b<0 and b2-4c>0 which mean it produces two real pairs and two pure imaginary pairs.This shows that even if we change the value of perturbation parameters, the collinear equilibrium points remain unstable.

    Next, we investigate the stability of non-collinear equilibrium points in the Sun–Haumea system.We discuss only L4since the dynamics of L5is nearly similar.In the classical case,non-collinear equilibrium points are stable under the condition 27μ(1-μ)<1.Hence we can deduce μ<μc, where the critical mass μc=0.038520896504551.This critical mass can be calculated by finding the solution of b2-4c=0.In this modified version of CRTBP,we numerically calculate the roots by solving Equation (24).By considering the perturbing parameters, it shows that the stability of non-collinear equilibrium points has a maximum limit (μc) and minimum limit(μo)of mass parameters,an aspect which is different from the classical case.For the Sun–Haumea system, we found μc=0.0385208896007 and μo=1.386×10-12.Since the Sun–Haumea system has μ=2×10-9, we conclude that the Sun–Haumea system has stable non-collinear equilibrium points.Figure 2 displays a comparison of stability for several cases by changing the perturbing parameters of the Sun–Haumea system.It shows that the range of stability depends on the parameters A,q,l,and Mb.The characteristic roots have the form of pure imaginary if μo<μ<μc.The considered perturbation parameters alter the range of stability in μ.The increment of A or reduction of q reduces the size of the stability area.The stability region is shifted toward bigger μ if Mband l increase.

    5.Conclusion

    We have investigated the dynamics of an infinitesimal mass under the gravitational influence of two primaries.Our study assumes that the smaller primary is an elongated body, while the larger primary is oblate and also emits radiation.In addition,we have taken into account the presence of a disk that surrounds the three-body system.We have found that there are five equilibrium points in this modified CRTBP such that three of them are collinear and the other two are non-collinear.Our numerical exploration of the Sun–Haumea system has revealed that the inclusion of perturbing parameters has caused a displacement in the position of the Sun–Haumea system’s equilibrium points with respect to their positions in the