• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Exposure Meter of Lijiang Fiber-fed High-Resolution Spectrograph

    2024-01-06 06:39:56XiaoGuangYuKaiFanJiXiLiangZhangLiangChangYunFangCaiYingQinandZhenHongShang
    Research in Astronomy and Astrophysics 2023年11期

    Xiao-Guang Yu , Kai-Fan Ji , Xi-Liang Zhang, Liang Chang, Yun-Fang Cai, Ying Qin, and Zhen-Hong Shang

    1 Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011, China; yuxiaoguang@ynao.ac.cn, changliang@ynao.ac.cn

    2 Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China

    3 University of Chinese Academy of Sciences, Beijing 100049, China

    4 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

    Abstract In 2016, an exposure meter was installed on the Lijiang Fiber-fed High-Resolution Spectrograph to monitor the coupling of starlight to the science fiber during observations.Based on it,we investigated a method to estimate the exposure flux of the CCD in real time by using the counts of the photomultiplier tubes (PMT) of the exposure meter,and developed a piece of software to optimize the control of the exposure time.First,by using flat-field lamp observations,we determined that there is a linear and proportional relationship between the total counts of the PMT and the exposure flux of the CCD.Second, using historical observations of different spectral types, the corresponding relational conversion factors were determined and obtained separately.Third, the method was validated using actual observation data, which showed that all values of the coefficient of determination were greater than 0.92.Finally, software was developed to display the counts of the PMT and the estimated exposure flux of the CCD in real-time during the observation,providing a visual reference for optimizing the exposure time control.

    Key words: telescopes – instrumentation: spectrographs – instrumentation: photometers

    1.Introduction

    The signal-to-noise ratio (S/N)is one of the key parameters to evaluate the data quality of high-resolution spectra.During observations,because we cannot obtain the CCD exposure flux information directly, the exposure time is generally estimated by considering the weather and observing conditions, and the characteristics of stars, etc, which have large uncertainties.If the exposure time is blindly increased for high S/N, it is a waste of observation time,and it may pollute the observed data because the CCD is saturated.If the S/N does not meet the requirements, repeated observations will affect the observation efficiency.There are usually two methods to solve the problem.One is using the Exposure Time Calculator(ETC),which needs to accurately simulate the target, weather and instrument information before observations.Most instruments use ETC to estimate exposure time,although it has some uncertainties.The simulated S/N from the ETC is overestimated by 40%–50%on IGRINS (Le et al.2015), while it is within 10% for HARPS(ESO 2021).

    Another way is using Exposure Meter (EM), which is installed as a part of the instrument.the EM can monitor the flux in real-time to optimize the exposure time, because it can terminate the exposure when the desired counts have been acquired.The EM can also calculate the photon-weighted mean time of each exposure, which is critical for precise RV(Radial Velocity) measurements (Tokovinin et al.2013;Telting et al.2014).For precise RV measurements with long exposures, EM even becomes a necessity (Raskin 2011).Many high-resolution spectrographs have been equipped with EM,and the detectors of EM are photomultiplier tubes (PMT) or CCD(Kibrick et al.2006; de Cuyper et al.2007; Gibson 2013;Tokovinin et al.2013;Landoni et al.2014;Ben-Ami et al.2016;Blackman et al.2020; Gupta et al.2022).EM usually picks up from 1% to 8% of the light from behind the slit or grating.According to the different spectrographs,the count rates of EM are different.For a star of V=5 mag., the typical count rate is 103 s?1in the EM of CHIRON(Tokovinin et al.2013),although its maximum count rate is 456 s?1, and the error of the mean exposure time is within 1s.However, for a star of V=16 mag.,the count rate is 19 s?1,and the error of the mean exposure time is within 165 s for the EM of HARPS (Chile 2010).

    In this paper,we propose a method to estimate the exposure flux of a CCD in real-time using the counts of PMT in Fiberfed High-Resolution Spectrograph (HiRES) of the Lijiang 2.4 m telescope.Through flat-field lamp observation, we determined that the signals between the two detectors are linearly proportional, and obtained the relationship conversion coefficients for six different spectral types using historical observed data.The validation results from the observed data show that the estimated values of the CCD exposure flux are in good agreement with the actual observed values.At the same time, the application software was developed to realize the real-time display of the estimated CCD exposure during observation.Section 2 describes the principle of the method.Section 3 shows the validation results, Section 4 describes the working principle of the software and shows the user interface,and Section 5 summarizes the results of this work and discusses the error factors.

