• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the X-Ray Re-brightening Signature of GRB 220117A

    2024-01-06 06:40:28LiTaoZhao
    Research in Astronomy and Astrophysics 2023年11期

    Li-Tao Zhao

    School of Mathematics and Science, Hebei GEO University, Shijiazhuang 050016, China; zhaolt@mail.bnu.edu.cn

    Abstract The Swift/XRT detected the X-ray afterglow of long burst GRB 220117A,which began to rebrighten 300 s after triggering and followed a single power-law decay segment after thousands of seconds of the orbital observation gap.This segment is different from the shallow decay segment(plateau)and flare,and may belong to a giant X-ray bump.We investigated this segment by the fall-back accretion model and found that the model can interpret this segment with reasonable parameter values.Within this physical model scenario,the fall-back accretion rate reaches a peak value ~1.70×10-5M⊙s-1 around 300 s in the central engine frame, which is compatible with the late mass supply rate of some low-metallicity massive progenitor stars.The initial black hole (BH) spin isand implies that this re-brightening signature requires a larger BH spin.The total accretion mass during the fall-back process is Macc=(3.09±0.02)×10-2M⊙.The jet energy from the fall-back accretion is(9.77±0.65)×1052 erg, with a ratio of 0.066 to the isotropic-equivalent radiation energies of the GRB prompt phase in the 1–104 keV band.The fall-back radius rp corresponding to the peak time of fall-back tp is(3.16±0.05)×1010 cm, which is consistent with the typical radius of Wolf–Rayet stars.In summary, our results provide additional support for the origin of the long burst from the core collapse of Wolf–Rayet stars,and its late central engine activity is likely due to the fall-back accretion process.

    Key words: accretion – accretion disks – black hole physics – (stars:) gamma-ray burst: general

    1.Introduction

    Gamma ray bursts (GRBs) are the brightest electromagnetic event that have occurred in the universe since the Big Bang,consisting of two emission phases: the prompt emission(with an initial prompt soft γ-ray emission) and afterglow emission(with long term broadband emission).The prompt emission is generally considered to be related to the internal dissipation of the jet, such as internal shock dissipation or magnetic dissipation.Afterglow emission is usually considered to be from external shocks (especially forward shock) generated by the interaction between jets and interstellar medium (see Zhang 2018 for a review).In general, the end of the prompt emission phase means that the cease of GRB’s central engine.However, observations from Swift satellite indicate that many GRB’s central engines have an extended activity time, mainly manifested as shallow decay segments (plateaus) (Liang et al.2007; Troja et al.2007; Tang et al.2019; Zhao et al.2019),flares (Burrows et al.2005; Zhang et al.2006; Margutti et al.2011), and giant bumps (Kumar et al.2008a; Wu et al.2013;Gao et al.2016;Chen et al.2017;Zhao et al.2020,2021)in the X-ray light curves following the prompt emission.

    The Swift/XRT detected the X-ray afterglow of long burst GRB 220117A, which began to rebrighten 300 s after triggering and suggest that this GRB has an extended central engine activity time.In addition,this signature is different from X-ray shallow decay segment (plateau) and flare, and may belong to a giant X-ray bump.Due to the absence of an“internal plateau” feature in the X-ray afterglow of GRB 220117A,its central engine may be a hyperaccreting black hole(BH) system.In this physical scenario, the internal dissipation of fall-back accretion energy can interpret the giant X-ray bump.If the fall-back accretion rate or the duration of fall-back accretion process is large enough, a giant X-ray bump that rapidly rises and decays with a form of t-5/3is expected.So far, the giant X-ray bump has been found in the X-ray afterglow of many GRBs and could be well interpreted within the fall-back accretion model(Wu et al.2013;Gao et al.2016;Chen et al.2017; Zhao et al.2021).

    In this paper,we study the X-ray re-brightening signature of GRB 220117A within the fall-back accretion model.In Section 2, we describe the observations of GRB 220117A and analyze the re-brightening signature.The fall-back accretion model is described in Section 3.In Section 4, we apply the fall-back accretion model to the re-brightening signature.The conclusion and implications of our results are discussed in Section 5.Throughout the paper, the convention Q=10nQnis adopted in c.g.s.units.

