• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GRB 220408B: A Three-episode Burst from a Precessing Jet

    2024-01-06 06:41:16ZijianZhangYiHanIrisYinChenyuWangXiangyuIvyWangJunYangYanZhiMengZiKeLiuGuoYinChenXiaopingFuHuaizhongGaoSihaoLiYihuiLiuXiangyunLongYongChangMaXiaofanPanYuanzeSunWeiWuZiruiYangZhizhenYeXiaoyuYu2ShuhengZhaoXut
    Research in Astronomy and Astrophysics 2023年11期

    Zijian Zhang , Yi-Han Iris Yin,2 , Chenyu Wang, Xiangyu Ivy Wang,4, Jun Yang,4, Yan-Zhi Meng,4, Zi-Ke Liu,4,Guo-Yin Chen,4, Xiaoping Fu, Huaizhong Gao, Sihao Li, Yihui Liu, Xiangyun Long, Yong-Chang Ma, Xiaofan Pan,0,Yuanze Sun, Wei Wu, Zirui Yang,0, Zhizhen Ye, Xiaoyu Yu2, Shuheng Zhao, Xutao Zheng,0, Tao Zhou,Qing-Wen Tang4, Qiurong Yan, Rong Zhou, Zhonghai Wang, Hua Feng, Ming Zeng,0, and Bin-Bin Zhang,4,

    1 School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China; bbzhang@nju.edu.cn

    2 School of Physics, Nanjing University, Nanjing 210093, China

    3 Department of Astronomy, Tsinghua University, Beijing 100084, China; hfeng@tsinghua.edu.cn

    4 Key Laboratory of Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210093, China

    5 School of Information Engineering, Nanchang University, Nanchang 330031, China

    6 Department of Engineering Physics, Tsinghua University, Beijing 100084, China

    7 Department of Health Physics, China Institute for Radiation Protection, Taiyuan 300000, China

    8 Key Laboratory of Radiation Physics and Technology of Ministry of Education, College of Physics of Sichuan University, Chengdu 610065, China

    9 School of Artificial Intelligence, Nanjing University, Nanjing 210093, China

    10 Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084, China; zengming@tsinghua.edu.cn

    11 Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China

    12 School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

    13 College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China

    14 Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China

    15 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China

    Abstract Jet precession has previously been proposed to explain the apparently repeating features in the light curves of a few gamma-ray bursts (GRBs).In this paper, we further apply the precession model to a bright GRB 220408B by examining both its temporal and spectral consistency with the predictions of the model.As one of the recently confirmed GRBs observed by our GRID CubeSat mission, GRB 220408B is noteworthy as it exhibits three apparently similar emission episodes.Furthermore, the similarities are reinforced by their strong temporal correlations and similar features in terms of spectral evolution and spectral lags.Our analysis demonstrates that these features can be well explained by the modulated emission of a Fast-Rise-Exponential-Decay (FRED) shape light curve intrinsically produced by a precessing jet with a precession period of18.4 s, a nutation period ofs and viewed off-axis.This study provides a straightforward explanation for the complex yet similar multiepisode GRB light curves.

    Key words: gamma-rays: general – (stars:) gamma-ray burst: individual (GRB 220408B) – stars: jets

    1.Introduction

    Regardless of its different types of origin, which can be either the collapse of a massive star(Paczynski 1986;Woosley 1993; Woosley & Bloom 2006) or the merger of binary compact stars (Eichler et al.1989), a gamma-ray burst (GRB)central engine is believed to resemble the same accretion system which consists of a central object,an accretion disk,and a relativistic jet.In particular, if the central object is a black hole(BH),the angular momentum direction of the BH and the accretion disk can differ due to the anisotropic explosions of its progenitor star.As the outer part of the disk has a sufficiently larger angular momentum, it will maintain its direction and drive the BH and the inner part of the accretion disk to precess due to the Lense-Thirring torque and the viscosity of the disk(Lense & Thirring 1918; Bardeen & Petterson 1975).The jet launched from the inner region of the disk will follow the rotating black hole to precess (e.g., Reynoso et al.2006; Liu et al.2010; Lei et al.2012).Such precession can naturally cause the change of observer angle (calculated with respect to the moving direction of the ejected material, see Section 3.1).In some cases, when the precession period is shorter than the burst duration, and the jet’s opening angle is small enough,precession can affect the observed light curve by introducing periodic-like or missing emissions.Several previous attempts(e.g., Lei et al.2007; Liu et al.2010) have been made to correlate those features with observations.

    In light of previous studies, we sought to find additional GRBs that display those characteristics that may be attributed to precession.GRB 220408B, a recent burst co-detected by Fermi (Bissaldi et al.2022), Konus-Wind (Lysenko et al.2022),Astro-Sat (Gopalakrishnan et al.2022),and GRID (this work), quickly caught our attention due to its multiple similar temporal episodes.In this paper, we first performed a detailed analysis of GRB 220408B from the perspective of its light curve properties and spectral evolution (Section 2).Motivated by the similarities of the three episodes in light curve profile,spectral evolution, and spectral lags, we proposed to use a precession-nutation model to explain the observed properties of GRB 220408B (Section 3).The summary and discussion are presented in Section 4.

