• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    X-Ray Properties of PSR J1811-1925 by NuSTAR

    2024-01-06 06:39:40JinTaoZhengMingYuGeandXiangHuaLi
    Research in Astronomy and Astrophysics 2023年11期

    Jin-Tao Zheng , Ming-Yu Ge, and Xiang-Hua Li

    1 Department of Astronomy, Yunnan University, Kunming 650090, China; zjt_@mail.ynu.edu.cn, gemy@mail.ihep.ac.cn

    2 Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; xhli@ynu.edu.cn

    Abstract We analyzed the spectral properties and pulse profile of PSR J1811–1925, a pulsar located in the center of composite supernova remnant (SNR) G11.2–0.3, by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index of Γ=1.58±0.04.The integrated flux of jointed spectrum over 1–10 keV is 3.36×10?12 erg cm?2 s?1.The spectrum of pulsar having photon index Γ=1.33±0.06 and a 1–10 keV flux of 0.91×10?12 erg cm?2 s?1.We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4, indicating that the photon index does not evolve with the phase.

    Key words: (stars:) pulsars: individual (PSR J1811-1925) – stars: neutron – methods: data analysis

    1.Introduction

    PSR J1811–1925 is an X-ray pulsar located at the center of supernova remnant G11.2–0.3, a young core-collapse supernova remnant (CC SNR) (Madsen et al.2020).The system is composed of a shell emitting soft X-ray radiation, a pulsar at the center with pulsar wind nebulae(PWN)around(Dean et al.2008).In the radio image by VLA and X-ray image by Chandra, the outer boundary of G11.2–0.3 shows a nearcircular structure (Borkowski et al.2016).G11.2–0.3 is one of the youngest CCSNRs in the Milky Way with age ~3600 yr(Torii et al.1999).The supernova remnant is associated with the “guest star” event recorded in AD 386 (Clark 1978).However, the high visual extinction toward G11.2–0.3,obtained both from [Fe II] observations and from absorption measurements toward the PWN and the shell, rules out the association of G11.2–0.3 with any naked-eye event seen on Earth (Koo & Lee 2015; Borkowski et al.2016), in particular with the AD 386 event.According to the measurement of nebular expansion rate in the X-ray range by Chandra Observatory, the age of the SNR is estimated to be between 960 and 3600 yr(Tam&Roberts 2003).The out-flowing wind is non-spherical and more likely to be limited to a bipolar outflow (Roberts et al.2003).

    PSR J1811–1925 was discovered in X-rays by ASCA, with spin period P=65 ms and ˙P4.4 1014s s1= ×--.Its magnetic field is about B ~1012G, and its spin-down energy loss ratesE˙ ~ 6 × 1036erg s-1(Torii et al.1997,1999).The pulse signal is detected both in near-infrared (Moon et al.2009) and X-ray band(Kaspi et al.2001).But no pulse signal was detected in GeV by Fermi-LAT(Acero et al.2016)and in the radio band(Tam&Roberts 2003).The characteristic age of PSR J1811-1925 is 23.3 kyr,which is significantly older than G11.2-0.3(Kaspi et al.2001).The flux is (1.22±0.21)×10?11erg cm?2s?1in the soft γ-ray (20–100 keV) band by INTEGRAL/ISGRI (Kuiper& Hermsen 2015).It is suggested that the hard X-ray radiation comes from the pulsar in the center of the supernova remnant.Using the high sensitivity of the Nuclear Spectroscopic Telescope Array Mission (NuSTAR) in the hard X-ray energy band (3–79 keV), we can explore the radiation mechanisms of pulsars in different emitting regions in more detail.In addition,the phase-resolved spectroscopy of the pulsar is a crucial method to study the emission generation mechanisms, and the phase-resolve spectrum of PSR J1811–1925 has not been reviewed yet.PSR J1811–1925 is a good sample for understanding the soft γ-ray pulsar population.

    In this work, we introduced details of data reduction in Section 2.By combining data from NuSTAR and Chandra,we obtained the pulse profile, the jointed spectrum of PSR J1811–1925 and its PWN, pulse spectrum and phase-resolved spectroscopy of PSR J1811–1925, and these are presented in Section 3.Finally, we discuss and interpret these results in Section 4.