    2.GRB 220117A Observations

    Figure 1.The XRT light curve of GTB 220117A.The solid red lines are the best fits with a smooth broken power law for the X-ray re-brightening phase and its follow-up decay phase.

    The BAT triggered and located GRB 220117A at 23:58:21 UT on 2022 January 17.T90(15–350 keV) is 49.81±2.37 s.The time-averaged spectrum from T+14.79s to T+66.14s is best fitted by a single power law (SPL) function.The powerlaw index of the time-averaged spectrum is Γγ=1.8±0.18.The fluence in the 15–150 keV band is Sγ=1.6±0.2×10-6erg cm-2(Palmer et al.2022).XRT observations started at 151.9 s after the trigger.The XRT light curve is shown in Figure 1.The UVOT starts collecting data 161 s after the trigger.No source was detected by the UVOT at the X-ray afterglow position(Melandri et al.2022).Palmerio et al.(2022)observed the afterglow of GRB 220117A using the ESO VLT UT3.From the feature of Lyα trough and the Si II 1260 AA,the redshift was measured as z=4.961.

    For the re-brightening segment and follow-up segment of GRB 220117A,we adopted a smooth broken power law(BPL)function to fit it,

    where α1and α2represent the decay scope before and after the break, respectively.w describes the sharpness of break, and here we adopt w=3 as suggested by Liang et al.(2007).The fitting light curve and the best fitting parameters are shown in Figure 1.In 2019,Zhao et al.(2019)found that the decay scope of a shallow decay segment accords with normal distribution α1=0.35±0.35 based on 13 yr of Swift/XRT observation data.It can be inferred that X-ray re-brightening segment may not be a shallow decay segment.

    In addition, we also tested whether the X-ray re-brightening segment and follow-up segment belong to the flare.Yi et al.(2016) analyzed the GRBs with significant flares observed by Swift/XRT from 2005 April to 2015 March and obtained an empirical relationship:

    where Tpeakis the peak time of the fare.Tdur=Tend-Tstartis the duration of the flare,where Tstartand Tendrepresent the start time and end time of the flare, respectively.Tpeakand Tdurof each flare could be easily obtained by fitting the light curve with a smooth BPL function.We find that the duration of X-ray re-brightening segment and its follow-up decay segment deviates from the duration obtained by the empirical relationship 2σ.Compared to the typical flare, the giant X-ray bump has a relatively longer duration.Therefore, the X-ray rebrightening segment and follow-up segment may belong to a giant X-ray bump.

    3.Model Description

    In this paper,we intend to use the fall-back accretion model to interpret the X-ray re-brightening segment of GRB 220117A.The physical scenario of the fall-back accretion model is described as follows: the progenitor stars of long GRBs may be massive stars (Woosley 1993; Paczyński 1998;MacFadyen & Woosley 1999; Woosley & Bloom 2006), and generally have a core-envelope structure.At the end of the massive stars’ evolution, photodisintegration and electron capture will trigger core collapse and form a super accretion BH system.The relative jet is launched by the super accretion BH system through extracting the gravitational energy from the accreted material or the spin energy of the BH.When the relativistic jet successfully penetrates the envelope, it powers initial prompt emission and broadband afterglow emission of the GRB.During the process of jet penetration through the progenitor envelope, a part of jet energy is transferred to the envelope, which might help the supernova to explode.The bounding shock responsible for the associated supernova transfers kinetic energy to the envelope materials and a part of envelope materials would be ejected.The rest of envelope materials could fall back into around of BH and form an accretion disk(Kumar et al.2008a,2008b).The accretion disk may power a new relativistic jet through the neutrinoannihilations mechanism (Popham et al.1999; Narayan et al.2001;Di Matteo et al.2002;Janiuk et al.2004;Gu et al.2006;Chen & Beloborodov 2007; Liu et al.2007, 2015; Lei et al.2009, 2017; Xie et al.2016) or Blandford–Znajek (BZ)mechanism (Blandford & Znajek 1977; Lee et al.2000;Li 2000; Lei et al.2005, 2013).Compared with the neutrinoannihilations mechanism, the jet powered by the BZ mechanism will be cleaner and more powerful (Lei et al.2017; Xie et al.2017; Lloyd-Ronning et al.2018).Therefore, the BZ mechanism is more likely to interpret the late central engine activity of long GRBs.A part of BZ energy would eventually be injected into the afterglow blast wave.If the injected energy is comparable to or even larger than the blast wave kinetic energy, it will generate some detectable signature such as a plateau in the X-ray afterglow (Zhao et al.2020).In addition,the rest energy would undergo the internal dissipation process,which may generate the observed giant X-ray bump.