    2.Observation and Data Analysis

    2.1.The Data

    GRB 220408B triggered the Gamma-ray Burst Monitor(GBM) aboard the NASA Fermi Gamma-ray Space Telescope(Meegan et al.2009) at 07:28:04.65 universal Time on 8 Apr 2022 (hereafter T0,GBM).It is also the third confirmed GRB observed by GRID (short for Gamma-Ray Integrated Detectors), a low-cost project led by students aiming to build an all-sky and full-time CubeSat network to monitor highenergy transient sources, including GRBs, in low Earth orbits(Wen et al.2019, 2021).To date, GRID has collected several confirmed GRBs as well as dozens of GRB candidates, of which the first is GRB 210 121A (Wang et al.2021).In this work, we mostly utilize the Fermi/GBM data in consideration of its wide spectral coverage and high temporal and spectral resolution.As a result of a large separation angle (?60°)between the pointing direction of the detector and the GRB location, the GRID data of GRB 220408B suffer from low signal-to-noise ratio16(S/N) and,therefore, are only displayed in the top panel of Figure 1 as an illustration.

    We retrieved the time-tagged event (TTE) data set of GRB 220408B from the Fermi/GBM public data archive.17Two sodium iodide (NaI) detectors, namely n6 and n7, with the smallest viewing angles with respect to the GRB source direction, were selected for our analysis.Additionally, the brightest bismuth germanium oxide (BGO) detector, b1, was also selected as it extends to a higher energy range.These data were then processed according to the standard procedures described in Zhang et al.(2011) and Yang et al.(2022) to investigate the burst’s temporal and spectral properties, as detailed below.

    2.2.The Three-episode Light Curve

    We plot the GBM and GRID light curves together in Figure 1, using the same bin size of 0.325 s and the same alignment time,T0,at T0,GBM.While both light curves are extracted from the same 15–350 keV energy range, the S/N of the brightest peak of the GRID light curve is about one-fifth of that of the GBM light curve due to the former’s large off-axis angle.Nevertheless,the majority of the significant peaks on both light curves coincide, which reinforce the usefulness of CubeSat detectors for GRB research, even in non-ideal observational conditions.

    GRB 220408B exhibits an overall Fast-Rise-Exponential-Decay (FRED; Kocevski et al.2003) profile while retaining a complex substructure characterized by three apparently separated emission episodes.Following the method in Yang et al.(2020a)and Yang et al.(2020b),the burst duration in the standard energy range of 15–350 keV is calculated as T90,15–350keV~30 s (see also Bissaldi et al.2022), counted from T0+1.5 s to T0+31.5 s.Such a T90range,however,does not cover the third episode, which starts at around T0+55 s.

    Figure 2.(a)Light curve profiles of the three episodes are aligned according to the middle peak positions within red vertical dashed lines.Matched peaks are marked with green vertical dashed lines.(b)The correlation between Episode II and Episode I is delineated in orange,and the correlation between Episode II and Episode III is delineated in purple.The shaded areas represent the corresponding 3σ uncertainties.

    We noticed that the third emission episode becomes particularly significant in low energies, as shown in the third panel of Figures 1 and 3, indicating a strong spectral evolution across the three episodes.We were thus motivated to recalculate the burst’s T90in a lower energy range between 10 and 25 keV to be 62.5 s (see the bottom panel of Figure 1), which more accurately conveys the burst timescale and the central engine activities (Zhang et al.2014).Such an energy range is also utilized in dividing the burst into three episodes with a visual aid of the pulse structures,as colored in the third panel of Figure 1.

    Interestingly, the three emission episodes display striking similarities with each other in terms of duration,pulse structure,and spectral evolution.A more comprehensive analysis of that focus will be conducted in the rest of this section.

    2.3.Similarity in Overall Temporal Profile

    The similarity of the light curve profiles is illustrated in Figure 2(a), where the light curves18Those light curves are extracted in the energy range of 10–100 keV to improve S/N and binned to 0.1 s to increase the visibility of the detailed structures.of the three episodes are first aligned according to the middle peak positions(red vertical dashed lines).Interestingly, such an alignment automatically results in several other peaks matching along (green vertical dashed lines).

    To further quantify the similarity, we calculated the correlation coefficients between any pair of the three light curves in Figure 2(b).The Pearson correlation coefficient is 0.68 with a p-value of 7.60×10-31between Episode I and Episode II,and is 0.42 with a p-value of 1.15×10-10between Episode II and Episode III.The strong correlations among the three episodes indicate that they may have the same physical origin, which could account for their similar shapes.