classical CRTBP.We noticed that the magnitude of the perturbing parameters(q,A,l,and Mb)can affect the positions of the five equilibrium points.This analysis shows that the non-collinear equilibrium points of the Sun–Haumea system are stable,while all collinear equilibrium points are unstable.Moreover, we have ascertained that the collinear equilibrium points remain unstable for several possible ranges of perturbing parameters.In contrast, the non-collinear equilibrium points are conditionally stable with respect to μ.When taking into account the perturbing parameters, we have found that there are upper and lower limits of μ for achieving stability of non-collinear equilibrium points.The stability region for μ depends on the perturbing parameters.

    Acknowledgments

    This work is funded partially by BRIN’s research grant Rumah Program AIBDTK 2023.We thank the anonymous reviewer for the insightful comments and suggestions on the manuscript.

    亚洲激情五月婷婷啪啪| 黄色毛片三级朝国网站| 91午夜精品亚洲一区二区三区| 叶爱在线成人免费视频播放| 精品少妇黑人巨大在线播放| 免费看不卡的av| 久久99热这里只频精品6学生| 十分钟在线观看高清视频www| 久久99蜜桃精品久久| 日本色播在线视频| 亚洲天堂av无毛| 欧美精品一区二区免费开放| 国产男女超爽视频在线观看| 黄色配什么色好看| 日韩熟女老妇一区二区性免费视频| 尾随美女入室| 国产精品不卡视频一区二区| 免费看不卡的av| 亚洲精品久久成人aⅴ小说| 丝瓜视频免费看黄片| 建设人人有责人人尽责人人享有的| 国产日韩欧美视频二区| 国产欧美日韩一区二区三区在线| 美女中出高潮动态图| 亚洲五月色婷婷综合| 高清黄色对白视频在线免费看| 99re6热这里在线精品视频| av网站在线播放免费| 大香蕉久久成人网| 亚洲精品自拍成人| 亚洲第一区二区三区不卡| 精品国产乱码久久久久久男人| 国产精品.久久久| 国产精品二区激情视频| 成人午夜精彩视频在线观看| 两个人免费观看高清视频| 精品人妻在线不人妻| 久久狼人影院| 亚洲国产看品久久| 日韩一区二区视频免费看| 成人午夜精彩视频在线观看| 久久久精品免费免费高清| 80岁老熟妇乱子伦牲交| 九九爱精品视频在线观看| 亚洲av福利一区| 看十八女毛片水多多多| 侵犯人妻中文字幕一二三四区| av天堂久久9| 国产精品三级大全| 日韩精品有码人妻一区| 秋霞伦理黄片| 999久久久国产精品视频| 少妇 在线观看| 亚洲欧美中文字幕日韩二区| 午夜老司机福利剧场| 日韩 亚洲 欧美在线| 99久久精品国产国产毛片| 99热全是精品| 香蕉精品网在线| 亚洲国产精品国产精品| 久久婷婷青草| 日韩,欧美,国产一区二区三区| 精品国产露脸久久av麻豆| 美女大奶头黄色视频| 1024视频免费在线观看| 日本av免费视频播放| 视频在线观看一区二区三区| 波多野结衣一区麻豆| 国产成人精品婷婷| 制服人妻中文乱码| 国产免费视频播放在线视频| 国产精品久久久久久精品电影小说| 黄色视频在线播放观看不卡| 丝袜在线中文字幕| 日日啪夜夜爽| 国产精品久久久av美女十八| 美女中出高潮动态图| 另类亚洲欧美激情| 国产探花极品一区二区| 女性生殖器流出的白浆| 九草在线视频观看| 美女大奶头黄色视频| 亚洲人成电影观看| 欧美日韩一级在线毛片| 国产熟女午夜一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲内射少妇av| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 国产精品国产三级国产专区5o| 亚洲美女搞黄在线观看| 在线观看免费视频网站a站| 欧美日本中文国产一区发布| 久久国产精品大桥未久av| 人成视频在线观看免费观看| 亚洲精品,欧美精品| 中文字幕色久视频| 伦理电影免费视频| 亚洲精品av麻豆狂野| 成年人午夜在线观看视频| 一级黄片播放器| 老汉色∧v一级毛片| 国产一区有黄有色的免费视频| 精品国产一区二区三区四区第35| 免费在线观看完整版高清| 国产日韩欧美在线精品| 激情视频va一区二区三区| 国产亚洲一区二区精品| www.