• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction for the Multi-band Afterglows of FRB 200428 and its Implication

    2024-01-06 06:40:10MeiDuShuangXiYiCanMinDengandPeiWang
    Research in Astronomy and Astrophysics 2023年11期

    Mei Du, Shuang-Xi Yi, Can-Min Deng, and Pei Wang

    1 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China; yisx2015@qfnu.edu.cn

    2 Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China dengcm@gxu.edu.cn

    3 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

    Abstract The physical mechanism of fast radio bursts(FRBs)is still unknown.On 2020 April 28,a special radio burst,FRB 200428,was detected and believed to be associated with the Galactic magnetar SGR 1935+2154.It confirms that at least some of the FRBs were generated by magnetars,although the radiation mechanism continues to be debated.To this end, we study in detail the multiband afterglows of FRB 200428 described by the synchrotron fireball shock model.We find the prediction for the optical and radio afterglows of FRB 200428 is consistent with the observations when considering the post-FRB optical and radio upper limits from the literature.We also show that the follow up detection of the afterglows from fast radio bursts like—FRB 200428 is possible at the radio band,though challenging.Based on our model,one can obtain information about the energy of the fireball,the radiation zone, and the nature of the surrounding medium.That may shed light on the physical mechanism of FRBs.

    Key words: stars: magnetars – (stars:) gamma-ray bursts: general – radiation mechanisms: non-thermal

    1.Introduction

    Fast radio bursts (FRBs) are cosmological radio transient sources whose physical origins are still under debated (e.g.,Cordes & Chatterjee 2019; Petroff et al.2019; Zhang 2020;Xiao et al.2021).On 2020 April 28, a bright radio burst with millisecond duration from the Milky Way magnetar SGR 1935+2154 was detected simultaneously by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Survey for Transient Astronomical Radio Emission 2 (STARE2; e.g.,Bochenek et al.2020;CHIME/FRB Collaboration et al.2020).With an energy of ~1035erg, it is considered likely to be an extension of the extragalactic FRBs at the lower energy end(e.g.,Lu et al.2020).If this radio burst is indeed an FRB(FRB 200428), it directly confirms that at least some of the FRBs were produced by magnetar flares (e.g., Lyubarsky 2014;Beloborodov 2017; Margalit et al.2018; Metzger et al.2019).

    Due to the more comprehensive data available on repeated FRBs, some theoretical models about the FRB generation mechanism are proposed.Beloborodov (2017) explains the mechanism of repeated FRBs, he suggests that a young magnetar star releases energy from successive flares, the flares are driven by accelerated ambipolar diffusion in the neutron star core,and then power the nebula particles to produce bright millisecond bursts.The energy supply of successive flares and the collision between different flares give rise to a series of repeated FRBs with different intervals.This powerful shock wave can also produce bright optical radiation (e.g., Beloborodov 2020).Yang et al.(2019) studied the brightness and detection prospect of “fast optical bursts” (FOBs) associated with FRBs,indicating that it is possible to detect the associative FOBs in some special inverse Compton scattering processes and with telescopes which with high sensitivity.However, Waxman(2017)put strict constraints on the nature of the persistent source and found that the typical magnetar star wind nebula model is not consistent with the predicted results and a strong synchronous maser emission mechanism adapted to the GHz band is proposed.However,Waxman(2017)found that the typical magnetar wind nebulae model did not agree with the predicted results by placing strict constraints on the properties of the persistent source,so they proposed that the strong synchronous maser emission mechanism could be adapted to the GHz band.Metzger et al.(2019)suggested that the repeated FRBs might be formed by the magnetar-powered synchrotron maser shock model, where the central engines released clean ultrarelativistic magnetization shock waves spread outward, and then the shock colliding with the upstream mildly relativistic magnetized ion-electron shell.The shell through the reverse and forward shock wave to decelerate, the latter of which produces the observed FRBs by synchronous maser mechanism.Similar to GRBs afterglow, the forward shock also heats electrons to extremely relativistic temperatures, powering (incoherent) synchrotron X-ray/gammaray emission.Recently, Cooper et al.(2022) have predicted the multi-band afterglow of FRB 200428 based on the magnetarpowered synchrotron maser shock model.In particular, the mechanism of FRB 200428 may be consistent with the previously predicted model, but due to its lower luminosity, the energy distribution may be slightly different (e.g., Wang et al.2020).

    Another breakthrough in the observation of FRB 200428 was that the X-ray burst associated with it was simultaneously detected, with an energy ratio of the radio burst to the X-ray bursts ~10?5(e.g., Mereghetti et al.2020; Li et al.2021;Ridnaia et al.2021; Tavani et al.2021).Incredibly, the faraway model has predicted the occurrence of X-ray burst associated with the FRB,as well as the low radiation efficiency of the FRB (~10?5), which was well verified in the case of FRB 200428(e.g.,Margalit et al.2020).However,recently Wu et al.(2020) found that the ejected baryon matter of the magenta mainly provided by the crust,is higher than the typical mass of a magnetar outer crust.This finding indicates that the outer crust of the magnetar predicted in their model cannot eject enough baryonic mass.We note that the physical mechanism and the rate of the baryonic mass ejection remain uncertain.Thus we suggest that further investigations in observation and theory are required.The close-in model can also account for the low radiative efficiency of FRB 200428 and its associated X-ray bursts, although they were not predicted by the model (e.g., Lu et al.2020).