    Figure 1.The optical system of HiRES for 2.4 m Telescope, the red part is photonic detection system.

    2.Linear Modeling for Exposure Meter

    2.1.Optics of HiRES and Exposure Meter

    HiRES of the Lijiang 2.4 m telescope has two science fibers,the spectral resolutions(R=λ/Δλ)are 32,000 and 49,000 for the 2 0 and 1 2 diameter fibers (on the sky) at 550 nm,respectively.The orders of an observed spectrum are from 61 to 156, and the wavelength coverage is from 380 to 990 nm.The long-term stabilities of temperature and pressure for the spectrograph are controlled within 26±0.25°C and 30±1 Pa,respectively (Wang et al.2019).A starlight coupling device was installed on a side port in the AG-box unit(Fan et al.2015)at the Cassegrain focus of the telescope and guided the light from the telescope or calibration lamps to the spectrometer via scientific fiber.Figure 1 shows the optical layout of HiRES of 2.4 m telescope.

    An EM (red box in Figure 1) was installed in the spectrograph optical path for monitoring starlight coupling into science fiber during observation to pick up 3%starlight by a small folding mirror to EM,and its main component is a wide dynamic range PMT.Figure 2 shows the quantum efficiency curves of the two detectors (CCD and PMT), they have high detection efficiency in the wavelength range from 500 nm to 800 nm, and the peak quantum efficiency of PMT and CCD detectors are 400 nm and 550 nm, respectively.We used the observed data to study the relationship between the counts on EM and the flux on CCD of spectrograph, and developed a piece of software to improve the observation efficiency.

    2.2.Mathematical Model

    We first investigated the relationship between the signals from the two detectors (CCD and PMT).This was carried out by using flat-field lamp observations.Specifically, different exposure times(0.5 s,0.6 s,0.7 s,0.8 s due to the bright enough flat-field lamp)were set for group observations,and four sets of spectral images of the CCD and the corresponding total counts of the PMT were obtained.First,the background signals of the spectral images and PMT counts are corrected.Second, the 2000th column of pixels with the strongest signal in the spectral image was taken, and the ADU values of the pixels covered by the 96 orders in this column were summed individually to obtain the exposure fluxes at the wavelength points corresponding to the different orders.Figure 3 shows the relationship between the exposure fluxes of the 10 orders and the corresponding total PMT counts.The horizontal coordinates represent the total PMT counts and the vertical coordinates represent the exposure fluxes of the different wavelength points in the column of the CCD image.

    Figure 2.Distribution of detection efficiency of PMT (model: Hamamatsu H8259-02) and CCD (model: E2V CCD203-82).

    Figure 3.The linear fitting between the observed flux on CCD and the counts of PMT, the scatters represent the sampled values of the observed flux of different exposure time.

    The dark counts for the CCD and the PMT were obtained before observations.In the no-exposure state, the effective signals of both detectors are zero.The relationship can be expressed in the form of Equation (1).Here FCCDis the observed flux at the corresponding wavelength point for each pixel of the CCD,CPMTis the sum of counts of the PMT during the exposure time T, G is the scale factor matrix of the corresponding pixel on CCD image,dTis the dark of the CCD during the exposure time T, and bTis the sum of the dark counts of the PMT during the exposure time T

    Figure 4.Two-dimensional images of a flat and a star, respectively.The left is flat, while the right is a star (HD189733).

    Figure 5.The distribution of ADU (normalized) in different wavelengths observed by stars of different spectral types on CCD (2000th column).