    2.4.Similarity in Multi-wavelength Behaviors

    We then divided the energy range between 10 and 800 keV into eight bands and extracted multi-wavelength light curves from Fermi/GBM NaI detectors n6, n7 and BGO detector b1 using the method described in Liu et al.(2022).As shown in Figure 3, the profiles of the multi-wavelength light curves,including their characteristics,such as the peak time and width of the pulses, clearly evolve in accordance with increasing energy.Such an evolution is commonly observed in GRBs and often measured as a spectral lag, which refers to the delay of the arrival time of gamma-ray photons in different energy bands (e.g., Norris et al.2000; Yi et al.2006).Both positive(i.e.,higher-energy photons arrive earlier)and negative lags,as episodes, which further confirms the similarity of the three emission episodes.

    2.5.Similarity in Spectral Evolution

    We performed both time-integrated and time-resolved spectral analyses over the periods of Episodes I, II, and III,respectively.Our time-resolved spectral analysis seeks to track the spectral evolution in as much detail as possible.To do so,we divided the burst duration into 37 time-resolved slices (see Figure 5 and Table 1),each containing sufficient photon counts(i.e., 20 counts per spectral bin; Zhang et al.2018) to ensure statistical validity.Within each slice, we extracted the count spectra of GRB 220408B from Fermi/GBM NaI detectors n6,n7 and BGO detector b1 following the procedures described in Zhang et al.(2011);Yang et al.(2020a,2020b,2022)and Zou et al.(2021).Corresponding background spectra are acquired by applying the baseline method(Yang et al.2020a;Zou et al.2021)to the time interval from T0-98 s to T0+134 s for each energy channel.The response matrices of the detectors are generated using the GBM Response Generator.19https://fermi.gsfc.nasa.gov/ssc/data/analysis/rmfit/gbmrsp-2.0.10.tar.bz2

    For each slice, as well as each episode, we performed a spectral fit using the Monte Carlo fitting tool MySpecFit(Yang et al.2022).All the spectra are fitted by a cutoff power-law(CPL) model formulated as (Yu et al.2016)well as the positive-to-negative lag transitions (e.g., Wei et al.2017; Du et al.2021; Liu et al.2022), have been observed in some GRBs.

    Figure 3.The multi-wavelength light curves of GRB 220408B.The orange,green, and purple blocks mark Episode I, Episode II, and Episode III,respectively.

    Following the method described in Zhang et al.(2012) and Liu et al.(2022), we calculated the energy-dependent lags for all three episodes using the multi-wavelength light curve pairs in Figure 3.The results are shown in Figure 4.Interestingly, a positive-to-negative transition feature, with a roughly consistent trend, is observed in the lag-E relations in all three

    where α, A, and Epare the photon index, normalization coefficient, and peak energy, respectively.

    The results of our spectral fitting are presented in Table 1.Based on the ratio of Profile Gaussian likelihood to the degree of freedom(PGSTAT/dof;Arnaud 1996)statistics, our results indicate that the CPL model can adequately fit the spectra of the three episodes and time-resolved slices.Using the best-fit parameters of the CPL model,we plot the spectral evolution of GRB 220408B in Figure 5, along with the total light curve summing up the GBM detectors n6,n7,and b1 between 10 and 1000 keV.Both α and Epexhibit strong spectral evolution,roughly consistent with the tracking behaviors as observed in other GRBs (e.g., Lu et al.2012).transition, which is typically attributed to GRB central engine characteristics (e.g., Zhang et al.2018).

    Figure 4.Spectral lags between the lowest energy band(10–25 keV) and any higher energy bands of the three episodes(Episodes I to III from top to bottom).The zero lag is shown with a dashed gray line.The horizontal error bars represent the range of energy bands, and the vertical error bars indicate the 1σ uncertainties.

    3.Model and Fit

    The similarities of the three emission episodes,as well as the overall FRED shape profile, appear to point toward a uniform origin that produces the observed gamma-ray emissions in a repeatable manner.A natural explanation for such features is that the GRB jet may precess while propagating outward from the central engine(Portegies Zwart et al.1999;Lei et al.2007;Liu et al.2010).In this section, we further test this hypothesis by quantitatively fitting the observed data with a precession model.In addition to the precession itself, our toy model also considers that the nutation (Portegies Zwart et al.1999) of the jet can contribute to the substructure of the light curves.

    3.1.The Precession–Nutation Model

    Considering the precession and nutation of a GRB jet, the observer angle, θ, defined as the angle between the jet propagating direction and line of sight (LOS), varies as a function of time.A GRB can be significantly observed only when θ is less than the jet’s half-opening angle.The periodic change of θ may cause the jet to sweep across the LOS intermittently, which, when taking into account the intrinsic emission profiles together,can lead to complex shapes of GRB light curves, sometimes with repeating (Portegies Zwart et al.1999;Lei et al.2007)and emission-missing(Wang et al.2022)features.

    Figure 5.The spectral evolution of the CPL model.The horizontal error bars represent the time spans,and the vertical error bars indicate the 1σ uncertainties of the best-fit parameters.

    Table 1 The Spectral Fitting Results and Corresponding Energy Flux of GRB 220408B

    Figure 6.The linear fits to log Ep – logF and α–log Frelations.The solid green lines and dashed green lines show the best-fit relations and the corresponding 3σ error bands of the whole burst,respectively.The black,blue,and red points are the parameters of Episode I, Episode II, and Episode III,respectively.The error bars indicate the corresponding 1σ uncertainties of the parameters.