    Surprisingly, despite numerous X-ray bursts during the SGR 1935+2154 active period,no other FRB event has been detected so far,except for FRB 200428(e.g.,Lin et al.2020;Bailes et al.2021; Kirsten et al.2021).One noticed that the spectrum of the X-ray burst associated with FRB 200428 seems to be much harder than other bursts,with a peak energy ~85 keV(e.g.,Ridnaia et al.2021).This may imply that the X-ray burst associated with FRB 200428 was an unusual burst, and FRBs were produced only in this kind of bursts.It thus leads to speculation that this may be the underlying reason why other X-ray bursts do not have FRB associations.As suggested by Ioka(2020),the usual X-ray bursts could come from the fireballs trapped in the closed field lines of the magnetar, in analogy to the standard model for soft gammaray repeaters (SGRs; e.g., Thompson & Duncan 1995, 2001;Kaspi&Beloborodov 2017).However,the X-ray burst associated with the FRB 200428 may come from the trapped-expanding fireball located in the open field line region of the magnetar(e.g.,Ioka 2020).The observed temperature of such the expanding fireball remains constant due to relativistic effects, which is consistent with the burst having a larger Ep~85 keV than the usual bursts.

    As one can see in the physical picture above, the X-ray bursts associated with FRB could be accompanied by energetic ejecta(the expanding fireballs),while the usual X-ray bursts are not.According to the standard fireball model, a pair of shocks will be generated when the fireball sweeps the surrounding medium, including the reverse shock that propagates through the ejecta and the forward shock that propagates through the surrounding medium.Similar to the case of gamma-ray bursts(GRBs), these shocks would produce multiband afterglows(e.g., Yi et al.2014).The evolution of the afterglows are closely related to the energy of the fireball and the nature of the surrounding environment (e.g., Yi et al.2014; Zhang 2014).Therefore, when FRB 200428 repeats again in the future, if its multiband afterglows are observed,it will provide new insights into the physical mechanism of FRBs.

    In this work, we study in detail the multiband afterglows of FRB 200428,and its detectability.It can be seen that there are many models that attempt to explain the origin of FRBs.It is too early to say which is correct, given the observational evidence so far.Therefore, this work does not attempt to discuss the framework of any specific FRB model.We refer to the afterglow model of GRB and use a memoryless fireball to calculate the afterglow of fast radio bursts.Based on such a model-independent afterglow model, on the one hand,one can predict the timescale and brightness of the afterglow of FRB 200428 that may occur again in the future according to several limited parameters, so as to provide a theoretical basis for afterglow observation.On the other hand, future afterglow observations can be based on our model to make modelindependent constraints on the surrounding environment of FRB 200428, which is critical for revealing the physical mechanism of FRB 200428.

    This work is organized as follows.The standard afterglow external shock model is described in Section 2 and the results of multifrequency afterglows for FRB 200428 are shown in Section 3.The discussion and conclusion are listed in Section 4.

    2.The Model

    Following the previous study of Yi et al.(2014),we applied the standard afterglow external shock synchrotron emission model of GRBs(e.g.,Mészáros&Rees 1997;Sari et al.1998;Gao et al.2013;Yi et al.2014)to FRBs.This model describes the interaction between the outflow and the ambient medium,and it has several free parameters:the total kinetic energy E,the number density of the ambient medium n0, the initial Lorentz factor Γ, the shock energy equipartition parameters εeand εBfor electrons and magnetic fields,respectively,and the electron injection spectral index p.If the forward and reverse shocks are both considered, the equipartition parameters εeand εBand p may be different, so there will be nine parameters.

    We mainly consider the forward shock (FS) emission.However, an uncertain phenomenon is whether the reverse shock(RS)emission appeared,which depends on a magnetization parameter of the outflow σ, and the parameter is the ratio between the Poynting flux and the matter flux (e.g., Zhang &Kobayashi 2005; Mimica et al.2009; Mizuno et al.2009).Considering FRB 200428 originates from SGR J1935+2154,the outflow may be magnetized.As the study of the previous(e.g., Komissarov et al.2009; Granot et al.2011), the outflow is accelerated by a magnetic pressure gradient, and σ is decreased with the radius, lead to the parameter Γ is increased with the radius.Additionally,there is also an obvious magnetic dissipation in the phase of the FRB emission.Therefore, the value of σ has a lot of uncertainty.If it is already below unity,the RS emission must be expected (e.g., Zhang et al.2003;Zhang & Kobayashi 2005; Yi et al.2014).