    2.Observations and Data Reduction

    2.1.NuSTAR Observation and Data Reduction

    Table 1 Information of Observations

    NuSTAR is a hard X-ray telescope with two instruments(usually labeled by their focal plane modules, FPMA and FPMB), operates in the band from 3 to 79 keV with excellent spectral resolutions (400 eV @ 6 keV, 900 eV @ 60 keV)(Harrison et al.2013).PSR J1811-1925 was observed by NuSTAR around June 22 2016(OBSID 90201027002)with an exposure time of 90 ks, see Table 1 for more details.

    In this work, we analyzed NuSTAR data using HEASoft(version 6.28), standard nupipeline and nuproducts utilities (Version: 0.4.7) and NuSTAR CALDB v20210104.We extract the source spectrum from an circular region of radius 60″centered on the pulsar position at α=18h11m29 22 and δ=?19h25m27 6 by DS9 (version 4.1) (as shown in Figure 1),the background spectrum is extracted from a annular region of 60″–74″(Kaspi et al.2001).The arrival time of each event is corrected to solar system Barycenter (SSB) by tools barycorr with solar system ephemeris DE200.We extracted phase-resolved spectroscopy by dividing the whole pulse-on phase into five phase bins by using XSELECT,the background spectrum is extracted at phase regions (phase 0.6–0.7).The pulse spectrum of the pulsar is extracted at phase bins with prominent pulse signal.

    2.2.Chandra Observations and Data Reduction

    Chandra observed SNR G11.2–0.3 12 times from 2000 to 2013, with a wide field of view covering the remnant SNR G11.2–0.3.(Borkowski et al.2016).We selected data of ObsID 14831 based on its long exposure of about 180 ks and observation time close to that of our NuSTAR data(see Table 1 for more details).In the observation of ObsID 14831,the pulsar is positioned on the chip S3 of the Advanced CCD Imaging Spectrometer (ACIS) in the standard exposure mode (Kaspi et al.2001).

    Figure 2.Chandra image of the region around PSR J1811–1925.White circles: (a) 0 3–60″, where the source spectrum is extracted; (b) 60″–74″, where the background spectrum is extracted.The spectra of pulsar and its background are extracted from annular region(region(c):0 3–1 0)and annular region(region(d):1 0–1 38) at the center region.

    The Chandra data are analyzed and calibrated using the Chandra Interactive Analysis of Observations (CIAO V4.14)software package and the Chandra Calibration Database(CALDB V4.9.8), respectively.PSR J1811–1925 is a bright point source.To avoid the pile-up effect, we extracted the jointed spectrum of the source and background from two separate annular regions:region(a)with a range of 0 3–60″(as shown in Figure 2),and region(b)with a range of 60″–74″.See Figure 2 for visual reference.With an excellent angular resolution (about 0 5) of Chandra, the pulsar can be resolved from Chandra image.The spectrum of the pulsar can be extracted from an annular region(0 3–1 0,region(c)),and the spectrum of background is extracted from an annular region(1 0–1 38,region(d))(as shown in Figure 2),the selections of the regions are same with Roberts et al.(2003).

    2.3.Timing Analysis

    The time resolution of our data from Chandra observation is about 3.2 s, which is not suitable for timing analysis (Kaspi et al.2001).Here, we only perform timing analysis using NuSTAR data.

    In our timing analysis, to maximize the signal-to-noise ratio of pulse profile, all events of FPMA and FPMB in 3–79 keV are selected to generate a integrated pulse profile.All events within source region “(a)” in Figure 1 are used for spin frequency searching and time of arrivals (TOA) of all these events are corrected to SSB.The pulse phase φ of each events arrived at time t is calculated by using a 1st-order Taylor expansion:

    where φ0and ν are phase and spin frequency at the reference time t0.Then we obtained a pulse profile using all these photons with their phases.The best spin frequency is a frequency that makes the folded pulse profile deviate the most from a uniform distribution as represented by the Pearson χ2test.We search the best spin frequency by using this method and obtained a best spin frequency of ν=15.4564269(1)Hz at the epoch of T0=57563.0000001 MJD(Modified Julian Date),which is consistent with the period measured by Madsen et al.(2020).We plot our pulse profile in Figure 3.

    2.4.Spectral Fitting

    Figure 3.X-ray pulse profiles of PSR J1811–1925 in six regions, two pulse periods are presented for clarity.