    The total count of the PMT is the sum of the exposure fluxes of all the bands it detects.The energy distributions of stars of different spectral types are also different, and with the inconsistent response of HiRES in different bands, as well as the actual atmospheric absorption, it is difficult to obtain more accurate spectral response curves using the standard blackbody radiation formula.The actual observed stellar spectra are different from those of the flat field lamps as shown in Figure 4.In addition, Figure 5 shows the actual observed energy distributions for stars of six spectral types, where the observed energies have been normalized.There are many absorption lines in the star’s?spectrum, and the right image shows that the darker parts of the discontinuity are absorption lines.Based on these spectral characteristics of HiRES, we need to determine the respective conversion factor G matrices for the stars of different spectral types.

    With Equation(1),we determined and obtained six types(Type B, A, F, G, K, and M) of conversion factors, using historical observations.These observations include: CCD spectral image,PMT total counts, CCD dark, and PMT dark counts.Figure 6 shows the matrix of conversion coefficient for a star of spectral type A.With the above method,we can estimate the exposure flux of the target spectrum using the real-time count of the PMT and obtain a simulated CCD spectral image.

    3.Validation

    Figure 6.The conversion coefficient matrix for spectral type A.

    We have validated the above method by observations from 2022 July 16 to 2022 July 20.The information of the observed targets is given in Table 1, and the CCD dark and PMT dark counts were obtained from the observations on the same day.The conversion factor (G) corresponding to the spectral type of the target to be validated was chosen,and the flux(Fccd)of the CCD was estimated by Equation(1)using the counts of PMT obtained from the observation.The results were evaluated using a coefficient of determination between the estimated value of the CCD exposure flux and the actual observed value.The coefficients of determination were obtained using Equations (2), (3), and (4)

    Figure 7.Comparison of estimated and observed values of flux for stars with different spectral subtypes.The blue curves are the observations,and the orange curves are estimation.

    Table 1 Information on Observed Targets for Validation

    Figure 8.Flow chart of observation software.

    where R2is the coefficient of determination, yiis the observed flux of the CCD,yestimatedis the estimated flux of the CCD,and ymeanis the average of the observed fluxes.If the estimate and the observation are in perfect agreement,the value of R2will be 1.The third column of Table 1 shows that all R2values are greater than 0.92, indicating a high degree of agreement.

    Figure 7 shows a plot between the estimated and observed values of the exposure fluxes on pixels of the CCD, where the blue curve represents the observed values and the orange curve represents the estimated values.The absorption line and the region between the two orders in the estimated values are ignored for clarity of comparison.By comparing the results of the above figure and table,it can be concluded that our method can estimate the exposure flux of the CCD using the real-time counts of the PMT in the observation, and the estimation results are reliable.

    4.Software

    We developed a piece of software that uses the EM to estimate the exposure time based on Python and the Qt Designer IDE of the Windows 10 system.

    Figure 9.Observation software operation interface.

    Figure 8 shows the software workflow.The working mechanism is mainly performed through the communication of three threads.These threads are the main thread, the data acquisition thread and the spectra of the thread.The main thread receives the operations and sends the command to the PMT counter through the serial port.The PMT counter does as commanded and sends data back to the software.The data acquisition thread is responsible for receiving counts,verifying the data, and subtracting the background counts.The main thread receives the photon counts, computes statistics (including sample value, mean value, total value, and number of samples), and dynamically updates the statistical results.The spectra of the thread is responsible for estimating the current exposure flux at a given frequency (0.2 Hz) and updates in real time.

    Figure 9 shows the user interface of the software.Observers can select or fill in the star’s information in the operation interface according to the scientific requirements before observation.The PMT counts and the estimated exposure flux can be displayed in real-time during observation, providing a visual and reliable reference for the observation.

    5.Conclusions and Discussion

    We have presented a method for estimating the exposure flux of a CCD in real-time using the counts of the PMT of an exposure meter, and show the validation of the method using observational data.The validation results show that the estimates obtained using the method are very much in line with the actual observations.

    A linear and proportional relationship between the total counts of the PMT and the fluxes of the pixels corresponding to different wavelength points of the CCD spectral image has been determined by flat-field lamp observations, and the equation of the transformation relationship is given.The six spectral types’ transformation coefficient templates were determined from historical observations.The validation of the observation data from 2022 July 16 to July 20 shows that the coefficient of determination values between the estimated and observed values of the CCD exposure fluxes are all greater than 0.92.It is shown that the method can be used to estimate the CCD exposure flux using real-time counts of the PMT in the observation, and the results are reliable.In addition, the working mechanism and user interface of the method’s application software are shown.The software displays in real-time the PMT counts and the estimated value of the exposure flux at the CCD at that time, providing a visual reference for optimizing exposure time control.