    Our model is illustrated in Figure 7.A GRB jet with a halfopening angle,θjet,is propagating along its direction of ?rjet.An observer resides within the θjet-cone with an off-axis angle, θ,with respect to ?rjet.The jet precesses with an angular velocity ofωprealong the z-axis while its rotating axis is nutating with an angular velocity of ωnu.The x-y plane is set accordingly so the Cartesian coordinate is centered at the GRB central engine.We also assumed that the intrinsic emission from the jet is shaped as a FRED function (Kocevski et al.2003), namely,

    where t is measured in the laboratory frame (the jet’s local frame),tmis the time when the flux reaches the peak,Fmis the peak flux,r and d are the power-law exponents for the rise and decay, respectively.

    We then derived the observed flux of our model based on the above configuration.The direct effect brought by precession and nutation is the change of θ as a function of time,which can be calculated as

    Figure 7.The schematic sketch of the precession-nutation jet model.

    The increasing time intervals between the three episodes may be due to the slowing down of jet precession, which is a natural outcome of energy dissipation.We thus assumed a power-law decay of the precession angular velocity aswhere ξ is the decay index, t0is the offset time when the jet begins to precess, tCis a characteristic timescale.

    Table 2 The Best-Fit Parameters of Linear Models for α–log F, log Ep – log F, and log Ep –αCorrelations

    We assumed a conical jet with a half-opening angle of θjetand no moving material outside the cone.According to the derivation in Salafia et al.(2016),the observed GRB flux M(t,θ(t)) at viewing angle θ(t) in the laboratory frame can be described by

    where Δt is a parameter for adjusting the time offset of the model light curve.

    Finally, the observed flux can be calculated by substituting Equations (2)–(7) and Equation (9) to Equation (8), which can be written in form of

    3.2.The Fit

    The next step is to fit our model (Equation (10)) to the observed light curve.With a fixed parameter of Γ=300, the free parameter set P of our model consists of the following 14 items:

    1.The jet’s half-opening angle θjet.According to Ryan et al.(2015), the maximum of θjetis smaller than 0.5 radians.Thus the prior of θjetis set as a uniform distribution between 0 and 0.5 radians.

    2.The initial precession angle λ0.The prior of λ0is set as a uniform distribution between 0 and π/2 radians.

    3.The observer’s polar angle i.The prior of i is set as a uniform distribution between 0 and π/2 radians.

    4.The initial phase η0.The prior of η0is set as a uniform distribution between -π and π radians.

    5.The initial precession angular velocityωpre,0.As there are at least two precession periods within the ~70 s duration of the burst, the prior ofωpre,0is set as a uniform distribution between 0.18 and 1 rad s-1.Such a range can account for the decrease ofωpre.

    6.The nutation angular velocity ωnu.The prior of ωnuis set as a uniform distribution between 0.18 and 2.5 rad s-1.

    7.The precession angular velocity decay index ξ.The prior of ξ is set as a uniform distribution between 0 and 0.5.

    8.The offset time t0of precession angular velocity decay.The prior of t0is set as a uniform distribution between-50 and 10 s.

    9.The characteristic timescale tCof precession angular velocity decay.The prior of tCis set as a uniform distribution between 0 and 15 s.

    10.The peak time tmof the intrinsic FRED profile.The prior of tmis set as a uniform distribution between 0 and 10 s.11.The rise power-law exponent r of the intrinsic FRED profile.The prior of r is set as a uniform distribution between 0.3 and 5.

    12.The decay power-law exponent d of the intrinsic FRED profile.The prior of d is set as a uniform distribution between 0.3 and 5.

    13.The peak flux Fmof the intrinsic FRED profile.The prior of Fmis set as a uniform distribution between 3000 and 7000 cts s-1.

    14.The time offset Δt of the model light curve.The prior of Δt is set as a uniform distribution between -2 and 2 s.

    We then performed the fit using a self-developed Bayesian Monte-Carlo fitting package McEasyFit (Zhang et al.2015),which is based on the widely used Multinest algorithm (Feroz& Hobson 2008; Feroz et al.2009).This package can explore the complete parameter space efficiently to find the reliable best-fit parameters and determine their uncertainties realistically by the converged Markov Chains.The log-likelihood function can be calculated as:

    3.3.The Result

    Based on the best-fit parameters in Table 3 and Equation(3),we can calculate that the observer angle θ is always smaller than the jet’s half-opening angle θjet,suggesting that the change of θ does not dominate the change of the laboratory frame observed flux.The lower limit of the jet’s half-opening angle can be derived asθjet,lolim=λmax+imax= 1.05 × 10-3rad.On the other hand,the precession-nutation effect modulates the shape of the observed light curve mainly through the conversion of photons’ observed time between the laboratory frame and the observer frame(i.e.,Equation(9))rather than the direct influence to the laboratory frame intrinsic light curve(i.e.,Equation(8)).As a result of the conversion of arrival time between the two frames, the number of arriving photons is redistributed in the observer frame.At certain times,the arrival of photons is more concentrated, which results in the peak structures in the light curve.