    The phase-averaged spectra are generated from Chandra and NuSTAR data.For NuSTAR data,we use grppha from FTOOL in order to obtain a better signal to noise ratio(S/N)spectrum.Both spectra of FPMA and FPMB are rebinned using grppha to a minimal bin of 16, 32, 128, 256 for channels range 1–224,225–480, 481–1248 and 1249–2016, respectively.For these spectra, we use χ2statistics for spectral fitting.For Chandra data, source and background are extracted from nearly the identical region as NuSTAR data (region (a) and (b) in Figure 2).The spectrum of the source from Chandra is rebinned using grppha to a minimal bin of 3 and 20 for channels range 69–137 and 138–697,respectively.The same group parameters are also applied to the pulse spectra of the pulsar and the phaseresolved spectra.The phase averaged spectrum is fitted with a Tuebingen-Boulder ISM absorption model multiplied a powerlaw plus a plane parallel shock model (see Borkowski et al.2001 for details of this model), given in XSPEC as: tbabs(powerlaw+vpshock)(Borkowski et al.2001).We produce the spectrum of the pulsar by combining Chandra(from an annular region of 0 3–1 0) and NuSTAR data (from the pulse-on phase).The phase-resolved spectra and the spectra of pulsars are fitted with a simple tbabs (powerlaw) model.

    All the spectra are analyzed with XSPEC (version 12.11.1)(Arnaud 1996).Unless otherwise noted, the errors of spectral parameters are at 90% confidence level.

    3.Results

    3.1.Pulse Profile

    With our best spin frequency of ν=15.4564269(1) Hz, we generated six pulse profiles by extracting photons from six different regions, 0″–37″, 37″–60″, 60″–90″, 90″–123″, 123″–150″, 150″–180″ from NuSTAR observations, to check whether the pulse signal exists.As shown in Figure 3, there is no apparent pulsed signal beyond a radius of 150″, which is consistent with result of Roberts et al.(2003).Figure 4 presents the pulse profiles over four energy ranges 3.0–6.0, 6.0–10.0,10.0–35.0, and 35.0–79.0 keV.The phases of single pulse peaks remain approximately constant throughout the four energy ranges, and all normalized pulse profiles show a single peak that is stable except for an increase in noise observed at the pulse profile at 35–79 keV.

    3.2.Spectral Analysis

    3.2.1.Whole Spectrum Around PSR J1811–1925

    3.2.2.Spectrum of Pulsar

    Figure 4.X-ray pulse profiles of PSR J1811–1925 in four energy ranges.We show two pulse periods for clarity,and pulse emission has been detected up to 35 keV.

    Table 2 The Spectral Fitting Results of Phase Averaged Spectrum by Combining Spectra of Chandra and NuSTAR

    3.2.3.Phase-resolved Spectroscopy

    Figure 5.Panel(a):jointed spectrum around PSR J1811–1925 observed by Chandra and NuSTAR spectra in region(a)selected by NuSTAR.The gray-line indicates our spectral model: tbabs (powerlaw+vpshock); Panel (b): ratio between data and spectral model.

    Figure 6.Panel(a):pulsed spectrum of PSR J1811–1925,combined Chandra and NuSTAR spectra.The dashed-line indicates a simple photoelectric absorbed powerlaw model.Panel (b): ratio between data and spectral model.

    We plot all photon index of phase-resolved spectra together with pulse profile in Figure 8.The work of Ge et al.(2012)found that photon index of three young pulsars (PSR B0531+21, PSR B1509–58, PSR B0540–69) evolves with phase.From our results of phase-resolved spectra(Table 4 and Figure 8), the photon index Γ of PSR J1811–1925 shows no prominent evolution with phase, it keeps nearly constant at about 1.46±0.08, except the photon index of the off pulsephase, which is 1.81±0.08, softer than photon index of the pulse-on phase.The reason is that the pulse-off spectrum(phase 0.4–0.9) is dominated by the diffuse radiation of the PWN.The photon index of the pulse-off spectrum is also consistent with the PWN result of Roberts et al.(2003),whose PWN’s photon index is 1.54–1.90.

    Table 3 Fitting Results of Pulsar Spectrum

    Table 4 Results of Phase-resolved Spectroscopy from NuSTAR Observation

    4.Discussion and Summary

    The combined analysis of NuSTAR and Chandra data shows that the hard X-ray emission originates from PSR J1811–1925 and its PWN.Its flux(1–10 keV)is 0.91×10?12erg cm?2s?1.Taking a distance of 5 kpc to the pulsar (Dean et al.2008), its X-ray luminosity(1–10 keV)is 2.75×1033erg s?1.This X-ray luminosity is similar to that of PSR B1509–58 (Gaensler et al.2002).Such pulsars with similar pulse profiles and energy spectra may belong to a new category, soft γ-ray pulsars, as suggested by Kuiper&Hermsen(2015).Compared with γ-ray pulsars, this type of pulsar has different properties: they all have a relatively young characteristic age (within tens of thousands of years); all have spin-down powers Lsdabove 3 ×1033erg s?1(Kuiper & Hermsen 2015).