    In Section 2, we determine a template of model transformation coefficients for different spectral types using historical observations, and the key lies in the choice of data.First, the data were chosen to cover as many subtypes of the spectral type as possible.Due to precious observing time, we could not observe targets of all subtypes.Second, higher quality observations were selected, such as those with high S/Ns under stable observing conditions.The distribution of PMT observations can be used to determine whether the observing conditions were stable at that time and whether they were affected by cloudiness.Considering the above factors, the actual amount of selected observations is small.Third,there are different magnitudes for stars of the same spectral type.We found that the response distribution of spectral imaging on the CCD varies between targets with large magnitude differences,especially in the blue-end wavelength region, due to the atmospheric window and spectrometer efficiency.Therefore,we must also perform separate model transformation coefficient determinations for particularly bright standard stars of the same spectral type, or for particularly faint special targets.

    In addition, the effects caused by the sky-light background and the atmospheric absorption line are not considered in this paper.According to the long-term monitoring statistics of Lijiang Observatory,the sky-light background is between 16.5 and 21 mag.arcsec?2(Xin et al.2020).This may introduce some uncertainties in the estimation of faint stars observed with long exposures.This factor must be taken into account if high accuracy is required.For example,we can make an observation of the sky-light background in the region of the target as a background correction before the observation.To a certain extent, it can reduce the influence of the sky-light background,but it also loses additional observation time and affects the observation efficiency.In addition, the intensity of the atmospheric absorption line of Lijiang Observatory varies with the seasons (Lu et al.2021), and the flux at the wavelength it covers will also follow the influence, and the observer can avoid referring to the pixel area covered by this wavelength.

    Future plans include increasing the sample size of observations to optimize model transformation coefficients to improve estimation accuracy, and improving software functionality based on observation requirements.This research provides valuable insights for the application of the method on other spectrometers of the same type.It should be noted that the current implementation of the method is limited to bands with wavelength coverage less than 10000 ? in HiRES for the 2.4 m telescope.However, with the selection of an appropriate detector, this method can be extended to other wavelength spectrometers.

    AcknowledgmentsORCID iDs

    We are grateful to the referee for useful suggestions that improved the manuscript,and we acknowledge the support of the Lijiang 2.4 m telescope staff.This work was funded by the National Natural Science Foundation of China (NSFC, Nos.11803088, 12003068 and 12063002), Civil Aerospace preresearch project D020302 and the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B10,Yunnan Science Foundation of China (202001AU070077).Sino-German Scientist Mobility Programme M-0086.