自偷自拍.com| 久久久国产欧美日韩av| 97在线人人人人妻| 免费在线观看完整版高清| 亚洲精品美女久久久久99蜜臀 | 丁香六月天网| 人妻 亚洲 视频| 亚洲成色77777| 电影成人av| 免费在线观看黄色视频的| 日韩三级伦理在线观看| 欧美少妇被猛烈插入视频| 久久精品久久精品一区二区三区| 午夜激情av网站| 一级a爱视频在线免费观看| 欧美精品国产亚洲| 97在线视频观看| 精品少妇内射三级| 午夜老司机福利剧场| 如日韩欧美国产精品一区二区三区| 日韩av在线免费看完整版不卡| 中文字幕人妻熟女乱码| 大码成人一级视频| 青青草视频在线视频观看| 亚洲婷婷狠狠爱综合网| 在线免费观看不下载黄p国产| 18禁观看日本| 亚洲国产毛片av蜜桃av| 黄片小视频在线播放| 久久av网站| 亚洲欧美一区二区三区黑人 | 热re99久久国产66热| 日韩 亚洲 欧美在线| 亚洲图色成人| 亚洲精品久久成人aⅴ小说| 国产在线免费精品| 满18在线观看网站| 2022亚洲国产成人精品| 搡女人真爽免费视频火全软件| 欧美另类一区| 一本大道久久a久久精品| 亚洲精品中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 久久久精品免费免费高清| 精品国产露脸久久av麻豆| av福利片在线| 97在线视频观看| 日韩欧美精品免费久久| 亚洲精品在线美女| 久久婷婷青草| 人人妻人人澡人人爽人人夜夜| 免费人妻精品一区二区三区视频| 中文字幕色久视频| 亚洲国产欧美网| 一级黄片播放器| 久久久a久久爽久久v久久| 亚洲精品美女久久久久99蜜臀 | 日韩中文字幕欧美一区二区 | 国产精品欧美亚洲77777| 亚洲婷婷狠狠爱综合网| 久久人人爽人人片av| 日韩制服丝袜自拍偷拍| 伦精品一区二区三区| 国产有黄有色有爽视频| 极品人妻少妇av视频| 午夜免费鲁丝| 秋霞在线观看毛片| 久久婷婷青草| 满18在线观看网站| 久久久久久伊人网av| 国产成人免费无遮挡视频| 青春草国产在线视频| h视频一区二区三区| 波野结衣二区三区在线| 日本午夜av视频| 成人影院久久| 狂野欧美激情性bbbbbb| 成年女人在线观看亚洲视频| 美女脱内裤让男人舔精品视频| 精品一区二区免费观看| 黄色毛片三级朝国网站| 在线观看www视频免费| 一区二区日韩欧美中文字幕| 欧美xxⅹ黑人| 成人国语在线视频| 亚洲成人手机| 婷婷色av中文字幕| 国产又色又爽无遮挡免| 制服丝袜香蕉在线| 精品一区二区三区四区五区乱码 | 高清在线视频一区二区三区| 亚洲国产日韩一区二区| 久久99精品国语久久久| 97在线视频观看| 午夜激情av网站| 国产亚洲av片在线观看秒播厂| 在线天堂中文资源库| av在线观看视频网站免费| 美女国产视频在线观看| 一二三四中文在线观看免费高清| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 男女免费视频国产| 免费播放大片免费观看视频在线观看| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 91成人精品电影| 欧美激情极品国产一区二区三区| 91国产中文字幕| 久久热在线av| 下体分泌物呈黄色| 午夜免费男女啪啪视频观看| 精品人妻偷拍中文字幕| 国产精品三级大全| 男人爽女人下面视频在线观看| tube8黄色片| 亚洲第一区二区三区不卡| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| av在线app专区| 秋霞伦理黄片| 欧美日韩一区二区视频在线观看视频在线| 久久99蜜桃精品久久| 欧美国产精品一级二级三级| 国产精品女同一区二区软件| 亚洲 欧美一区二区三区| 9色porny在线观看| 99久国产av精品国产电影| 老熟女久久久| 看十八女毛片水多多多| 制服诱惑二区| 丰满迷人的少妇在线观看| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 亚洲欧美精品自产自拍| 性少妇av在线| 校园人妻丝袜中文字幕| 在线观看www视频免费| 99国产精品免费福利视频| 国产精品一国产av| 色视频在线一区二区三区| 国产成人欧美| 欧美日本中文国产一区发布| 日本wwww免费看| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 日韩,欧美,国产一区二区三区| 精品一区二区免费观看| 精品久久久精品久久久| 在线观看人妻少妇| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 不卡av一区二区三区| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 在线观看三级黄色| 黄色视频在线播放观看不卡| 亚洲人成网站在线观看播放| 大香蕉久久成人网| 日本av手机在线免费观看| 如何舔出高潮| 人体艺术视频欧美日本| 国产成人免费观看mmmm| 国产1区2区3区精品| 免费看av在线观看网站| 久久久久精品人妻al黑| 日本午夜av视频| 久久 成人 亚洲| 久久精品国产鲁丝片午夜精品| 国产av精品麻豆| 午夜激情久久久久久久| 午夜激情av网站| 高清视频免费观看一区二区| 欧美亚洲 丝袜 人妻 在线| 