    4.Summary and Discussion

    This paper proposes that the observed three-episode feature of GRB 220408B can be explained by a precessing jet.Based on the similarities between the three episodes in light curve profile,spectral evolution,and spectral lags,we concluded that they may have the same origin and may be the result of jet precession.A jet-precession model can be successfully used to fit the light curve of GRB 220408B, which assumes a FRED shape light curve that precesses and nutates with slowing precession angular velocity.Our fit suggests that the photon arrival time change in different frames resulting from the precession jet plays a prominent role in shaping the observed light curve when a GRB is observed off-axis.

    where a* and M are respectively the dimensionless spin parameter (0

    Figure 8.(a) Corner plot of the posterior probability distributions of the parameters.The red error bars represent the 1σ uncertainties.The contours in the 2D histograms represent 1σ, 1.5σ, and 2σ uncertainties, respectively.(b) Light curves of GRB 220408B and the best-fit precession-nutation model.

    Table 3 The Best-Fit Parameters of the Light Curve in 10–1000 keV Range

    Additionally, it is worth noting that our model maintains a fixed jet bulk Lorentz factor at the typical value of Γ=300.Our analysis has verified that variations in the Γ value have negligible impact on the profile of the model’s light curve,thereby not substantially influencing our fitting outcomes.Furthermore, in view of computation costs, our model, which already has 14 free parameters, does not incorporate the reproduction of the observed spectral evolution.Although, in principle, such an evolution can be attributed to the Doppler factor change predicted by our model, a realistic model should also take into account the intrinsic central engine behaviors that result in the observed spectral evolution,which adds even more complexity to the model but will be left for future study.

    Acknowledgments

    We thank the anonymous referee for helpful suggestions and comments.We acknowledge the support by the National Key Research and Development Programs of China(2022YFF0711404, 2022SKA0130102), the National SKA Program of China (2022SKA0130100), the National Natural Science Foundation of China(grant Nos.11833003,U2038105,U1831135, 12121003), the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B11,the Fundamental Research Funds for the Central Universities,and the Program for Innovative Talents and Entrepreneur in Jiangsu.Y.-Z.M.is supported by the National Postdoctoral Program for Innovative Talents (grant No.BX20200164).We acknowledge the use of public data from the Fermi Science Support Center (FSSC).