    For the sake of simplicity, we simply considered the standard synchrotron emission, which is mainly decided by the bulk Lorentz factor Γ and the total kinetic energy E, and neglected other complication factors.Under this model, the light curves evolution are associated with three characteristic frequencies: the minimum synchrotron frequency νm,the cooling frequency νc,the self-absorption frequency νa, and the peak flux of the spectrumFν,max(e.g., Gao et al.2013; Yi et al.2014).The deceleration timescale of the thin shell case can be represented as,

    Although the surface dipolar magnetic field strength of the magnetar SGR J1935+2154 is around Bp~1014G, the radiation efficiency of FRBs in radio band is lower,and the isotropic energy of FRB may be about 5–6 orders of magnitude less than the total energy.According to the observations, the isotropic energy of FRB 200428 is about ~1035erg, therefore we apply the total kinetic energy E to be 1040and 1041erg in this work.Additionally, the bulk Lorentz factor of FRB 200428 is adopted as a conservative value 50.Even if we set the Lorentz factor to 100, the brightness of the multi-band afterglows almost has no change (e.g., Falcke & Rezzolla 2014; Katz 2014).The deceleration time is much shorter than the general GRBs,applying the parameters of E=1041erg, n0=1 cm?3, Γ=50,the deceleration time of FRB 200428 is approximately ~0.1 s.

    Based on the standard assumption(e.g.,Sari et al.1998;Wu et al.2003;Gao et al.2013;Yi et al.2013,2014,2020),we can calculate the FRB afterglow emissions.As FRB 200428 is a Galactic transient with the luminosity distance of ~10 kpc(e.g., Zhong et al.2020), the FS emission of FRB 200428 can be represented at the shock crossing time t×as,

    2.1.Results

    As the model prediction calculated, the theoretical multiwavelength afterglows of FRB 200428 are shown in Figures 1 and 2, respectively.Figure 1 shows the FS afterglow light curves of FRB 200428 in the X-ray (2 keV, panel (a)), optical(R-band, panel (b)), and radio (1 GHz, panel (c)) bands,respectively.Considering different emission efficiencies, we take two different kinetic energy values, i.e., E=1040erg(black) and 1041erg (blue).The other parameters are taken as the typical values: Γ=50, n0=1 cm?3, εe,f=0.1, εB,f=0.01,and p=2.5.Then, we also plotted the sensitivity lines of four different detectors in different energy bands, as mentioned in our previous study (e.g., Yi et al.2014).The rad dash line in panel (a) is the detector sensitivity line of Swift/XRT, which is ∝t?1early on and breaks to ∝t?1/2when Fν=2.0×10?15erg cm?2s?1at t=105s (e.g., Moretti et al.2009; Yi et al.2014).The green dashed line in panel (a) is the sensitivity line of the Insight-HXMT,which scales as ∝t?1for arbitrarily long exposure times.The red dashed line in panel(b) is the sensitivity line of the Large Synoptic Survey Telescope (LSST) Array.In the survey model, LSST reaches 24.5 mag in 30 s.The red dashed line in panel (c) is the sensitivity line of the Expanded Very Large Array (EVLA),which scales as ∝t?1/2for arbitrarily long exposure times.

    Figure 1.Example forward shock afterglow light curves of FRB 200428.The model parameters: ?B,f=0.01,?e=0.1,n0=1,p=2.5,and η=50.Three values of the energy E=1040(black),1041(blue)and 1043(green,only in the optical band)have been adopted.(a)The X-ray light curves at 2 keV.The red dashed line is the detector sensitivity line of Swift/XRT,and the green dashed line is the detector sensitivity line of Insight-HXMT.(b)R-band light curves.The red dashed line is the detector sensitivity line of LSST.The orange line is the optical upper limits taken from Cooper et al.(2022),and the blue(R-band)and orange(z-band)triangle points are the optical upper limits from LCOGT and BOOTES-2(Lin et al.2020),respectively.(c)Radio light curves at 1 GHz.The red dashed line is the detector sensitivity line of VLA.The green (1.36 GHz) and red (6 GHz) points are the radio upper limits by Effelsberg and VLA (Bailes et al.2021), respectively.

    Figure 2.Example reverse shock afterglow light curves of FRB 200428.The model parameters: ?B,r=0.16, ?e=0.1, n0=1, p=2.5, and η=50.The energy E=1041 (blue solid line) has been applied.The different detector sensitivity lines are the same as shown in Figure 1.