    However, within the soft γ-ray pulsar population, they also have many different properties:

    1.Pulse profile: PSR J1811–1925, PSR B1509–58, PSR J1846–0258, PSR J1930+1852, and PSR J1617–5055 have a broad single peak.But Crab pulsar PSR B0531+21 has a double-peaked pulse profile, and Vela pulsar PSR B0833–45 even has a multiple-peaked pulse profile.

    2.Pulse phase dependence of the photon index: the spectra of PSR B1509–58 and PSR B0540–69 are harder at the peak of the pulse profile and softer at the wings.Although the spectra of PSR J1811–1925 have no apparent phase dependence considering the measured errors, we cannot rule out the possibility that its photon index evolves with the phase.Crab is different from these pulsars, which is softer at the two peaks (Ge et al.2012).Cheng et al.(2000) proposed the CRZ model for outer magnetosphere of pulsars.In this model,pairs of discharges in the pulsar’s magnetosphere generate gamma-rays, followed by secondary pairs that produce synchrotron radiation at the X-ray band.However,the view angle of PSR J1811-1925 only allows us to detect the synchrotron radiation of the pairs created by the incoming particles.The outer gap model can explain the phase variation of the photon index of PSR B1509-58(Hu et al.2017).As shown in the results of Ge et al.(2012), where the photon index changes very little (within ~0.1) in different phases.While the spectra of PSR J1811-1925 show no apparent phase dependence,it is important to note that they have low statistics and large uncertainties.Therefore,we hope that NuSTAR can observe PSR J1811–1925 for an extended period of time.

    3.GeV radiation:PSR J1811–1925,PSR J1846–0258,PSR J1930+1852, and PSR J1617–5055 have no GeV radiation detected (Wang et al.2014), PSR B1509–58 is not bright in GeV bands.Crab, Vela, PSR B0540–69 and so on have significant GeV radiation.

    This class of sources (PSR J1811–1925, PSR B1509–58, PSR J1846–0258, PSR J1930+1852, and PSR J1617–5055) with similar X-ray energy spectra and pulse profiles, their photon index is around 1.2, their pulse profiles exhibit broad,structured single pulse.Therefore, such sources may be a new class of sources.

    Hard (≥1 keV) pulsed X-ray emission is believed to come from the magnetosphere of the pulsars powered by pulsar spindown energy.A lot of models can explain this non-thermal pulsed X-/γ-ray emission,and the most popular ones are outer gap model(Zhang&Cheng 1997;Hirotani 2015;Takata et al.2016) and polar gap model (Ruderman & Sutherland 1975).According to the outer gap model, it is suggested that the X-rays and soft γ-rays emitted by pulsars may result from synchrotron radiation generated by electron pairs in the magnetic field.This type of radiation typically produces a wider pulse profile(Wang et al.2013).In contrast,in the polar cap model,the X-rays and soft γ-rays are thought to stem from curvature radiation, and the pulse profile tends to be narrower(Wang et al.2014).By our phase-resolved spectroscopy, we found the pulse radiation in a broad phase,which conflicts with the narrow phases of the curvature radiation.In addition, no GeV curvature photons detected suggest that curvature radiation may be outside our viewing angle (Wang et al.2014).Therefore, our results support that the pulsed radiation comes from synchrotron radiation.

    Figure 7.The residuals of the phase-resolved spectra.

    Figure 8.Compare the relation between the photon index obtained in NuSTAR FPMA/FPMB and the pulse profile.The yellow region is the region of pulse off.

    In summary, we have analyzed the data from the NuSTAR and Chandra observations of X-ray pulsar PSR J1811–1925.The following are our brief conclusions:

    1.From the X-ray pulse profile in different phases and regions, we can detect pulse radiation until 35–79 keV.The pulse profile does not show evolution as a function of energy.

    2.Through its phase-resolved spectra, the photon index does not evolve as function of the pulse phase.For PSR B1509-58, no evidence of evolution was found at the beginning (Rots et al.1998), but with more observations and the improvement of the signal-to-noise ratio, the photon index shows clear evolution (Ge et al.2012).Therefore, we expect more observations of this source to obtain more accurate phase resolved spectra.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (NSFC, grant No.U1838203) and International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020).We acknowledge the use of the public data from the NuSTAR and Chandra data archives.