国产视频首页在线观看| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 亚洲美女搞黄在线观看| 色网站视频免费| 久久久久国产一级毛片高清牌| 一本大道久久a久久精品| 男女午夜视频在线观看| 久久人妻熟女aⅴ| av网站在线播放免费| 免费日韩欧美在线观看| 80岁老熟妇乱子伦牲交| 午夜日本视频在线| 免费观看性生交大片5| 极品少妇高潮喷水抽搐| 最近中文字幕2019免费版| 久久久国产一区二区| 青春草国产在线视频| 赤兔流量卡办理| 亚洲第一区二区三区不卡| 成人影院久久| 国产精品久久久久久精品古装| 伦精品一区二区三区| 五月伊人婷婷丁香| 中文字幕av电影在线播放| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 亚洲美女视频黄频| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品第一综合不卡| 色网站视频免费| 大片电影免费在线观看免费| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 国产极品天堂在线| 最近中文字幕高清免费大全6| 伊人久久大香线蕉亚洲五| 久久国产精品大桥未久av| 国产精品三级大全| 少妇熟女欧美另类| 在线精品无人区一区二区三| 26uuu在线亚洲综合色| 亚洲综合精品二区| 黑人巨大精品欧美一区二区蜜桃| 中文字幕人妻丝袜一区二区 | av网站免费在线观看视频| 日本猛色少妇xxxxx猛交久久| 少妇 在线观看| 日本黄色日本黄色录像| 性少妇av在线| 久久国内精品自在自线图片| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| av片东京热男人的天堂| 在线 av 中文字幕| 亚洲精华国产精华液的使用体验| 成人手机av| 免费黄频网站在线观看国产| 不卡视频在线观看欧美| 日韩制服骚丝袜av| 中文乱码字字幕精品一区二区三区| 精品人妻在线不人妻| 日本av免费视频播放| 亚洲色图综合在线观看| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载| 国产成人精品婷婷| 麻豆精品久久久久久蜜桃| 国产在线视频一区二区| 国产97色在线日韩免费| 精品少妇一区二区三区视频日本电影 | 免费高清在线观看日韩| 成人国语在线视频| 国产精品熟女久久久久浪| 欧美黄色片欧美黄色片| 日本vs欧美在线观看视频| a 毛片基地| 熟女av电影| 一区二区av电影网| 亚洲av免费高清在线观看| 深夜精品福利| 国产97色在线日韩免费| 人妻少妇偷人精品九色| 熟女av电影| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| 美女主播在线视频| 丰满少妇做爰视频| 美女午夜性视频免费| 制服诱惑二区| 亚洲欧美一区二区三区久久| 人妻 亚洲 视频| 日韩不卡一区二区三区视频在线| 亚洲四区av| 深夜精品福利| 爱豆传媒免费全集在线观看| 最近的中文字幕免费完整| 大香蕉久久网| 日韩中文字幕视频在线看片| 精品少妇一区二区三区视频日本电影 | 制服人妻中文乱码| 欧美亚洲日本最大视频资源| 在线看a的网站| 观看美女的网站| 久久久久久久亚洲中文字幕| 超色免费av| 一二三四中文在线观看免费高清| 精品国产一区二区三区四区第35| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品电影小说| 18+在线观看网站| 少妇人妻 视频| 色婷婷久久久亚洲欧美| 91精品三级在线观看| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 美女脱内裤让男人舔精品视频| 精品一区在线观看国产| 99久久人妻综合| 久久精品亚洲av国产电影网| 国产免费一区二区三区四区乱码| 国产午夜精品一二区理论片| 搡女人真爽免费视频火全软件| 日韩 亚洲 欧美在线| 亚洲经典国产精华液单| 多毛熟女@视频| 精品人妻一区二区三区麻豆| 亚洲av国产av综合av卡| 91精品国产国语对白视频| 日韩一区二区视频免费看| 成人国产麻豆网| 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| 国产高清国产精品国产三级| 欧美成人午夜免费资源| 亚洲一区二区三区欧美精品| 欧美日韩国产mv在线观看视频| 尾随美女入室| 日韩大片免费观看网站| 香蕉精品网在线| 免费观看av网站的网址| 在线观看国产h片| 精品亚洲成国产av| 日本av免费视频播放| 高清欧美精品videossex| 欧美人与善性xxx| 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 母亲3免费完整高清在线观看 | 免费黄网站久久成人精品| 一级片免费观看大全| videossex国产| 尾随美女入室| 国产精品欧美亚洲77777| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲av国产电影网| 美国免费a级毛片| 国产乱人偷精品视频| 日日爽夜夜爽网站| 一个人免费看片子| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| www.av在线官网国产| 