    Xiao-Guang Yu https://orcid.org/0009-0007-3650-6715

    Kai-Fan Ji https://orcid.org/0000-0001-8950-3875

    Zhen-Hong Shang https://orcid.org/0000-0003-1280-5255

    国产在线一区二区三区精| 国产一区亚洲一区在线观看| 欧美日韩一区二区视频在线观看视频在线| 不卡视频在线观看欧美| 亚洲,欧美,日韩| 亚洲最大成人中文| 久久鲁丝午夜福利片| 久久久久久久久久久免费av| 亚洲欧美日韩东京热| 国产成人freesex在线| 国产在线免费精品| 免费观看av网站的网址| 黄色一级大片看看| 精品酒店卫生间| 大陆偷拍与自拍| .国产精品久久| 亚洲国产高清在线一区二区三| 久久久久国产精品人妻一区二区| 深爱激情五月婷婷| 欧美少妇被猛烈插入视频| 久久久国产一区二区| 激情五月婷婷亚洲| 日本av手机在线免费观看| 亚洲精品国产色婷婷电影| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美成人综合另类久久久| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 少妇人妻久久综合中文| 大片电影免费在线观看免费| 我要看日韩黄色一级片| 青青草视频在线视频观看| 国产综合精华液| 久久午夜福利片| av女优亚洲男人天堂| 人妻系列 视频| 国产 精品1| 色婷婷久久久亚洲欧美| 黄色视频在线播放观看不卡| 青春草国产在线视频| 婷婷色av中文字幕| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久丰满| 极品教师在线视频| 蜜桃久久精品国产亚洲av| 亚洲第一av免费看| 十八禁网站网址无遮挡 | 久久久久国产网址| 夫妻性生交免费视频一级片| 国产精品久久久久久久电影| 国产极品天堂在线| 一区在线观看完整版| 我的女老师完整版在线观看| av一本久久久久| 偷拍熟女少妇极品色| 91精品国产国语对白视频| 日韩欧美精品免费久久| 五月天丁香电影| 久久久久国产精品人妻一区二区| 成人二区视频| 观看免费一级毛片| 亚洲欧美成人精品一区二区| 精品酒店卫生间| 插逼视频在线观看| 久久久亚洲精品成人影院| 欧美日韩视频精品一区| 国产精品国产三级专区第一集| 亚洲综合色惰| 国产精品一区二区在线不卡| 一区二区三区四区激情视频| 免费观看的影片在线观看| av女优亚洲男人天堂| 晚上一个人看的免费电影| 中文字幕人妻熟人妻熟丝袜美| 男女无遮挡免费网站观看| 日韩在线高清观看一区二区三区| 欧美人与善性xxx| 在线天堂最新版资源| 91午夜精品亚洲一区二区三区| 成人国产麻豆网| 国产高清国产精品国产三级 | 人妻一区二区av| 国产精品一区二区在线观看99| 中文天堂在线官网| 3wmmmm亚洲av在线观看| 99久久中文字幕三级久久日本| 精品一区在线观看国产| 在线观看美女被高潮喷水网站| 大片免费播放器 马上看| 在线 av 中文字幕| 国产 精品1| 久久精品国产鲁丝片午夜精品| 97超碰精品成人国产| 熟女电影av网| 亚洲精品aⅴ在线观看| 欧美日韩视频精品一区| 免费不卡的大黄色大毛片视频在线观看| 狂野欧美激情性xxxx在线观看| 毛片一级片免费看久久久久| 日韩亚洲欧美综合| 亚洲精品中文字幕在线视频 | 少妇熟女欧美另类| 国产乱人偷精品视频| 国产淫语在线视频| 日韩,欧美,国产一区二区三区| av网站免费在线观看视频| 菩萨蛮人人尽说江南好唐韦庄| 精品久久国产蜜桃| 插阴视频在线观看视频| 亚洲av综合色区一区| 最近最新中文字幕大全电影3| 涩涩av久久男人的天堂| 日韩一区二区视频免费看| 五月开心婷婷网| 国产爱豆传媒在线观看| 在线观看一区二区三区| 国产成人91sexporn| 日本av手机在线免费观看| 成人无遮挡网站| 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 国产午夜精品久久久久久一区二区三区| 亚洲精品aⅴ在线观看| 免费观看a级毛片全部| 大片电影免费在线观看免费| 啦啦啦视频在线资源免费观看| 亚洲人与动物交配视频| 国产亚洲一区二区精品| 国产成人a区在线观看| 精品酒店卫生间| 亚洲真实伦在线观看| 国产精品人妻久久久影院| 欧美一区二区亚洲| 日本欧美国产在线视频| 亚洲精品456在线播放app| 亚洲三级黄色毛片| 色综合色国产| 国产永久视频网站| 丰满人妻一区二区三区视频av| 国产视频首页在线观看| 一区二区三区乱码不卡18| 久久久久性生活片| 国产在线一区二区三区精| 日韩成人伦理影院| av在线蜜桃| 久久久久久久久大av| 精品一区在线观看国产| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久v下载方式| 国产伦理片在线播放av一区| 国产有黄有色有爽视频| 国产精品福利在线免费观看| 