    ORCID iDs

    Jin-Tao Zheng https://orcid.org/0000-0003-4847-9113

    啦啦啦免费观看视频1| 男女视频在线观看网站免费 | 日韩精品中文字幕看吧| 男人舔奶头视频| 国产精品国产高清国产av| 欧美大码av| www.www免费av| 成人免费观看视频高清| 最好的美女福利视频网| 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| 精品高清国产在线一区| 窝窝影院91人妻| 精品国产国语对白av| 搞女人的毛片| 韩国av一区二区三区四区| 国产aⅴ精品一区二区三区波| 成年人黄色毛片网站| 一个人观看的视频www高清免费观看 | 亚洲 欧美 日韩 在线 免费| 熟女电影av网| 国产精品99久久99久久久不卡| 99国产精品一区二区三区| 国产精品亚洲一级av第二区| 一区福利在线观看| а√天堂www在线а√下载| 国产午夜精品久久久久久| 国产精品自产拍在线观看55亚洲| 免费人成视频x8x8入口观看| 又大又爽又粗| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 成人精品一区二区免费| 亚洲人成网站在线播放欧美日韩| 午夜视频精品福利| 精品国产一区二区三区四区第35| 国产精品日韩av在线免费观看| 国产黄a三级三级三级人| 亚洲熟妇熟女久久| 1024视频免费在线观看| 午夜福利成人在线免费观看| 黑人欧美特级aaaaaa片| 欧美日韩精品网址| 午夜影院日韩av| 在线视频色国产色| 欧美午夜高清在线| 久久中文字幕人妻熟女| 亚洲成av人片免费观看| av片东京热男人的天堂| 亚洲男人的天堂狠狠| 国产高清videossex| 国产野战对白在线观看| 少妇被粗大的猛进出69影院| 大型av网站在线播放| 午夜精品久久久久久毛片777| 一卡2卡三卡四卡精品乱码亚洲| www国产在线视频色| 国产亚洲欧美精品永久| 搡老熟女国产l中国老女人| 亚洲五月色婷婷综合| 亚洲精品一区av在线观看| 国产视频内射| 成年女人毛片免费观看观看9| 中文字幕人妻熟女乱码| 一本精品99久久精品77| 久久性视频一级片| 丰满的人妻完整版| 在线播放国产精品三级| 国产成人影院久久av| 久久人妻福利社区极品人妻图片| 精品国产美女av久久久久小说| 白带黄色成豆腐渣| 精品久久久久久成人av| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久免费视频了| 桃红色精品国产亚洲av| 波多野结衣高清作品| 曰老女人黄片| 欧美中文综合在线视频| 操出白浆在线播放| 一级片免费观看大全| 欧美性猛交╳xxx乱大交人| 精品电影一区二区在线| 久久精品国产综合久久久| 欧美另类亚洲清纯唯美| 99久久精品国产亚洲精品| 日韩欧美 国产精品| 禁无遮挡网站| 国产成人影院久久av| 欧美日韩一级在线毛片| 国产1区2区3区精品| 精品国产国语对白av| 国产99白浆流出| 国产爱豆传媒在线观看 | 成人永久免费在线观看视频| 日本一本二区三区精品| 成人永久免费在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 欧美午夜高清在线| 色精品久久人妻99蜜桃| 在线av久久热| 亚洲专区字幕在线| 欧美最黄视频在线播放免费| 搡老熟女国产l中国老女人| 成人特级黄色片久久久久久久| 老司机在亚洲福利影院| 手机成人av网站| 悠悠久久av| 男人舔女人下体高潮全视频| 国产男靠女视频免费网站| 日韩欧美一区二区三区在线观看| 免费在线观看完整版高清| 久久精品国产亚洲av高清一级| 亚洲美女黄片视频| 美女午夜性视频免费| 亚洲第一av免费看| 午夜福利免费观看在线| 久久久久国内视频| 狂野欧美激情性xxxx| 制服诱惑二区| 天堂影院成人在线观看| 久久久国产成人精品二区| 十八禁人妻一区二区| 精品欧美一区二区三区在线| 欧美乱色亚洲激情| 一边摸一边做爽爽视频免费| 免费在线观看影片大全网站| 欧美av亚洲av综合av国产av| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| 久久人妻福利社区极品人妻图片| 精品无人区乱码1区二区| 美女扒开内裤让男人捅视频| 欧美日韩瑟瑟在线播放| 一进一出抽搐gif免费好疼| 久久久久久九九精品二区国产 | av天堂在线播放| 国产一卡二卡三卡精品| 99国产精品一区二区蜜桃av| 18禁美女被吸乳视频| 后天国语完整版免费观看| 国产精品美女特级片免费视频播放器 | 丁香欧美五月| 男女之事视频高清在线观看| a级毛片a级免费在线| 丝袜美腿诱惑在线| 日韩大码丰满熟妇| 国产精品日韩av在线免费观看| 国产黄a三级三级三级人| 亚洲av日韩精品久久久久久密| а√天堂www在线а√下载| 免费搜索国产男女视频| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 九色国产91popny在线| 国产精品1区2区在线观看.