    As shown in Figure 1 panel(a),the X-ray afterglow of FRB 200428 is too faint, theoretically neither the Swift/XRT nor Insight-HXMT can detect its X-ray afterglow.Considering the first X-ray counterpart of FRB 200428 was observed, Insight-HXMT implemented a long time observation of SGR J1935+2154 since then.Still, no X-ray counterparts from FRB 200428 were detected, only hundreds of short X-ray bursts triggered by Insight-HXMT and a series of other astronomical satellites were obtained (e.g.,?Cai et al.2022).In the optical R band (panel (b)), the peak magnitude is about 16 and 13.6 for the energies E=1040and 1041erg, respectively.We can see the sensitivity line of LSSA is below the peak magnitude.However,due to the very early peak time of ~0.2–0.4 s,which lead the LSSA cannot follow up quickly.For optical bands,it is still possible to detect the counterpart emission if follow-up observations are performed within a few hundred seconds after FRB occurs.In the 1 GHz radio band(panel(c)),the peak flux density is about 1.46×10?3and 1.46×10?2Jy,the peak time is about ~5.7×102and 1.2×103s for two different kinetic energies, respectively.This might be caught by EVLA if followed up early.Regrettably, the EVLA did not detect this source during this period.As reported by Bailes et al.(2021),after about 4×104s of FRB 200428 triggered, the radio telescope MeerKAT started to point to the source.However,they did not detect any signals, due to the flux of the FS emission declining rapidly or the diffuse emission around the magnetar.Compared with other energy bands, the radio afterglows from FRBs are the most promising to be detected,mainly because the radio afterglows last a very long time.Therefore, if we are lucky enough to detect a bonafide FRB like-FRB 200428 again,rapid radio observations on minutes to several hours timescales will be the best opportunity to observe the afterglows.

    Figure 3.Contour of optical peak flux in the E–n0 plane.Different colors mean different optical peak flux,and the solid line represents peak flux for 0.1 Jy which is the BOOTES-3 upper limit.The black line represents the limitation on the model parameter space imposed by the observation upper limit of BOOTES-3.

    The RS emission for FRB 200428 is also shown in Figure 2.Fixing other parameters,we allow the total energy E=1041erg and εB,r=0.16.In general,the RS afterglow of FRB 200428 is more difficult to be detected by current detectors.Either the afterglow emission is too faint,or it peaks too early.As shown in Figure 2, like the FS emission, the RS X-ray afterglow(panel(a))is too faint,however the peak time of the optical Rband (panel (b)) is so early (tp~0.1 s) for the LSST.Additionally, the 1 GHz radio band of FRB 200428 (panel(c)) can reach the peak flux early (~33 s) but rapidly declines.

    According to Cooper et al.(2022), who have provided optical lightcurves using the method from Margalit et al.(2020), and applied the BOOTES-3 upper limits to constrain the FRB afterglow significantly.They supposed that the optical flux limit scales as Flimit∝t?1/2and started with early observations (the orange line).We also used the same energy E=1×1043erg in our afterglow model, the estimated results(the green line in panel(b)of Figure 1)almost reach the optical upper limits.Our optical results are also consistent with the prediction from Cooper et al.(2022).To better show how optical peak flux depends on E and n0, we give the contour of optical peak flux in the E–n0space in Figure 3.We set?B,f=0.01, ?e=0.1, p=2.5 and η=50, but the energy with a range of 1040–1043erg and n0with a range of 10?3–103cm?3.The reasonable parameter space of FRB 200428 may be reflected by the optical observation upper limits from the contour of peak flux.As shown in the figure, the black line represents the limitation on the model parameter space imposed by the observation upper limit of BOOTES-3.It is easy to see from the contour that only when the environment around FRB 200428 is dense enough, it is possible to produce sufficiently bright radio afterglows.

    3.Summary and Discussion

    In this work, we applied the standard afterglow external shock synchrotron emission model of GRBs to the peculiar case of FRB 200428, and calculated its multi-wavelength afterglows.As a result,we found that owing to its low energy,the broad-band afterglows of FRB 200428 are very faint.Even so, current detectors may be able to follow up and detect its broad-band afterglows, especially at radio wavelengths.

    The X-ray afterglow emitted from FS is so weak and decays rapidly after the peak that it is hard for current detectors to catch.This may require a wide-field XRT(such as the Einstein Probe or Lobster), and it may have a chance of capturing the X-ray afterglow of FRB 200428 in the future, when FRB 200428 repeats.For the optical afterglow,the current detectors can only pick it up theoretically,because it is difficult to follow up quickly due to the early peak and the fast decay.The most optimistic afterglow of FRB 200428 was found in the radio band, although the radio afterglow flux only reached the mJy level.Thanks to the relatively late peaking time of the radio afterglow (~103s), if the radio telescopes can move to the source position within an hour, there is a good chance of catching it.In general, follow up detection of the afterglow from the FS of FRB 200428 is plausible, though challenging.In contrast, the afterglow from RS is almost impossible to be detected by current detectors,either the emission is too weak or it peaks too early.Given the difficulty of follow-up observation, the strategy of long-term observation when SGR 1935+2154 enters the active phase may be adopted.In this way,the chance of catching the afterglow is much greater, but much more observation time is required.

    Cooper et al.(2022) also estimated the multi-wavelength afterglows of FRB 200428, based on the model of Metzger et al.(2019).They provided results from LOFAR imaging observations of SGR 1935+2154.Due to its low luminosity,the predicted multi-band afterglows from FRB 200428 are still too faint to be detected, and placing some radio and optical upper limits in the afterglow emissions (also see the upper limits in our results).Considering the similarity of the early afterglow models, our results are very consistent with the predictions of Cooper et al.(2022), especially considering the same parameters for this burst.In any case, one can imagine that once the afterglow of fast radio bursts like-FRB 200428 is observed in the future,based on the early afterglow model,one can obtain information about the energy of the fireball, the radiation zone and the nature of the surrounding medium.That may shed light on the physical mechanism of FRBs.