97超视频在线观看视频| 免费观看无遮挡的男女| 性色av一级| 亚洲丝袜综合中文字幕| 黄色日韩在线| 亚洲av国产av综合av卡| 高清日韩中文字幕在线| av国产精品久久久久影院| 狂野欧美白嫩少妇大欣赏| 一个人免费看片子| 成人高潮视频无遮挡免费网站| 久久久久久九九精品二区国产| 草草在线视频免费看| 久久久久人妻精品一区果冻| 精品久久久精品久久久| 免费看av在线观看网站| 在线观看一区二区三区激情| 国产在线视频一区二区| 亚洲av国产av综合av卡| 亚州av有码| 女人十人毛片免费观看3o分钟| 熟女人妻精品中文字幕| 观看免费一级毛片| 大香蕉久久网| 免费高清在线观看视频在线观看| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 国产精品国产三级国产专区5o| 亚洲三级黄色毛片| 成人亚洲欧美一区二区av| 亚洲成人中文字幕在线播放| 精品一区在线观看国产| 男人爽女人下面视频在线观看| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 国产黄色免费在线视频| 国产男女内射视频| 日韩免费高清中文字幕av| 国产深夜福利视频在线观看| 内射极品少妇av片p| 久久久亚洲精品成人影院| 亚洲一级一片aⅴ在线观看| 一二三四中文在线观看免费高清| 在线免费观看不下载黄p国产| 国产 一区 欧美 日韩| 国产成人精品福利久久| 日本午夜av视频| 视频中文字幕在线观看| 欧美xxxx性猛交bbbb| 少妇精品久久久久久久| 久久国产精品大桥未久av | 日本av免费视频播放| 18禁在线播放成人免费| 精品人妻熟女av久视频| 国产大屁股一区二区在线视频| 99精国产麻豆久久婷婷| 亚洲欧美日韩无卡精品| 舔av片在线| 狂野欧美激情性bbbbbb| 国产成人a区在线观看| 色网站视频免费| 精品国产乱码久久久久久小说| 国产高清国产精品国产三级 | 国产免费一级a男人的天堂| 亚洲av男天堂| videossex国产| 精品人妻一区二区三区麻豆| 性高湖久久久久久久久免费观看| 精华霜和精华液先用哪个| 久久人人爽av亚洲精品天堂 | 国产免费一级a男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 国精品久久久久久国模美| 美女高潮的动态| 色5月婷婷丁香| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 在线免费十八禁| 亚洲三级黄色毛片| 亚洲欧美一区二区三区黑人 | 夜夜爽夜夜爽视频| 亚洲成人av在线免费| 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 亚洲美女黄色视频免费看| 我要看日韩黄色一级片| 麻豆乱淫一区二区| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久| 一级毛片电影观看| 国产淫片久久久久久久久| 日韩欧美一区视频在线观看 | 天天躁夜夜躁狠狠久久av| 黑人高潮一二区| 一区二区三区免费毛片| 久久精品国产鲁丝片午夜精品| 成人亚洲精品一区在线观看 | 国产精品爽爽va在线观看网站| 亚洲欧美一区二区三区国产| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看 | 秋霞在线观看毛片| 久久婷婷青草| 成人毛片a级毛片在线播放| 99热网站在线观看| 精品久久久久久久末码| 久久久久久久久久久丰满| 99视频精品全部免费 在线| 亚洲av男天堂| 日本一二三区视频观看| 亚洲美女搞黄在线观看| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 成年美女黄网站色视频大全免费 | 国产精品国产av在线观看| 亚洲真实伦在线观看| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的 | 久久国内精品自在自线图片| 亚洲人成网站高清观看| 肉色欧美久久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 亚洲va在线va天堂va国产| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人 | 国内少妇人妻偷人精品xxx网站| 欧美国产精品一级二级三级 | 妹子高潮喷水视频| 亚洲在久久综合| 少妇丰满av| 毛片一级片免费看久久久久| 高清在线视频一区二区三区| 欧美日韩综合久久久久久| 免费不卡的大黄色大毛片视频在线观看| 高清欧美精品videossex| 成人综合一区亚洲| 免费观看在线日韩| 2018国产大陆天天弄谢| 日韩 亚洲 欧美在线| 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 久久精品久久精品一区二区三区| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 