    The evolution of the fall-back rate of progenitor envelope material can be described by a smooth BPL function as(Chevalier 1989; MacFadyen et al.2001; Zhang et al.2008;Dai & Liu 2012)

    where t0is the starting time of the fall-back accretion in the central engine frame,M˙pis the peak of fall-back rate, and tpis the peak time of fall-back rate in the central engine frame.

    Progenitor envelope material falls back in the late time and forms an accretion disk,which will be viscous accretion by the BH.The accretion rate can be obtained as(Kumar et al.2008a)

    where τvis~1/αΩkis viscous timescale of accretion disk.α is a standard dimensionless viscosity parameter with values of~0.01–0.1, and Ωkis the Kepler angular velocity of the accretion disk.Due to accretion disk mass Mdwill increase with the fall-back from the envelope material and decrease with accretion.Therefore, (Kumar et al.2008a; Lei et al.2017)

    The fall-back accretion can continuously extract the rotational energy of the BH through the BZ mechanism, and powers a Poynting dominated jet.A part of jet energy would undergo the internal dissipation process, which may generate the observed giant X-ray bump.To connect the observed X-ray luminosity LXand BZ power PBZ, it is necessary to introduce efficiency factor ηXand jet beaming factor fb

    where a?is the dimensionless BH spin parameter,m?=M?/M⊙is the dimensionless BH mass, and B?,15is strength of the magnetic field near the BH horizon in units of 1015G.From the Equations(8)and(9),it can be seen that the BZ power mainly depends on parameters of B?, m?and a?.

    In general, the strength of the magnetic field near the BH horizon can be estimated by balancing the magnetic pressure on the BH horizon and ram pressure of the accretion flow at the inner edge of the accretion disk (Moderski et al.1997)

    Figure 2.The fitting result of GRB 220117A’s X-ray re-brightening segment by adopted the fall-back accretion model.

    The BZ process extracts rotational energy and angular momentum from the BH,while the accretion process brings the energy and angular momentum of the accretion disk into the BH.According to the conservation of energy and angular momentum, the evolution of BH under the two processes can be written as (Wang et al.2002)

    with

    4.Model Application to the X-Ray Re-brightening Signature of GRB 220117A

    In this section, we apply the fall-back accretion model that was introduced in Section 3 to the X-ray re-brightening segment and follow-up segment of GRB 220117A.We adopt the start time of re-brightening segment tstart=tstart,obs/(1+z) and the end time of follow-up segment tend=tend,obs/(1+z) as the start time and the end time of the fall-back accretion in the central engine frame.According to analysis, the initial mass of BH hardly affects the BZ power.In this section, we adopt M?,0=3M⊙.In addition, we take fb=0.01 and ηX=0.01 in our calculation.Finally, we take the dimensionless peak fallback ratem˙p, the sharpness of the peak s, the peak time of fallback rate tpand initial BH spin a0as our free parameters.In order to obtain the best fitting values, a Markov Chain Monte Carlo (MCMC) method is adopted.In our MCMC fitting, the emcee code is used (Foreman-Mackey et al.2013).In the code, we set the boundaries of four free parameters to log10(m˙p) ≡ [- 1 5, 0], s ≡[0, 10], tp≡[tstart, tend] and a0≡[0,1], respectively.

    Figure 3.The corner plot of the free parameters posterior probability distribution for the fitting result.

    The fallback accretion rate reaches a peak value~1.70×10-5M⊙s-1around 300 s in the central engine frame.The bounding shock responsible for the associated supernova transfers kinetic energy to the envelope materials and most of the envelope materials would be ejected.Therefore, it is very necessary to check whether the progenitor of GRB 220117A can provide enough envelope material.The fall-back rate of envelope material can be estimated by the data of pre-SN models, i.e., (Suwa & Ioka 2011; Woosley & Heger 2012;Matsumoto et al.2015; Liu et al.2018)

    where ρ is the density of envelope material at radius r.We set the time and radial coordinate for which the enclosed mass reach initial black hole mass as r0and 0,respectively.By adopt the progenitor density profile with different metallicities and masses from Liu et al.(2018), we calculate evolution of the mass supply rate for theirs and are shown in Figure 4.We find that low-metallicity massive progenitor stars are compatible with our fitting results.