    ORCID iDs

    Zijian Zhang https://orcid.org/0000-0002-2420-5022

    Yi-Han Iris Yin https://orcid.org/0000-0002-5596-5059

    欧美另类亚洲清纯唯美| 亚洲色图 男人天堂 中文字幕| 女警被强在线播放| 久久99热这里只频精品6学生| 亚洲av成人不卡在线观看播放网| 久久中文看片网| 最近最新中文字幕大全免费视频| 国产男女内射视频| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 成年人免费黄色播放视频| 高清毛片免费观看视频网站 | 久久亚洲精品不卡| 久久人妻福利社区极品人妻图片| 精品国产一区二区久久| 日本av手机在线免费观看| 在线观看免费视频日本深夜| 日韩成人在线观看一区二区三区| 亚洲精品国产精品久久久不卡| 国产黄色免费在线视频| 欧美久久黑人一区二区| 丝袜在线中文字幕| 十八禁网站免费在线| 一区二区三区精品91| 法律面前人人平等表现在哪些方面| 99国产精品一区二区三区| 精品亚洲乱码少妇综合久久| 成人免费观看视频高清| 国产成人av教育| 脱女人内裤的视频| 午夜精品国产一区二区电影| 午夜福利在线免费观看网站| 国产精品亚洲av一区麻豆| 精品国产国语对白av| 国产欧美日韩一区二区三区在线| 亚洲av日韩精品久久久久久密| 男人操女人黄网站| 中文字幕av电影在线播放| 欧美日韩黄片免| 久久中文看片网| a在线观看视频网站| 高清在线国产一区| 亚洲精品在线美女| 大香蕉久久网| 久久久久久亚洲精品国产蜜桃av| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 亚洲中文av在线| 午夜精品久久久久久毛片777| 国产在线精品亚洲第一网站| 久久久久久久国产电影| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 热re99久久国产66热| 亚洲精品中文字幕在线视频| 亚洲av日韩精品久久久久久密| 视频区图区小说| 日日爽夜夜爽网站| 好男人电影高清在线观看| 美女高潮到喷水免费观看| tocl精华| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| cao死你这个sao货| 9色porny在线观看| 在线观看www视频免费| 国产精品免费一区二区三区在线 | 午夜精品久久久久久毛片777| 91老司机精品| 天天躁夜夜躁狠狠躁躁| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇内射三级| 亚洲欧美色中文字幕在线| 久久人妻熟女aⅴ| 久久久久视频综合| 亚洲专区国产一区二区| 99在线人妻在线中文字幕 | 我的亚洲天堂| 国产欧美日韩一区二区三区在线| 久久人妻熟女aⅴ| 777米奇影视久久| 岛国在线观看网站| 国产不卡av网站在线观看| a在线观看视频网站| 久久人妻av系列| 天堂俺去俺来也www色官网| 高清视频免费观看一区二区| 亚洲天堂av无毛| 日日摸夜夜添夜夜添小说| 纯流量卡能插随身wifi吗| 国产精品九九99| 国产成人av教育| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 在线观看免费高清a一片| 黑人巨大精品欧美一区二区蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 中文亚洲av片在线观看爽 | 久久午夜亚洲精品久久| 亚洲国产欧美网| 一个人免费看片子| 最新的欧美精品一区二区| 久久国产精品人妻蜜桃| 欧美+亚洲+日韩+国产| 91成年电影在线观看| 亚洲成a人片在线一区二区| 久久精品亚洲熟妇少妇任你| 久久中文看片网| 久久久国产成人免费| 国产免费视频播放在线视频| 日韩 欧美 亚洲 中文字幕| 久久免费观看电影| 一级毛片精品| 亚洲第一av免费看| 久久午夜亚洲精品久久| 亚洲自偷自拍图片 自拍| 国产又爽黄色视频| 丝袜人妻中文字幕| 国产免费视频播放在线视频| 在线观看免费视频网站a站| 午夜福利在线观看吧| 国产一区二区 视频在线| 中文字幕制服av| 国产一区二区三区在线臀色熟女 | 久久久国产成人免费| 少妇猛男粗大的猛烈进出视频| av天堂在线播放| 亚洲精品中文字幕一二三四区 | 国产精品九九99| 99热网站在线观看| 久久国产精品影院| 我的亚洲天堂| 亚洲中文日韩欧美视频| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 一级毛片女人18水好多| 波多野结衣av一区二区av| 亚洲七黄色美女视频| 国产精品久久电影中文字幕 | 中文字幕制服av| 色94色欧美一区二区| 成人国产av品久久久| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 亚洲国产欧美网| 国产成人系列免费观看| 亚洲色图 男人天堂 中文字幕| 丝袜美足系列| 国产主播在线观看一区二区| 日本wwww免费看| www日本在线高清视频| av欧美777| 桃红色精品国产亚洲av| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 久久九九热精品免费| 免费一级毛片在线播放高清视频 | 国产精品久久电影中文字幕 | 乱人伦中国视频| 在线看a的网站| 欧美大码av| 久久久久久人人人人人| 久久99一区二区三区| 两个人看的免费小视频| 91成人精品电影| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 一级毛片精品| 搡老岳熟女国产| 欧美日韩成人在线一区二区| 大片免费播放器 马上看| 美女午夜性视频免费| 久久精品亚洲av国产电影网| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 日本wwww免费看| 欧美日韩精品网址| 成在线人永久免费视频| 午夜久久久在线观看| 999精品在线视频| 精品国产乱码久久久久久男人| 欧美国产精品一级二级三级| 国产又色又爽无遮挡免费看| 精品熟女少妇八av免费久了| 热99国产精品久久久久久7| 久久中文看片网| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 不卡一级毛片| 国产福利在线免费观看视频| 亚洲 欧美一区二区三区| 亚洲欧美色中文字幕在线| 国产精品成人在线| 美国免费a级毛片| 蜜桃在线观看..