亚洲,欧美,日韩| 观看av在线不卡| 18禁在线无遮挡免费观看视频| 国产色婷婷99| 亚洲电影在线观看av| 高清av免费在线| 免费黄色在线免费观看| 久久鲁丝午夜福利片| 久久久久久伊人网av| 亚洲av免费高清在线观看| 成年女人在线观看亚洲视频| 亚洲精品日韩在线中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲精品中文字幕在线视频 | 舔av片在线| 午夜福利高清视频| 国产一级毛片在线| 超碰av人人做人人爽久久| 我的老师免费观看完整版| 少妇的逼水好多| 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩卡通动漫| 尤物成人国产欧美一区二区三区| 男的添女的下面高潮视频| 免费av中文字幕在线| 午夜激情福利司机影院| 在线精品无人区一区二区三 | 欧美极品一区二区三区四区| 老司机影院毛片| 亚洲国产欧美人成| 超碰97精品在线观看| 亚洲成色77777| 久久久久视频综合| 亚洲国产精品成人久久小说| 亚洲性久久影院| 99久久精品热视频| 丝袜脚勾引网站| 国产欧美亚洲国产| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 国产精品99久久久久久久久| 亚洲美女视频黄频| 99久久精品国产国产毛片| 国产成人一区二区在线| 久久久成人免费电影| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 国产精品国产三级专区第一集| 亚洲成人手机| 久久这里有精品视频免费| 美女主播在线视频| 精品久久久久久久末码| 久久婷婷青草| 国产精品麻豆人妻色哟哟久久| av在线观看视频网站免费| 国产成人a∨麻豆精品| 日韩电影二区| 日本午夜av视频| 精品一区二区三区视频在线| 高清视频免费观看一区二区| 免费播放大片免费观看视频在线观看| 一级毛片我不卡| 国产午夜精品一二区理论片| 黄片wwwwww| 夜夜骑夜夜射夜夜干| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 老司机影院成人| kizo精华| 少妇人妻 视频| 国产人妻一区二区三区在| 亚洲久久久国产精品| 一级毛片 在线播放| 国产中年淑女户外野战色| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频| 亚洲人与动物交配视频| 看十八女毛片水多多多| 精品久久久久久久久av| 免费看日本二区| 日本免费在线观看一区| 国产亚洲午夜精品一区二区久久| 成年免费大片在线观看| 亚洲中文av在线| 久久人人爽人人爽人人片va| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 舔av片在线| 久久久a久久爽久久v久久| 免费人妻精品一区二区三区视频| 最后的刺客免费高清国语| 尾随美女入室| 我的女老师完整版在线观看| 免费在线观看成人毛片| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级 | 乱系列少妇在线播放| 国产成人freesex在线| 大码成人一级视频| 久久久久久人妻| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 欧美+日韩+精品| 777米奇影视久久| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 色5月婷婷丁香| 99久久中文字幕三级久久日本| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 午夜福利视频精品| 97超碰精品成人国产| 日韩大片免费观看网站| 久久99热6这里只有精品| 制服丝袜香蕉在线| 久久青草综合色| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 女性被躁到高潮视频| 五月开心婷婷网| 国产高清国产精品国产三级 | 菩萨蛮人人尽说江南好唐韦庄| 免费看日本二区| 日韩人妻高清精品专区| 国产成人免费无遮挡视频| 成人午夜精彩视频在线观看| 亚洲av男天堂| 日本黄色片子视频| 午夜福利高清视频| 成人无遮挡网站| 一个人看视频在线观看www免费| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 日韩av不卡免费在线播放| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 多毛熟女@视频| 特大巨黑吊av在线直播| 国精品久久久久久国模美| 亚洲四区av| 亚洲av二区三区四区| 欧美一区二区亚洲| 亚洲丝袜综合中文字幕| 久久久久久伊人网av| 国产精品伦人一区二区| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 