    Note: Interestingly, since 2022 October 10, SGR J1935+2154 is active again(e.g.,Ryder et al.2022)and a radio burst was detected from it associated with an X-ray burst(e.g.,Dong& CHIME/FRB Collaboration 2022; Wang et al.2022),proving another case that magnetars can drive FRBs.In order to search for additional FRB-magnetar burst associated cases and search for radio pulsations (e.g., Zhu et al.2020), four FAST observations have been done on SGR J1935+2154, but no pulses are detected.We also propose four NICER observations on SGR J1935+2154 simultaneous with FAST,to cover a possible magnetar burst in soft X-ray,and search for possible correlated radio/X-ray pulsation, still no pulses are detected.On 2022 October 22,a radio burst was detected(e.g.,Huang et al.2022)from S-band 40 m Yunnan telescope,CAS.Time of S-band burst (MJD): 59873.417891687764495, 2020-10-21 18:01:45 (UT+8), this arrival time of the radio burst is well consistent with an HXMT X-ray outburst (e.g., Li et al.2022), the arrival time delay between radio and X-ray can be ignored within the error.There is no counterpart detected at this stage,and the follow up detection of the multi-band afterglows from FRBs is challenging.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (grant No.U2038106), and China Manned Spaced Project (CMS-CSST-2021-A12).C.M.D.is supported by the National Natural Science Foundation of China(grant No.12203013), and the Guangxi Science Foundation(grant Nos.AD22035171 and 2023GXNSFBA026030).