| 18禁黄网站禁片午夜丰满| 成年版毛片免费区| 天天添夜夜摸| 色视频在线一区二区三区| 亚洲成人免费av在线播放| a在线观看视频网站| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 99热国产这里只有精品6| 一本大道久久a久久精品| 亚洲精品一二三| 亚洲国产av影院在线观看| 变态另类成人亚洲欧美熟女 | 国产精品久久久久成人av| 久久av网站| 老司机午夜十八禁免费视频| 妹子高潮喷水视频| 狠狠婷婷综合久久久久久88av| 久久国产精品人妻蜜桃| 精品国产一区二区三区四区第35| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 丝袜美腿诱惑在线| 欧美大码av| 亚洲成人免费av在线播放| 国产色视频综合| 欧美性长视频在线观看| 久久精品人人爽人人爽视色| 最新美女视频免费是黄的| 国产亚洲精品第一综合不卡| 久久久国产成人免费| 激情在线观看视频在线高清 | 午夜精品久久久久久毛片777| av不卡在线播放| 国产91精品成人一区二区三区 | 久久亚洲精品不卡| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 午夜福利在线免费观看网站| 黄色a级毛片大全视频| 亚洲欧美色中文字幕在线| 久久久国产成人免费| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 欧美久久黑人一区二区| 亚洲精品久久成人aⅴ小说| 人人妻人人澡人人看| 9热在线视频观看99| 久久久国产精品麻豆| 国产精品欧美亚洲77777| www.自偷自拍.com| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品在线电影| 黑人欧美特级aaaaaa片| 巨乳人妻的诱惑在线观看| 欧美日韩视频精品一区| 国产精品一区二区精品视频观看| 少妇裸体淫交视频免费看高清 | 后天国语完整版免费观看| 色老头精品视频在线观看| 视频区欧美日本亚洲| 亚洲欧美日韩高清在线视频 | 精品一区二区三区av网在线观看 | 18在线观看网站| 伦理电影免费视频| 在线亚洲精品国产二区图片欧美| 1024视频免费在线观看| 黄色毛片三级朝国网站| 日本欧美视频一区| 中亚洲国语对白在线视频| 国产av国产精品国产| videos熟女内射| 天天添夜夜摸| 看免费av毛片| 男女床上黄色一级片免费看| 午夜成年电影在线免费观看| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 王馨瑶露胸无遮挡在线观看| 国产欧美亚洲国产| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区 | 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 国产三级黄色录像| 淫妇啪啪啪对白视频| 一区福利在线观看| 大码成人一级视频| 少妇精品久久久久久久| 操美女的视频在线观看| 18禁观看日本| 成人手机av| 9热在线视频观看99| 久久中文字幕人妻熟女| 精品国产国语对白av| 午夜福利,免费看| 黄色片一级片一级黄色片| 不卡av一区二区三区| 久久毛片免费看一区二区三区| 男女边摸边吃奶| 美女高潮到喷水免费观看| 男女床上黄色一级片免费看| 操出白浆在线播放| 在线十欧美十亚洲十日本专区| 国产日韩欧美在线精品| 性高湖久久久久久久久免费观看| 欧美中文综合在线视频| 自线自在国产av| 18禁美女被吸乳视频| 制服人妻中文乱码| 免费看a级黄色片| 国产三级黄色录像| 肉色欧美久久久久久久蜜桃| 青草久久国产| 9色porny在线观看| 久久国产精品男人的天堂亚洲| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影 | h视频一区二区三区| 日本a在线网址| 亚洲精品国产色婷婷电影| 飞空精品影院首页| 露出奶头的视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩另类电影网站| 亚洲中文av在线| 美女扒开内裤让男人捅视频| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 午夜久久久在线观看| 女人被躁到高潮嗷嗷叫费观| 精品免费久久久久久久清纯 | netflix在线观看网站| 巨乳人妻的诱惑在线观看| 日本av免费视频播放| 久久精品亚洲精品国产色婷小说| 国产精品二区激情视频| 一区二区av电影网| 老熟妇乱子伦视频在线观看| 精品人妻熟女毛片av久久网站| 一区二区三区激情视频| 在线观看免费视频网站a站| 亚洲视频免费观看视频| 国产欧美日韩一区二区精品| 日本wwww免费看| 一区二区三区乱码不卡18| 午夜激情av网站| 美女午夜性视频免费| 纵有疾风起免费观看全集完整版| 搡老乐熟女国产| 新久久久久国产一级毛片| 久久人妻福利社区极品人妻图片| 桃花免费在线播放| 人人澡人人妻人| 一级黄色大片毛片| 另类亚洲欧美激情| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 亚洲专区国产一区二区| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 伦理电影免费视频| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| 免费人妻精品一区二区三区视频| 亚洲情色 制服丝袜| 男人舔女人的私密视频| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 欧美日韩黄片免| 日韩视频一区二区在线观看| 日韩大码丰满熟妇| 制服人妻中文乱码| 美女视频免费永久观看网站| 黄片小视频在线播放| 黄片大片在线免费观看| av网站在线播放免费| 国产在视频线精品| 一二三四在线观看免费中文在| 亚洲精品美女久久久久99蜜臀| 国产成人影院久久av| 一级片'在线观看视频| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 国产麻豆69| 国产aⅴ精品一区二区三区波| 国产精品国产高清国产av | 99国产精品99久久久久| 久久久久久久大尺度免费视频| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 久久青草综合色| av在线播放免费不卡| 久9热在线精品视频| 成人永久免费在线观看视频 | 一级片'在线观看视频| 久久婷婷成人综合色麻豆| 