    Figure 4.The evolution of the mass supply rate of progenitor with different metallicities and masses.The dashed line represents fall-back rate evolution of GRB 220117A’s progenitor envelope material in our fitting.Z⊙is the metallicities of the Sun.

    5.Discussion and Conclusions

    The Swift/XRT detected the X-ray afterglow of long burst GRB 220117A, which began to rebrighten 300 s after triggering and followed a single power-law decay segment after thousands of seconds of the orbital observation gap.The re-brightening segment is different from the shallow decay segment (plateau) and flare, and may belong to a giant X-ray bump.We investigated this segment by the fall-back accretion energy internal dissipation model.We found that the model can interpret this segment with reasonable parameter values.Within this physical model scenario,the fallback accretion rate reaches a peak value ~1.70×10-5M⊙s-1around 300 s in the central engine frame, which is compatible with the late mass supply rate of some low-metallicity massive progenitor stars.The initial BH spin isand implies that this rebrightening signature requires a larger BH spin.The total accretion mass Maccduring the fall-back process is Macc=3.09×10-2M⊙.The jet energy from the fall-back accretion is(9.77±0.65)×1052erg,with a ratio of 0.066 to the isotropic-equivalent radiation energies of GRB prompt phase in the 1–104keV band.The fall-back radius rpcorresponding to tpis (3.16±0.05)×1010cm, which is consistent with the typical radius of Wolf–Rayet stars.In summary, our results provide additional support for the origin of the long burst from the core collapse of Wolf–Rayet stars,and its late central engine activity is likely due to the fall-back accretion process.

    In this paper, we adopted a simple fall-back accretion rate evolution model, and do not consider the angular momentum distribution of the progenitor star, so this calculation is approximately valid for a slowly rotating progenitor.In fact,the angular velocities Ω of stars with different radii are different and the fall-back radius satisfies ∝Ω2(Kumar et al.2008a).Therefore,the angular momentum distribution of the progenitor star has a great influence on the fall-back accretion rate.In addition, the metallicities and masses of stars will have a certain impact on the fall-back accretion rate of the envelope material.In the future, we will study the fall-back accretion model with different angular momentum distribution, mass distribution and metallicity.

    Super Eddington accretion makes material on the accretion disk subject to an outward radiation pressure that is greater than gravity, Therefore, an outflow (i.e., disk wind) driven by radiation pressure is launched on the surface of the accretion disk, and taking away a part of the fall-back materials.However, the disk wind is ignored in the fall-back accretion model adopted in this paper.It will cause the accretion rate of BH to decrease.Because the outflow of the accretion disk is not well understood, the power law function model is generally adopted to describe the accretion rate at different accretion disk radii.It can be seen that the influence from the outflow of the accretion disk to the accretion rate is highly dependent on the power law index.In addition, the existence of the accretion disk outflow will also be important for understanding the baryon load of a GRB jet (Lei et al.2013, 2017) and56Ni synthesis for associated supernovae (Song & Liu 2019).We hope that the future general-relativistic magnetohydrodynamic(GRMHD) simulations can help us better understand the accretion disk outflow.