    国产av一区在线观看免费| 日本黄色视频三级网站网址| www.自偷自拍.com| 亚洲成人国产一区在线观看| 在线观看午夜福利视频| 久久久国产成人精品二区| 黄色毛片三级朝国网站| 全区人妻精品视频| 午夜免费观看网址| av超薄肉色丝袜交足视频| 亚洲欧美精品综合久久99| 中文资源天堂在线| 午夜影院日韩av| 90打野战视频偷拍视频| 午夜激情福利司机影院| 看片在线看免费视频| 三级男女做爰猛烈吃奶摸视频| 亚洲成人中文字幕在线播放| 国产伦人伦偷精品视频| 精品日产1卡2卡| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 一个人免费在线观看电影 | 男男h啪啪无遮挡| 亚洲成人免费电影在线观看| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 成人18禁高潮啪啪吃奶动态图| 成人高潮视频无遮挡免费网站| 国产精品亚洲一级av第二区| 成人国产综合亚洲| 老熟妇乱子伦视频在线观看| 亚洲国产日韩欧美精品在线观看 | 黄片小视频在线播放| 国产亚洲精品av在线| 免费在线观看日本一区| 日韩大尺度精品在线看网址| 人人妻人人看人人澡| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久久电影 | 精品熟女少妇八av免费久了| 国产69精品久久久久777片 | 免费在线观看日本一区| 特级一级黄色大片| 久久精品91蜜桃| 亚洲乱码一区二区免费版| 国产免费av片在线观看野外av| 亚洲激情在线av| 日本 欧美在线| svipshipincom国产片| 成人国产综合亚洲| 岛国视频午夜一区免费看| 国产成人影院久久av| 久久久久精品国产欧美久久久| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av熟女| 国产成人欧美在线观看| 亚洲色图av天堂| avwww免费| 久久亚洲真实| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 国产黄a三级三级三级人| 久9热在线精品视频| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| 亚洲国产欧洲综合997久久,| 在线观看日韩欧美| 人人妻人人看人人澡| 国产av在哪里看| 亚洲九九香蕉| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 免费电影在线观看免费观看| 热99re8久久精品国产| 麻豆一二三区av精品| 91字幕亚洲| 亚洲性夜色夜夜综合| e午夜精品久久久久久久| 特级一级黄色大片| 日韩精品免费视频一区二区三区| 久久性视频一级片| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 久久精品国产亚洲av高清一级| 91麻豆av在线| 日韩中文字幕欧美一区二区| 变态另类丝袜制服| 精品无人区乱码1区二区| netflix在线观看网站| 国产三级在线视频| 国产精品久久视频播放| 免费观看精品视频网站| 国产男靠女视频免费网站| av有码第一页| 嫁个100分男人电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 日韩精品青青久久久久久| 国产免费av片在线观看野外av| 久久香蕉国产精品| 一边摸一边抽搐一进一小说| 欧美黄色淫秽网站| 一级毛片精品| 又黄又爽又免费观看的视频| а√天堂www在线а√下载| 女警被强在线播放| 日本一本二区三区精品| 精品少妇一区二区三区视频日本电影| 国产精品香港三级国产av潘金莲| 搡老妇女老女人老熟妇| 亚洲人成伊人成综合网2020| 欧美最黄视频在线播放免费| 久久精品91蜜桃| 国产精品久久久人人做人人爽| 99久久无色码亚洲精品果冻| 成年女人毛片免费观看观看9| 亚洲av片天天在线观看| 亚洲一区二区三区色噜噜| 嫩草影视91久久| 国产在线观看jvid| 日韩av在线大香蕉| 老司机午夜福利在线观看视频| 国产熟女xx| 久久精品91蜜桃| av欧美777| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 18禁国产床啪视频网站| av超薄肉色丝袜交足视频| 亚洲精品国产一区二区精华液| 窝窝影院91人妻| 一本大道久久a久久精品| 国产精品亚洲一级av第二区| 无遮挡黄片免费观看| 国产三级黄色录像| 免费看十八禁软件| 法律面前人人平等表现在哪些方面| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩一级在线毛片| 欧美成狂野欧美在线观看| 午夜久久久久精精品| 久久精品亚洲精品国产色婷小说| 国产午夜福利久久久久久| av在线播放免费不卡| videosex国产| 欧美人与性动交α欧美精品济南到| 日本三级黄在线观看| 免费看日本二区| svipshipincom国产片| 国产精品九九99| 久久久久久大精品| 麻豆成人午夜福利视频| 国产成人一区二区三区免费视频网站| 久久这里只有精品中国| 国内揄拍国产精品人妻在线| 中文字幕人妻丝袜一区二区| 又紧又爽又黄一区二区| 国语自产精品视频在线第100页| www.自偷自拍.com| 国产av不卡久久| 制服诱惑二区| 黄色丝袜av网址大全| 日本成人三级电影网站| 男女做爰动态图高潮gif福利片| 91av网站免费观看| 中出人妻视频一区二区| 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 久久中文字幕一级| 久久久国产成人精品二区| 国产精品乱码一区二三区的特点| 欧美成人午夜精品| 免费av毛片视频| 18美女黄网站色大片免费观看| 九色国产91popny在线| 身体一侧抽搐| 欧美午夜高清在线| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 国产精品免费视频内射| 一区福利在线观看| 性色av乱码一区二区三区2| 黄片大片在线免费观看| 日日摸夜夜添夜夜添小说| 此物有八面人人有两片| 在线观看一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲国产欧美一区二区综合| 可以免费在线观看a视频的电影网站| 欧美 亚洲 国产 日韩一| 午夜福利欧美成人| 欧美在线一区亚洲| 首页视频小说图片口味搜索| 少妇熟女aⅴ在线视频| 