国产精品九九99| 亚洲成a人片在线一区二区| 精品福利观看| 国产精品免费一区二区三区在线 | 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 欧美日韩av久久| 国产成人精品在线电影| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄色免费在线视频| 高清欧美精品videossex| 欧美激情极品国产一区二区三区| 亚洲精品国产色婷婷电影| 国产亚洲精品第一综合不卡| cao死你这个sao货| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 精品福利永久在线观看| 国产精品久久电影中文字幕 | 久久久久网色| 国产一区二区三区在线臀色熟女 | 在线天堂中文资源库| 亚洲成a人片在线一区二区| 久久久久网色| 精品乱码久久久久久99久播| 亚洲一区二区三区欧美精品| 欧美国产精品一级二级三级| 日韩制服丝袜自拍偷拍| av超薄肉色丝袜交足视频| 精品高清国产在线一区| 91麻豆精品激情在线观看国产 | 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 久久青草综合色| 久久久精品免费免费高清| 免费不卡黄色视频| 亚洲精品在线美女| 亚洲av第一区精品v没综合| 中文字幕av电影在线播放| 欧美午夜高清在线| 一本色道久久久久久精品综合| 少妇粗大呻吟视频| 一级片免费观看大全| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 午夜福利在线免费观看网站| 女警被强在线播放| 美国免费a级毛片| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 18禁裸乳无遮挡动漫免费视频| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 中文字幕制服av| 黄片大片在线免费观看| 激情在线观看视频在线高清 | 亚洲性夜色夜夜综合| 亚洲欧美日韩高清在线视频 | 777米奇影视久久| 国产一区有黄有色的免费视频| 高清av免费在线| kizo精华| 丁香六月欧美| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 99热国产这里只有精品6| 少妇精品久久久久久久| 亚洲精品国产色婷婷电影| 成年人免费黄色播放视频| 王馨瑶露胸无遮挡在线观看| 狠狠狠狠99中文字幕| 亚洲欧美激情在线| 99热国产这里只有精品6| 波多野结衣av一区二区av| 午夜久久久在线观看| 日韩欧美三级三区| 99九九在线精品视频| av网站免费在线观看视频| 一区二区三区激情视频| 色婷婷av一区二区三区视频| h视频一区二区三区| 9色porny在线观看| 亚洲九九香蕉| 在线观看免费视频日本深夜| 最黄视频免费看| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 香蕉久久夜色| 亚洲人成电影观看| 91字幕亚洲| 91麻豆av在线| 亚洲第一青青草原| 国产成人精品久久二区二区免费| 欧美精品人与动牲交sv欧美| 国产成人欧美| 欧美一级毛片孕妇| 免费在线观看完整版高清| 一区二区三区国产精品乱码| 亚洲av欧美aⅴ国产| 在线观看www视频免费| 国产精品秋霞免费鲁丝片| 成年动漫av网址| 97人妻天天添夜夜摸| a在线观看视频网站| 亚洲av成人不卡在线观看播放网| 一级片'在线观看视频| 亚洲精品美女久久久久99蜜臀| 午夜福利影视在线免费观看| 1024视频免费在线观看| 狠狠精品人妻久久久久久综合| 少妇的丰满在线观看| 亚洲视频免费观看视频| netflix在线观看网站| av网站免费在线观看视频| 少妇粗大呻吟视频| 一级片'在线观看视频| 一二三四社区在线视频社区8| 天天躁日日躁夜夜躁夜夜| 亚洲国产欧美一区二区综合| 亚洲国产成人一精品久久久| 国产男女内射视频| 99在线人妻在线中文字幕 | 欧美在线黄色| 国产在线精品亚洲第一网站| 国产伦人伦偷精品视频| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| av视频免费观看在线观看| 亚洲 欧美一区二区三区| 性色av乱码一区二区三区2| 日韩一区二区三区影片| 性少妇av在线| 国产精品国产av在线观看| 久久 成人 亚洲| 久久久久久久久久久久大奶| 国产日韩欧美视频二区| 国产区一区二久久| 久久中文看片网| 精品卡一卡二卡四卡免费| 欧美精品人与动牲交sv欧美| 自线自在国产av| 一级毛片电影观看| 成人免费观看视频高清| 老熟妇乱子伦视频在线观看| 中文字幕人妻熟女乱码| 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 国产成人精品无人区| 老司机靠b影院| 亚洲第一欧美日韩一区二区三区 | 亚洲国产中文字幕在线视频| 亚洲av日韩精品久久久久久密| 曰老女人黄片| av福利片在线| avwww免费| 啦啦啦视频在线资源免费观看| 国产成人精品久久二区二区91| 黄色 视频免费看| 亚洲avbb在线观看| 大香蕉久久网| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区精品| av欧美777| 国产免费视频播放在线视频| 免费看十八禁软件| 99国产极品粉嫩在线观看| 多毛熟女@视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲自偷自拍图片 自拍| 成年人黄色毛片网站| 国产又色又爽无遮挡免费看| 成人精品一区二区免费| 一级,二级,三级黄色视频| 男女午夜视频在线观看| 我的亚洲天堂| 久久精品国产亚洲av高清一级| 久久久久久久国产电影| √禁漫天堂资源中文www| 岛国毛片在线播放| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| 日韩 欧美 亚洲 中文字幕| 成人精品一区二区免费| 超色免费av| 美女午夜性视频免费| 丝袜美足系列| 又大又爽又粗| 乱人伦中国视频| 国产高清国产精品国产三级| 天堂中文最新版在线下载| 999久久久国产精品视频| 制服人妻中文乱码| 男女免费视频国产| 国产一区二区三区视频了| 色综合欧美亚洲国产小说| 90打野战视频偷拍视频| 动漫黄色视频在线观看| 亚洲国产欧美在线一区| 国产精品九九99| 亚洲欧美激情在线| 老司机福利观看| 女人久久www免费人成看片| 黄网站色视频无遮挡免费观看| 少妇的丰满在线观看|