少妇高潮的动态图| 成人影院久久| 在线观看一区二区三区激情| 视频区图区小说| 超碰97精品在线观看| av网站免费在线观看视频| 国模一区二区三区四区视频| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| 久久精品国产a三级三级三级| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 国模一区二区三区四区视频| 九草在线视频观看| 成人漫画全彩无遮挡| 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 久久午夜福利片| 亚洲国产日韩一区二区| 亚洲自偷自拍三级| 亚洲av在线观看美女高潮| 亚洲成人中文字幕在线播放| 日韩 亚洲 欧美在线| 免费观看在线日韩| 欧美xxxx黑人xx丫x性爽| 国产白丝娇喘喷水9色精品| 综合色丁香网| 少妇的逼水好多| 性色av一级| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 国产成人aa在线观看| 寂寞人妻少妇视频99o| 日韩欧美精品免费久久| 亚洲中文av在线| 国精品久久久久久国模美| 亚洲无线观看免费| 男女国产视频网站| 成人综合一区亚洲| 高清日韩中文字幕在线| 亚洲图色成人| 成人黄色视频免费在线看| 麻豆乱淫一区二区| 22中文网久久字幕| 男人爽女人下面视频在线观看| 国产av精品麻豆| 欧美成人a在线观看| 精品酒店卫生间| 久久97久久精品| 欧美人与善性xxx| 青春草亚洲视频在线观看| 国产伦精品一区二区三区四那| 亚洲自偷自拍三级| 免费黄频网站在线观看国产| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 只有这里有精品99| 国产中年淑女户外野战色| 男女边摸边吃奶| 亚洲欧美一区二区三区国产| 国产永久视频网站| 中文乱码字字幕精品一区二区三区| 日本免费在线观看一区| 亚洲精品国产av成人精品| 黑丝袜美女国产一区| 91久久精品国产一区二区成人| 亚洲久久久国产精品| 深爱激情五月婷婷| 欧美老熟妇乱子伦牲交| 精品久久国产蜜桃| 久久婷婷青草| 国产男女内射视频| 免费人成在线观看视频色| xxx大片免费视频| 在线观看人妻少妇| 亚洲av.av天堂| 亚洲精品一区蜜桃| 视频区图区小说| 亚洲精品乱码久久久v下载方式| 久久精品国产自在天天线| 亚洲av不卡在线观看| 日本av免费视频播放| 国产一级毛片在线| 日本色播在线视频| 久热久热在线精品观看| 中文欧美无线码| 日韩一区二区三区影片| 2022亚洲国产成人精品| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 国产黄色视频一区二区在线观看| 久久久久久九九精品二区国产| 下体分泌物呈黄色| 久久热精品热| 在线免费观看不下载黄p国产| 婷婷色麻豆天堂久久| 国产成人aa在线观看| 婷婷色麻豆天堂久久| 久久久久性生活片| 国产亚洲5aaaaa淫片| 色视频www国产| 亚洲精品,欧美精品| 国产视频内射| 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 日本午夜av视频| 内地一区二区视频在线| www.色视频.com| 丝袜喷水一区| 国产男人的电影天堂91| 成人美女网站在线观看视频| 九色成人免费人妻av| 欧美变态另类bdsm刘玥| 中国国产av一级| 高清视频免费观看一区二区| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美清纯卡通| 在线看a的网站| 熟女人妻精品中文字幕| 亚洲精品亚洲一区二区| 三级国产精品片| 哪个播放器可以免费观看大片| 国产91av在线免费观看| 美女国产视频在线观看| 一级爰片在线观看| 色哟哟·www| 久久av网站| 午夜免费鲁丝| 三级经典国产精品| 亚洲欧美清纯卡通| av网站免费在线观看视频| 麻豆乱淫一区二区| 日本午夜av视频| 久久精品国产亚洲av天美| av免费在线看不卡| 成年女人在线观看亚洲视频| 成人影院久久| 亚洲最大成人中文| 亚洲婷婷狠狠爱综合网| 日本-黄色视频高清免费观看| 熟女人妻精品中文字幕| 日日啪夜夜撸| 如何舔出高潮| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| 亚洲欧洲日产国产| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 亚洲av二区三区四区| 亚洲四区av| 日产精品乱码卡一卡2卡三| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 国产色婷婷99| 欧美一区二区亚洲| 色综合色国产| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 建设人人有责人人尽责人人享有的 | 肉色欧美久久久久久久蜜桃|