| 中文字幕精品免费在线观看视频| 色老头精品视频在线观看| 国产伦一二天堂av在线观看| 成人18禁在线播放| 久久精品国产99精品国产亚洲性色| 国语自产精品视频在线第100页| 久久精品国产99精品国产亚洲性色| 成人午夜高清在线视频 | 女同久久另类99精品国产91| 国语自产精品视频在线第100页| 久久午夜综合久久蜜桃| 国产成年人精品一区二区| 在线观看免费视频日本深夜| 老司机靠b影院| 日韩成人在线观看一区二区三区| 久久99热这里只有精品18| 亚洲精品在线观看二区| 一夜夜www| 美女 人体艺术 gogo| 成人亚洲精品av一区二区| 久久久久精品国产欧美久久久| 亚洲国产欧美网| 好看av亚洲va欧美ⅴa在| 高清在线国产一区| 国产97色在线日韩免费| 一区二区三区精品91| 久久精品国产亚洲av高清一级| а√天堂www在线а√下载| 黄色视频,在线免费观看| 国产精品精品国产色婷婷| 成人午夜高清在线视频 | 麻豆成人av在线观看| 午夜福利高清视频| 欧美日韩黄片免| 又紧又爽又黄一区二区| 欧美性长视频在线观看| 色哟哟哟哟哟哟| 在线观看免费视频日本深夜| 日本黄色视频三级网站网址| 久久精品91蜜桃| 熟女电影av网| 日韩大尺度精品在线看网址| av视频在线观看入口| 啦啦啦 在线观看视频| 国产精品二区激情视频| 日本五十路高清| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清 | 一区二区三区高清视频在线| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 亚洲无线在线观看| 国产蜜桃级精品一区二区三区| 丁香欧美五月| 欧美精品亚洲一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区免费欧美| 欧美乱码精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美又色又爽又黄视频| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av| 午夜福利在线在线| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 国产精品亚洲av一区麻豆| 啦啦啦观看免费观看视频高清| 不卡av一区二区三区| 国产男靠女视频免费网站| 变态另类丝袜制服| 性色av乱码一区二区三区2| 亚洲成人久久爱视频| 亚洲一区高清亚洲精品| 99在线视频只有这里精品首页| 1024视频免费在线观看| 一进一出抽搐动态| 国产乱人伦免费视频| 久久久国产欧美日韩av| 国产私拍福利视频在线观看| 成人午夜高清在线视频 | 大香蕉久久成人网| 欧美成人免费av一区二区三区| 变态另类丝袜制服| 国产精品久久久人人做人人爽| 亚洲成av片中文字幕在线观看| 日韩欧美三级三区| 69av精品久久久久久| 亚洲精华国产精华精| 精品久久蜜臀av无| 国产一区二区三区视频了| 久久精品影院6| 黄色片一级片一级黄色片| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 日本 欧美在线| 日韩一卡2卡3卡4卡2021年| 国产精品免费视频内射| 久久中文看片网| 国内精品久久久久久久电影| 人人妻人人看人人澡| 国产av在哪里看| 国产精品,欧美在线| a级毛片a级免费在线| 国产麻豆成人av免费视频| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 日韩成人在线观看一区二区三区| 国产黄色小视频在线观看| 精品无人区乱码1区二区| 高潮久久久久久久久久久不卡| 日韩欧美 国产精品| 亚洲成人国产一区在线观看| 午夜老司机福利片| 午夜日韩欧美国产| 精品人妻1区二区| 成人手机av| 午夜免费鲁丝| 97人妻精品一区二区三区麻豆 | 91av网站免费观看| tocl精华| 一级毛片高清免费大全| 伊人久久大香线蕉亚洲五| 国产精品自产拍在线观看55亚洲| 一本大道久久a久久精品| 亚洲精品一区av在线观看| 国产91精品成人一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 级片在线观看| 日本熟妇午夜| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 欧美色视频一区免费| 