色哟哟·www| 高清在线视频一区二区三区| 香蕉国产在线看| 亚洲欧美一区二区三区国产| 欧美激情高清一区二区三区 | 精品国产国语对白av| 老汉色av国产亚洲站长工具| 有码 亚洲区| 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | 久久久久久久亚洲中文字幕| 美女国产视频在线观看| 亚洲av综合色区一区| 伊人亚洲综合成人网| 国产在视频线精品| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| 久久狼人影院| av免费在线看不卡| 欧美亚洲日本最大视频资源| 母亲3免费完整高清在线观看 | 久久国产精品男人的天堂亚洲| 一级毛片 在线播放| 黑人巨大精品欧美一区二区蜜桃| 久久99精品国语久久久| 国产精品99久久99久久久不卡 | 天天操日日干夜夜撸| 精品久久久精品久久久| 看十八女毛片水多多多| 美女xxoo啪啪120秒动态图| 国产精品国产av在线观看| 亚洲精品国产一区二区精华液| 老女人水多毛片| 视频区图区小说| 丰满饥渴人妻一区二区三| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 久久av网站| 亚洲国产欧美在线一区| 另类精品久久| 成人手机av| 不卡av一区二区三区| 成人午夜精彩视频在线观看| av片东京热男人的天堂| 久久久久久人人人人人| 青草久久国产| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| 国产成人91sexporn| 亚洲精品国产av蜜桃| 亚洲经典国产精华液单| 色哟哟·www| 国产精品香港三级国产av潘金莲 | 欧美人与善性xxx| 男女高潮啪啪啪动态图| 成年女人在线观看亚洲视频| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 99热国产这里只有精品6| 丰满少妇做爰视频| 国产成人精品在线电影| 七月丁香在线播放| 国产爽快片一区二区三区| 最新中文字幕久久久久| 欧美成人午夜免费资源| 亚洲美女视频黄频| 欧美 日韩 精品 国产| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频| 一区二区三区精品91| 国产黄色视频一区二区在线观看| 精品福利永久在线观看| 久久久久精品性色| 久久99一区二区三区| 亚洲四区av| 日本-黄色视频高清免费观看| 高清欧美精品videossex| 丝袜美腿诱惑在线| 久久精品国产综合久久久| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 日本-黄色视频高清免费观看| 欧美国产精品va在线观看不卡| 午夜福利网站1000一区二区三区| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| a级毛片黄视频| 亚洲av欧美aⅴ国产| 一级a爱视频在线免费观看| 视频在线观看一区二区三区| 在线免费观看不下载黄p国产| 精品人妻偷拍中文字幕| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠久久av| 午夜激情av网站| 日韩av不卡免费在线播放| 少妇熟女欧美另类| 大香蕉久久成人网| 久久精品久久久久久久性| 国产精品一国产av| 999精品在线视频| 美女主播在线视频| 国产精品久久久久久精品古装| 成人黄色视频免费在线看| 中文字幕制服av| 国产精品秋霞免费鲁丝片| www.自偷自拍.com| 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 亚洲精品国产一区二区精华液| 亚洲国产看品久久| 有码 亚洲区| kizo精华| 黄色怎么调成土黄色| 90打野战视频偷拍视频| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 久久久亚洲精品成人影院| 亚洲欧美日韩另类电影网站| 久久久亚洲精品成人影院| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 蜜桃国产av成人99| 又大又黄又爽视频免费| 成年av动漫网址| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 中文字幕人妻丝袜一区二区 | 午夜福利视频精品| 久久女婷五月综合色啪小说| 人妻人人澡人人爽人人| 久久99一区二区三区| 在线免费观看不下载黄p国产| 亚洲熟女精品中文字幕| 亚洲图色成人| 亚洲国产欧美在线一区| 久久久欧美国产精品| 免费观看性生交大片5| 最近中文字幕2019免费版| 又黄又粗又硬又大视频| 久久久久久久久久久久大奶| 日韩中文字幕欧美一区二区 | 精品99又大又爽又粗少妇毛片| 性少妇av在线| 国产色婷婷99| 国产一区二区 视频在线| 久久鲁丝午夜福利片| 精品少妇内射三级| 久久精品国产亚洲av高清一级| 一级a爱视频在线免费观看| 成人手机av| 国产在线一区二区三区精| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| 久久久久久久精品精品| 精品国产露脸久久av麻豆| 国产老妇伦熟女老妇高清| freevideosex欧美|