    精品福利观看| 亚洲三区欧美一区| 手机成人av网站| 日韩中文字幕欧美一区二区| 国产一卡二卡三卡精品| 国产精品av久久久久免费| 午夜福利在线观看吧| 人妻久久中文字幕网| 亚洲色图av天堂| 黑人巨大精品欧美一区二区mp4| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 久久精品91无色码中文字幕| 黄色丝袜av网址大全| 精品高清国产在线一区| 久久婷婷成人综合色麻豆| 午夜福利18| 在线永久观看黄色视频| 丝袜人妻中文字幕| 国产高清videossex| 亚洲一区中文字幕在线| 午夜福利欧美成人| 国产精品久久久久久人妻精品电影| 女人精品久久久久毛片| 不卡av一区二区三区| 亚洲少妇的诱惑av| 免费看美女性在线毛片视频| 国产成人欧美在线观看| 国产亚洲精品av在线| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成77777在线视频| 在线观看日韩欧美| 亚洲中文日韩欧美视频| 最好的美女福利视频网| 午夜亚洲福利在线播放| 国产亚洲欧美精品永久| 一边摸一边抽搐一进一出视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 精品少妇一区二区三区视频日本电影| 99热只有精品国产| 波多野结衣一区麻豆| 国产精品一区二区免费欧美| 亚洲国产欧美日韩在线播放| 久久精品影院6| 给我免费播放毛片高清在线观看| 99精品在免费线老司机午夜| 韩国精品一区二区三区| 久久人妻福利社区极品人妻图片| 夜夜夜夜夜久久久久| 9191精品国产免费久久| 91成人精品电影| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 亚洲专区字幕在线| 一a级毛片在线观看| 18禁美女被吸乳视频| 中文字幕色久视频| 欧美精品啪啪一区二区三区| 国产av一区二区精品久久| 人成视频在线观看免费观看| 国产人伦9x9x在线观看| 不卡一级毛片| 亚洲av日韩精品久久久久久密| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 欧美日本亚洲视频在线播放| а√天堂www在线а√下载| 国产单亲对白刺激| 在线十欧美十亚洲十日本专区| 国产又爽黄色视频| 这个男人来自地球电影免费观看| 一级毛片女人18水好多| 亚洲伊人色综图| 国产一区二区三区在线臀色熟女| 亚洲欧美激情综合另类| 又黄又爽又免费观看的视频| 18禁国产床啪视频网站| 久久九九热精品免费| 91大片在线观看| 夜夜看夜夜爽夜夜摸| 亚洲男人天堂网一区| 国产色视频综合| 人妻丰满熟妇av一区二区三区| 亚洲国产欧美日韩在线播放| 久久久久久久午夜电影| 亚洲人成伊人成综合网2020| 欧美国产精品va在线观看不卡| 中文字幕人成人乱码亚洲影| 中国美女看黄片| 国产日韩一区二区三区精品不卡| 久久久久久人人人人人| 黄频高清免费视频| 色av中文字幕| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 三级毛片av免费| 91在线观看av| 日韩欧美一区视频在线观看| 国产av又大| 成人欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 18禁裸乳无遮挡免费网站照片 | 性少妇av在线| 9热在线视频观看99| 婷婷六月久久综合丁香| 亚洲一卡2卡3卡4卡5卡精品中文| 女人爽到高潮嗷嗷叫在线视频| 美女免费视频网站| 桃红色精品国产亚洲av| 亚洲 欧美一区二区三区| 自线自在国产av| 亚洲九九香蕉| 国产av一区在线观看免费| 国产亚洲精品久久久久久毛片| 亚洲成av片中文字幕在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自偷自拍图片 自拍| 日韩精品免费视频一区二区三区| 日韩大码丰满熟妇| 精品高清国产在线一区| 欧美av亚洲av综合av国产av| 禁无遮挡网站| 久久国产亚洲av麻豆专区| 人人妻人人澡欧美一区二区 | 国产精品亚洲一级av第二区| 美女高潮到喷水免费观看| 日本vs欧美在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲在线自拍视频| 国产av在哪里看| 男女之事视频高清在线观看| www.www免费av| 我的亚洲天堂| 亚洲国产精品999在线| 老鸭窝网址在线观看| 9色porny在线观看| 久久国产乱子伦精品免费另类| 69av精品久久久久久| 国产av一区在线观看免费| 国产成人欧美| 51午夜福利影视在线观看| 多毛熟女@视频| 亚洲欧美激情在线| 成在线人永久免费视频| 午夜久久久在线观看| 日本黄色视频三级网站网址| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁高潮啪啪吃奶动态图| 午夜视频精品福利| 大型av网站在线播放| 中文字幕最新亚洲高清| 