国产又色又爽无遮挡免费看| 久久中文字幕一级| 国产成人一区二区三区免费视频网站| 搡老熟女国产l中国老女人| 18禁观看日本| 国产精品九九99| 成人午夜高清在线视频| 亚洲欧洲精品一区二区精品久久久| 波多野结衣巨乳人妻| 两个人的视频大全免费| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 亚洲色图av天堂| 亚洲18禁久久av| 别揉我奶头~嗯~啊~动态视频| 蜜桃久久精品国产亚洲av| 亚洲精品在线美女| 国产av不卡久久| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| av在线播放免费不卡| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 99精品久久久久人妻精品| 久久久久久久久中文| 国产一区在线观看成人免费| 日本a在线网址| 国产精品久久电影中文字幕| 国产成人av教育| 精品久久久久久久久久免费视频| 国产精品一区二区精品视频观看| 美女大奶头视频| 美女大奶头视频| 狠狠狠狠99中文字幕| 老司机福利观看| 国产乱人伦免费视频| 成人av一区二区三区在线看| 国产三级中文精品| 国产主播在线观看一区二区| 日本精品一区二区三区蜜桃| 国产精品日韩av在线免费观看| 国产黄色小视频在线观看| 人成视频在线观看免费观看| 日本一二三区视频观看| x7x7x7水蜜桃| 日韩欧美在线二视频| 一级毛片高清免费大全| 欧美 亚洲 国产 日韩一| 妹子高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 婷婷六月久久综合丁香| 久久精品综合一区二区三区| 大型av网站在线播放| 国产真实乱freesex| 亚洲欧美精品综合久久99| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 三级国产精品欧美在线观看 | 少妇熟女aⅴ在线视频| 999精品在线视频| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 国产黄色小视频在线观看| 午夜精品在线福利| 少妇的丰满在线观看| 久久久久久久久免费视频了| 欧美三级亚洲精品| 日韩三级视频一区二区三区| 大型av网站在线播放| 免费在线观看黄色视频的| 亚洲国产精品久久男人天堂| 午夜日韩欧美国产| 小说图片视频综合网站| 最好的美女福利视频网| 18禁国产床啪视频网站| 国产伦人伦偷精品视频| 久9热在线精品视频| 国产精品 欧美亚洲| 久久 成人 亚洲| av福利片在线观看| 久久久久亚洲av毛片大全| 18禁国产床啪视频网站| 精品免费久久久久久久清纯| 久9热在线精品视频| 亚洲国产精品久久男人天堂| 午夜日韩欧美国产| 国产午夜福利久久久久久| 国产又色又爽无遮挡免费看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品成人综合色| 精品一区二区三区四区五区乱码| 国产高清videossex| 成人永久免费在线观看视频| 国产99白浆流出| 日本精品一区二区三区蜜桃| 国产成人一区二区三区免费视频网站| 亚洲专区字幕在线| 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| 久久久国产成人精品二区| av福利片在线观看| 亚洲精品粉嫩美女一区| 免费看日本二区| 免费无遮挡裸体视频| 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 成人国产综合亚洲| 88av欧美| 又爽又黄无遮挡网站| 变态另类成人亚洲欧美熟女| 99精品欧美一区二区三区四区| 精品一区二区三区四区五区乱码| 免费无遮挡裸体视频| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 老汉色∧v一级毛片| 岛国在线免费视频观看| 日韩大尺度精品在线看网址| 久久国产乱子伦精品免费另类| 国产精品久久视频播放| 免费观看精品视频网站| 国产精品久久久av美女十八| 国模一区二区三区四区视频 | 国产精品乱码一区二三区的特点| 久久久久久久久久黄片| 最新在线观看一区二区三区| 国产视频一区二区在线看| 嫩草影院精品99| 欧美大码av| 精品久久久久久,| 久久性视频一级片| 国产伦在线观看视频一区| 岛国视频午夜一区免费看| 久久精品国产99精品国产亚洲性色| 一区二区三区激情视频| 欧美日韩乱码在线| 怎么达到女性高潮| 一区福利在线观看| 热99re8久久精品国产| 在线观看66精品国产| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播| 悠悠久久av| 亚洲av熟女| 国产熟女xx| 国产精品九九99| 日韩欧美国产在线观看| 国产在线观看jvid| 欧美日韩福利视频一区二区| 欧美精品亚洲一区二区| 99国产综合亚洲精品| 99热这里只有精品一区 | 最新美女视频免费是黄的| 亚洲专区中文字幕在线| 亚洲七黄色美女视频| 久久热在线av| 88av欧美| 日韩有码中文字幕| 韩国av一区二区三区四区| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 特级一级黄色大片| 黄片小视频在线播放| 国产视频内射| 中文亚洲av片在线观看爽| 黄色视频不卡| 免费看日本二区| 亚洲一区二区三区色噜噜| 在线观看美女被高潮喷水网站 | 亚洲天堂国产精品一区在线| 精品人妻1区二区| 久久性视频一级片| 色老头精品视频在线观看| 两个人视频免费观看高清| 国内精品一区二区在线观看| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 俺也久久电影网| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 亚洲一区二区三区色噜噜| 欧美色视频一区免费| 悠悠久久av| 在线观看免费午夜福利视频| 亚洲真实伦在线观看| av片东京热男人的天堂| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 午夜a级毛片| √禁漫天堂资源中文www| 在线永久观看黄色视频| 99热这里只有是精品50| 久久久久久国产a免费观看| 中文字幕高清在线视频| 久久人妻福利社区极品人妻图片| 少妇熟女aⅴ在线视频| 久久久久久久精品吃奶| 国产精品亚洲一级av第二区| 1024手机看黄色片| 