一级毛片女人18水好多| 18禁观看日本| 日本免费a在线| 日韩 欧美 亚洲 中文字幕| 国产精品精品国产色婷婷| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| av天堂在线播放| 色综合欧美亚洲国产小说| 精品福利观看| 亚洲熟妇中文字幕五十中出| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| av在线天堂中文字幕| 精品一区二区三区四区五区乱码| 国产精品乱码一区二三区的特点| 亚洲精品久久成人aⅴ小说| 俺也久久电影网| 午夜久久久久精精品| 最近最新免费中文字幕在线| 欧美亚洲日本最大视频资源| 老汉色∧v一级毛片| 国产精品影院久久| 草草在线视频免费看| 国产又爽黄色视频| 国产精品二区激情视频| 免费高清视频大片| 一a级毛片在线观看| 国内少妇人妻偷人精品xxx网站 | 国产高清激情床上av| 国产精品精品国产色婷婷| 中文字幕人妻熟女乱码| 又黄又爽又免费观看的视频| 精品一区二区三区视频在线观看免费| 香蕉av资源在线| 中国美女看黄片| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 国产高清激情床上av| 男女之事视频高清在线观看| 首页视频小说图片口味搜索| 一级黄色大片毛片| 老汉色av国产亚洲站长工具| 亚洲精品久久国产高清桃花| 伦理电影免费视频| 999久久久国产精品视频| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 国产成人一区二区三区免费视频网站| 国产免费男女视频| 国产精品影院久久| 黄频高清免费视频| 黑人欧美特级aaaaaa片| 国产午夜福利久久久久久| 午夜免费成人在线视频| 啦啦啦 在线观看视频| 99热6这里只有精品| 一本综合久久免费| 国产免费av片在线观看野外av| 国产亚洲精品久久久久5区| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 日韩一卡2卡3卡4卡2021年| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 特大巨黑吊av在线直播 | 黄片播放在线免费| 神马国产精品三级电影在线观看 | 美国免费a级毛片| 精华霜和精华液先用哪个| 男女做爰动态图高潮gif福利片| 久久久久九九精品影院| 精品高清国产在线一区| 男女做爰动态图高潮gif福利片| av天堂在线播放| 两性夫妻黄色片| 欧美三级亚洲精品| 人人妻,人人澡人人爽秒播| 亚洲精品中文字幕一二三四区| 美女扒开内裤让男人捅视频| 99久久久亚洲精品蜜臀av| 嫩草影院精品99| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 亚洲全国av大片| av超薄肉色丝袜交足视频| 99国产精品一区二区蜜桃av| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品美女特级片免费视频播放器 | 99在线视频只有这里精品首页| 在线观看舔阴道视频| 亚洲自偷自拍图片 自拍| 久久久久久人人人人人| 大型黄色视频在线免费观看| 欧美性猛交黑人性爽| 极品教师在线免费播放| 久9热在线精品视频| 久久久久国产一级毛片高清牌| 亚洲国产中文字幕在线视频| 国产1区2区3区精品| 精品人妻1区二区| 91成年电影在线观看| 首页视频小说图片口味搜索| 真人做人爱边吃奶动态| 国产精品一区二区精品视频观看| 99国产极品粉嫩在线观看| 19禁男女啪啪无遮挡网站| 一进一出抽搐动态| 国产99久久九九免费精品| 91成人精品电影| 精品人妻1区二区| 亚洲欧美日韩无卡精品| 哪里可以看免费的av片| 精品欧美国产一区二区三| 香蕉久久夜色| 在线天堂中文资源库| 亚洲天堂国产精品一区在线| 欧美亚洲日本最大视频资源| 国产精华一区二区三区| 久久香蕉激情| 精品少妇一区二区三区视频日本电影| 久热这里只有精品99| 美女 人体艺术 gogo| 国产熟女xx| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 精品无人区乱码1区二区| 亚洲成国产人片在线观看| 日韩国内少妇激情av| 日本免费一区二区三区高清不卡| 一a级毛片在线观看| 久久久水蜜桃国产精品网| 欧美中文综合在线视频| 国产高清视频在线播放一区| 欧美色欧美亚洲另类二区| www日本在线高清视频| 90打野战视频偷拍视频| 女警被强在线播放| 成人欧美大片| 国产熟女xx| 国产精品亚洲一级av第二区| 免费女性裸体啪啪无遮挡网站| 中文字幕av电影在线播放| 日韩欧美 国产精品| 日本成人三级电影网站| 