婷婷精品国产亚洲av在线| 久久中文字幕一级| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡 | 亚洲五月色婷婷综合| 国产欧美日韩精品亚洲av| 非洲黑人性xxxx精品又粗又长| 超碰成人久久| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 搞女人的毛片| 天堂动漫精品| 欧美一级毛片孕妇| 国产成人欧美| 免费搜索国产男女视频| 一级毛片高清免费大全| 婷婷六月久久综合丁香| av福利片在线| 国产精品免费视频内射| 一个人免费在线观看的高清视频| 伦理电影免费视频| 午夜福利18| 丝袜人妻中文字幕| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 亚洲成av片中文字幕在线观看| 夜夜夜夜夜久久久久| 侵犯人妻中文字幕一二三四区| 国产一区二区在线av高清观看| 国产成人欧美在线观看| 亚洲成人久久性| 制服丝袜大香蕉在线| 中文字幕最新亚洲高清| 久久人人精品亚洲av| 久久精品成人免费网站| 亚洲专区字幕在线| 久久香蕉国产精品| 午夜久久久在线观看| 老熟妇仑乱视频hdxx| 免费女性裸体啪啪无遮挡网站| 久久影院123| 乱人伦中国视频| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 少妇 在线观看| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 老司机靠b影院| 制服丝袜大香蕉在线| 国产在线精品亚洲第一网站| 精品国产一区二区三区四区第35| 久久这里只有精品19| 又紧又爽又黄一区二区| 制服丝袜大香蕉在线| 亚洲情色 制服丝袜| 男女午夜视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美日韩另类电影网站| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 一区二区日韩欧美中文字幕| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 日韩欧美免费精品| 看免费av毛片| 色综合亚洲欧美另类图片| 国产麻豆69| 国产亚洲av高清不卡| 精品久久久久久久毛片微露脸| 亚洲国产精品久久男人天堂| 色在线成人网| 国产成人av教育| 国产精品99久久99久久久不卡| 美女高潮到喷水免费观看| 午夜成年电影在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 91av网站免费观看| 男男h啪啪无遮挡| 少妇被粗大的猛进出69影院| 成人亚洲精品av一区二区| 91字幕亚洲| 久久精品91无色码中文字幕| 日韩精品中文字幕看吧| 久久久久久大精品| 天堂影院成人在线观看| 中文字幕人成人乱码亚洲影| 午夜老司机福利片| 色哟哟哟哟哟哟| 性色av乱码一区二区三区2| 人人澡人人妻人| 欧美日本亚洲视频在线播放| 久久午夜亚洲精品久久| 一级黄色大片毛片| cao死你这个sao货| 丝袜美足系列| 男女床上黄色一级片免费看| 天堂影院成人在线观看| 中文字幕人成人乱码亚洲影| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 免费女性裸体啪啪无遮挡网站| 99精品在免费线老司机午夜| 国产精品二区激情视频| 久久久久精品国产欧美久久久| 精品人妻1区二区| 在线观看免费日韩欧美大片| 曰老女人黄片| 51午夜福利影视在线观看| 91精品国产国语对白视频| 黄片小视频在线播放| 亚洲欧美精品综合久久99| www.自偷自拍.com| 一级作爱视频免费观看| 超碰成人久久| 日韩欧美三级三区| 国产精品永久免费网站| 国产高清视频在线播放一区| 国产成人精品在线电影| 一级毛片高清免费大全| 国产一区二区激情短视频| 国产精品一区二区在线不卡| 久久亚洲精品不卡| 首页视频小说图片口味搜索| 亚洲精品一区av在线观看| 午夜精品在线福利| 亚洲人成网站在线播放欧美日韩| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 91成年电影在线观看| 欧美久久黑人一区二区| 91麻豆精品激情在线观看国产| 老司机福利观看| 99国产极品粉嫩在线观看| 两性夫妻黄色片| 久热爱精品视频在线9| 制服丝袜大香蕉在线| 成人精品一区二区免费| 亚洲av美国av| 久久午夜综合久久蜜桃| 欧美午夜高清在线| 国产xxxxx性猛交| 国产精品美女特级片免费视频播放器 | 精品国产乱码久久久久久男人| 国产精品野战在线观看| 国产黄a三级三级三级人| 中文字幕最新亚洲高清| 亚洲视频免费观看视频| 高清在线国产一区| 他把我摸到了高潮在线观看| 国产高清videossex| 日韩 欧美 亚洲 中文字幕| 桃色一区二区三区在线观看| 韩国精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 