国产精品影院久久| 国产成人欧美在线观看| 两个人免费观看高清视频| 成人18禁在线播放| 99热只有精品国产| 99精品在免费线老司机午夜| 亚洲性夜色夜夜综合| 老司机深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 成人手机av| 一进一出抽搐gif免费好疼| 国产成人av教育| 国产亚洲精品第一综合不卡| 特大巨黑吊av在线直播| 亚洲激情在线av| 国产精品一区二区免费欧美| 国产三级黄色录像| 欧美乱色亚洲激情| 色精品久久人妻99蜜桃| 全区人妻精品视频| 女警被强在线播放| 成人三级黄色视频| 久久久久精品国产欧美久久久| 久久久久久久久久黄片| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看的高清视频| 欧美 亚洲 国产 日韩一| 亚洲黑人精品在线| 动漫黄色视频在线观看| 一进一出抽搐动态| 丁香欧美五月| 正在播放国产对白刺激| 长腿黑丝高跟| 91在线观看av| 大型av网站在线播放| 女同久久另类99精品国产91| 亚洲人成电影免费在线| 少妇人妻一区二区三区视频| 国内久久婷婷六月综合欲色啪| 亚洲男人天堂网一区| 黄色毛片三级朝国网站| 一夜夜www| 婷婷精品国产亚洲av| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网| 久久草成人影院| 国产主播在线观看一区二区| 亚洲欧美日韩高清在线视频| 99国产综合亚洲精品| 国产精品国产高清国产av| 十八禁人妻一区二区| 午夜视频精品福利| 女人被狂操c到高潮| 婷婷六月久久综合丁香| 亚洲 欧美一区二区三区| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看 | 国产亚洲精品av在线| 日韩欧美免费精品| 久热爱精品视频在线9| 国产亚洲av嫩草精品影院| 亚洲专区中文字幕在线| 亚洲欧美精品综合久久99| 亚洲激情在线av| 久久 成人 亚洲| 国产黄色小视频在线观看| 一二三四在线观看免费中文在| 一本一本综合久久| 2021天堂中文幕一二区在线观| 精品久久久久久成人av| 天堂动漫精品| 国产亚洲精品av在线| 亚洲国产精品成人综合色| 国产午夜福利久久久久久| 久久这里只有精品19| 中文字幕人成人乱码亚洲影| 精品第一国产精品| 黄色视频,在线免费观看| 精品福利观看| 亚洲欧美日韩高清专用| 色在线成人网| 久久人妻av系列| 一个人免费在线观看的高清视频| 国产乱人伦免费视频| 麻豆国产av国片精品| 神马国产精品三级电影在线观看 | 国产成年人精品一区二区| 国产亚洲精品综合一区在线观看 | 亚洲成人久久性| 欧美丝袜亚洲另类 | 国模一区二区三区四区视频 | 亚洲人成77777在线视频| 欧美不卡视频在线免费观看 | 精品久久久久久,| svipshipincom国产片| 麻豆国产97在线/欧美 | 亚洲九九香蕉| 一边摸一边做爽爽视频免费| 精品无人区乱码1区二区| 日本 av在线| 啦啦啦韩国在线观看视频| 制服丝袜大香蕉在线| 日本成人三级电影网站| 很黄的视频免费| 黄色女人牲交| 麻豆一二三区av精品| 亚洲国产精品成人综合色| 人妻夜夜爽99麻豆av| 可以免费在线观看a视频的电影网站| 国产精品免费一区二区三区在线| 中文资源天堂在线| a在线观看视频网站| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| 波多野结衣高清作品| 无限看片的www在线观看| 高清毛片免费观看视频网站| 精品人妻1区二区| 精品久久久久久久久久久久久| 国产精品日韩av在线免费观看| 日韩精品中文字幕看吧| av福利片在线| 中文字幕人成人乱码亚洲影| 日日夜夜操网爽| 久久久久久久精品吃奶| 午夜福利高清视频| 亚洲国产中文字幕在线视频| 亚洲熟妇熟女久久| 白带黄色成豆腐渣| 无人区码免费观看不卡| 99久久精品热视频| 亚洲午夜理论影院| 一边摸一边抽搐一进一小说| 男人舔奶头视频| 日韩欧美在线二视频| 欧美一区二区国产精品久久精品 | 亚洲九九香蕉| 亚洲精品在线美女| 婷婷丁香在线五月| 天堂√8在线中文| 超碰成人久久| 最近在线观看免费完整版| 激情在线观看视频在线高清| 好男人在线观看高清免费视频| av国产免费在线观看| 欧美最黄视频在线播放免费| 99久久无色码亚洲精品果冻| 男人舔奶头视频| 国产人伦9x9x在线观看| 久久人妻福利社区极品人妻图片| 999久久久精品免费观看国产| 97超级碰碰碰精品色视频在线观看| 亚洲成人国产一区在线观看| 搡老熟女国产l中国老女人| 男插女下体视频免费在线播放| 日韩欧美精品v在线| 天堂影院成人在线观看| 九九热线精品视视频播放| 女同久久另类99精品国产91| 亚洲免费av在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 我的老师免费观看完整版| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 日韩精品中文字幕看吧| 三级毛片av免费| 18禁国产床啪视频网站| 日韩国内少妇激情av| 欧美乱妇无乱码| 一a级毛片在线观看| 精品国内亚洲2022精品成人| av超薄肉色丝袜交足视频| 女人高潮潮喷娇喘18禁视频| 99热这里只有是精品50| 90打野战视频偷拍视频| 老熟妇乱子伦视频在线观看| 亚洲人成伊人成综合网2020| 亚洲精品色激情综合| 日韩精品中文字幕看吧| 99热6这里只有精品| 欧美黄色片欧美黄色片| 又黄又爽又免费观看的视频| 午夜老司机福利片| 久久天堂一区二区三区四区| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美日韩高清专用| 男女做爰动态图高潮gif福利片| 久久久久免费精品人妻一区二区| 毛片女人毛片| 日本 av在线| 国产午夜精品论理片| 麻豆成人午夜福利视频| 久久99热这里只有精品18| 国产精品亚洲美女久久久| 1024手机看黄色片| 在线永久观看黄色视频| 熟妇人妻久久中文字幕3abv| 久久香蕉激情| 国产av一区二区精品久久| 无限看片的www在线观看| 久99久视频精品免费| 少妇被粗大的猛进出69影院| 老司机深夜福利视频在线观看| 可以在线观看的亚洲视频| 免费电影在线观看免费观看| 又黄又爽又免费观看的视频| 亚洲欧美激情综合另类| 亚洲18禁久久av| 黄色成人免费大全| 免费看日本二区| 淫秽高清视频在线观看| 999精品在线视频|