悠悠久久av| a级毛片在线看网站| 又黄又粗又硬又大视频| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 亚洲性夜色夜夜综合| 国产成人免费无遮挡视频| 深夜精品福利| 午夜成年电影在线免费观看| 久久精品国产亚洲av香蕉五月| 亚洲第一欧美日韩一区二区三区| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 美女国产高潮福利片在线看| 日韩av在线大香蕉| 手机成人av网站| 久久精品国产亚洲av高清一级| 啦啦啦观看免费观看视频高清 | 精品卡一卡二卡四卡免费| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添小说| 欧美黑人欧美精品刺激| 久久人人爽av亚洲精品天堂| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 欧美黑人精品巨大| 国产片内射在线| 午夜a级毛片| 中出人妻视频一区二区| 波多野结衣av一区二区av| 很黄的视频免费| 精品电影一区二区在线| 国产精品秋霞免费鲁丝片| 纯流量卡能插随身wifi吗| 国产色视频综合| 亚洲国产高清在线一区二区三 | 国产麻豆69| 好男人电影高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品国产一区二区电影| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 每晚都被弄得嗷嗷叫到高潮| 别揉我奶头~嗯~啊~动态视频| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 黄网站色视频无遮挡免费观看| 人成视频在线观看免费观看| 在线观看66精品国产| 中亚洲国语对白在线视频| 手机成人av网站| 久久亚洲真实| 侵犯人妻中文字幕一二三四区| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 久久天躁狠狠躁夜夜2o2o| 九色亚洲精品在线播放| 嫁个100分男人电影在线观看| 一级a爱视频在线免费观看| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 1024视频免费在线观看| 久久精品91蜜桃| 久久午夜亚洲精品久久| 亚洲全国av大片| 可以在线观看的亚洲视频| 女人被躁到高潮嗷嗷叫费观| 三级毛片av免费| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 久久久国产欧美日韩av| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看| 丝袜美足系列| 男女之事视频高清在线观看| 国产精品99久久99久久久不卡| 色精品久久人妻99蜜桃| 久久久久久免费高清国产稀缺| 好男人在线观看高清免费视频 | 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频 | av免费在线观看网站| 一级片免费观看大全| 精品少妇一区二区三区视频日本电影| 制服诱惑二区| 成人国产一区最新在线观看| 成人国语在线视频| 国产精品香港三级国产av潘金莲| 欧美大码av| 人人妻人人爽人人添夜夜欢视频| 亚洲 欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 自线自在国产av| 99久久精品国产亚洲精品| 村上凉子中文字幕在线| 国产成人啪精品午夜网站| 国产欧美日韩一区二区三| 91大片在线观看| 91精品三级在线观看| 久久 成人 亚洲| 大陆偷拍与自拍| 国产精品乱码一区二三区的特点 | 国产欧美日韩一区二区三区在线| e午夜精品久久久久久久| 美女大奶头视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美黑人精品巨大| 50天的宝宝边吃奶边哭怎么回事| 亚洲无线在线观看| 无限看片的www在线观看| 久久久久久久精品吃奶| 亚洲中文字幕日韩| 国产麻豆成人av免费视频| 国产亚洲精品第一综合不卡| 亚洲国产精品久久男人天堂| 91精品三级在线观看| 中文字幕高清在线视频| 18禁美女被吸乳视频| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三区在线| 一进一出抽搐动态| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 亚洲视频免费观看视频| 免费一级毛片在线播放高清视频 | 国产精品1区2区在线观看.| 又大又爽又粗| 亚洲全国av大片| aaaaa片日本免费| 国产xxxxx性猛交| 在线播放国产精品三级| 老汉色av国产亚洲站长工具| av电影中文网址| 搡老妇女老女人老熟妇| 亚洲午夜精品一区,二区,三区| 亚洲人成电影观看| 日韩精品青青久久久久久| 国产亚洲欧美98| 国产精品香港三级国产av潘金莲| 黄色丝袜av网址大全| 深夜精品福利| 精品久久久精品久久久| 免费人成视频x8x8入口观看| 国产99白浆流出| 国内精品久久久久久久电影| 精品国产一区二区三区四区第35| 制服人妻中文乱码| av有码第一页| 欧美日韩瑟瑟在线播放| 18美女黄网站色大片免费观看| 老司机靠b影院| 亚洲人成伊人成综合网2020| 日本 av在线| 国产熟女午夜一区二区三区| 免费看a级黄色片| √禁漫天堂资源中文www| 亚洲熟妇中文字幕五十中出| 韩国av一区二区三区四区| 一个人观看的视频www高清免费观看 | 村上凉子中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 十八禁网站免费在线| 国产熟女xx| 色精品久久人妻99蜜桃| 亚洲全国av大片| 欧美成人免费av一区二区三区| 精品乱码久久久久久99久播| 欧美日本视频| 激情视频va一区二区三区| 精品国产一区二区久久| 一区二区日韩欧美中文字幕| 亚洲精品av麻豆狂野| 精品国产乱码久久久久久男人| 一级a爱视频在线免费观看| 中文字幕人妻熟女乱码| 免费少妇av软件| 成人18禁高潮啪啪吃奶动态图| 成人亚洲精品一区在线观看| 97人妻天天添夜夜摸| 国产av又大| 亚洲成人精品中文字幕电影| 级片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久久久亚洲av鲁大| 免费久久久久久久精品成人欧美视频| 国产一区二区三区综合在线观看| 欧美性长视频在线观看| 91国产中文字幕| 国产精品影院久久| 国产av一区在线观看免费| 琪琪午夜伦伦电影理论片6080| 色婷婷久久久亚洲欧美| 国产av又大| 国产在线观看jvid| 国内精品久久久久精免费| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美 日韩 在线 免费| 99久久精品国产亚洲精品| 在线永久观看黄色视频| 亚洲国产欧美网| 国产精品久久视频播放| 久久欧美精品欧美久久欧美| 多毛熟女@视频| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| 国产成人av教育| 久热这里只有精品99| 波多野结衣巨乳人妻| 亚洲国产欧美一区二区综合| 好男人电影高清在线观看| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 欧美激情久久久久久爽电影 | 日韩成人在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产精品精品国产色婷婷| 欧美成人午夜精品| 夜夜夜夜夜久久久久| 亚洲,欧美精品.| 午夜福利影视在线免费观看| 久久九九热精品免费| 成人三级黄色视频| 夜夜躁狠狠躁天天躁| 18禁美女被吸乳视频| 丝袜在线中文字幕| 精品午夜福利视频在线观看一区| 天堂√8在线中文| 色老头精品视频在线观看| 欧美日韩一级在线毛片| avwww免费| 一级毛片精品| 久久精品91无色码中文字幕| 精品人妻1区二区| 久久国产精品人妻蜜桃| 日韩欧美免费精品| 欧美亚洲日本最大视频资源| 校园春色视频在线观看| videosex国产| 久热爱精品视频在线9| 性少妇av在线| 人人妻人人爽人人添夜夜欢视频| 欧美性长视频在线观看| 在线观看免费午夜福利视频| 在线观看免费视频网站a站| 男男h啪啪无遮挡| www.www免费av| 无遮挡黄片免费观看| 欧美一级a爱片免费观看看 | 久久久国产精品麻豆| 国产精品99久久99久久久不卡| x7x7x7水蜜桃| 国产私拍福利视频在线观看| 久久精品亚洲精品国产色婷小说| 青草久久国产| 一级a爱片免费观看的视频| 国产精品电影一区二区三区| 一级,二级,三级黄色视频| 午夜免费成人在线视频| 精品一区二区三区av网在线观看| 最近最新中文字幕大全免费视频| 91字幕亚洲| 91大片在线观看| а√天堂www在线а√下载| 午夜精品国产一区二区电影| 黄色丝袜av网址大全| 91av网站免费观看| 少妇粗大呻吟视频| 丰满人妻熟妇乱又伦精品不卡| 丝袜美腿诱惑在线| 女人被躁到高潮嗷嗷叫费观| 色尼玛亚洲综合影院| 久久中文字幕人妻熟女| 亚洲国产欧美日韩在线播放| 日本在线视频免费播放| 91av网站免费观看| 国产欧美日韩一区二区三区在线| 亚洲精品国产色婷婷电影| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 久久中文字幕人妻熟女| 每晚都被弄得嗷嗷叫到高潮| svipshipincom国产片| 91av网站免费观看| 午夜精品国产一区二区电影| 国产精品一区二区在线不卡| 两个人视频免费观看高清| 亚洲全国av大片| xxx96com| 一个人观看的视频www高清免费观看 | 国产一区二区在线av高清观看| 一级黄色大片毛片| 大码成人一级视频| 国产精品爽爽va在线观看网站 | 国产男靠女视频免费网站| 中文字幕久久专区| 免费看十八禁软件|