色综合亚洲欧美另类图片| 欧美色视频一区免费| 国产成人av激情在线播放| 国产爱豆传媒在线观看 | 亚洲欧美激情综合另类| 天天一区二区日本电影三级| 一进一出好大好爽视频| √禁漫天堂资源中文www| 国产男靠女视频免费网站| 男人操女人黄网站| www国产在线视频色| 久久香蕉精品热| 国产高清有码在线观看视频 | 国产一区二区三区在线臀色熟女| 欧洲精品卡2卡3卡4卡5卡区| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 亚洲精品国产区一区二| 欧美+亚洲+日韩+国产| 一区二区三区精品91| 曰老女人黄片| 淫秽高清视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 老司机靠b影院| 欧美成人一区二区免费高清观看 | 国产熟女xx| 久久久久久久午夜电影| 久久久国产欧美日韩av| 中出人妻视频一区二区| 丝袜在线中文字幕| 久久婷婷人人爽人人干人人爱| 国产真实乱freesex| 成人一区二区视频在线观看| 在线免费观看的www视频| 欧美黑人巨大hd| 欧美亚洲日本最大视频资源| 听说在线观看完整版免费高清| 免费看日本二区| 久久香蕉精品热| 少妇 在线观看| 日本免费a在线| 日韩欧美国产在线观看| 亚洲自拍偷在线| 精品一区二区三区四区五区乱码| 日本精品一区二区三区蜜桃| www.www免费av| 成人18禁高潮啪啪吃奶动态图| 中文字幕人成人乱码亚洲影| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 国产精品综合久久久久久久免费| 美女高潮喷水抽搐中文字幕| 欧美色欧美亚洲另类二区| 免费一级毛片在线播放高清视频| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 99久久综合精品五月天人人| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| a在线观看视频网站| 级片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影视91久久| 亚洲黑人精品在线| 中文字幕久久专区| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看| 亚洲五月天丁香| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频| 亚洲自偷自拍图片 自拍| 此物有八面人人有两片| 国产亚洲精品久久久久5区| 国内精品久久久久精免费| 最好的美女福利视频网| 亚洲黑人精品在线| 亚洲国产欧美网| 国产免费av片在线观看野外av| 亚洲免费av在线视频| 丝袜在线中文字幕| 免费人成视频x8x8入口观看| 91大片在线观看| 国产野战对白在线观看| 欧美成人性av电影在线观看| 免费在线观看亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 99精品欧美一区二区三区四区| 亚洲性夜色夜夜综合| 黄色片一级片一级黄色片| 亚洲在线自拍视频| 香蕉久久夜色| 妹子高潮喷水视频| 亚洲国产毛片av蜜桃av| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合一区二区三区| 免费看a级黄色片| 国产精品二区激情视频| 亚洲性夜色夜夜综合| 成人三级做爰电影| ponron亚洲| 女性被躁到高潮视频| 亚洲自拍偷在线| 久久中文字幕一级| 两个人看的免费小视频| 亚洲欧美日韩无卡精品| 99久久国产精品久久久| 女同久久另类99精品国产91| 99国产综合亚洲精品| 国产片内射在线| 成人三级黄色视频| 嫩草影院精品99| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 免费观看人在逋| 国产欧美日韩一区二区三| 在线天堂中文资源库| 校园春色视频在线观看| 午夜精品在线福利| 老司机福利观看| 中文亚洲av片在线观看爽| 亚洲专区字幕在线| 男女做爰动态图高潮gif福利片| 90打野战视频偷拍视频| 中国美女看黄片| 女同久久另类99精品国产91| 最近最新免费中文字幕在线| 成人18禁在线播放| 亚洲国产精品999在线| 国产又色又爽无遮挡免费看| 成人午夜高清在线视频 | 亚洲av成人一区二区三| 久久精品aⅴ一区二区三区四区| 老司机福利观看| 丁香欧美五月| 亚洲第一电影网av| 欧美亚洲日本最大视频资源| 免费人成视频x8x8入口观看| 久久久久免费精品人妻一区二区 | 久久 成人 亚洲| 免费电影在线观看免费观看| 熟女少妇亚洲综合色aaa.| 一区二区三区国产精品乱码| 精品国产美女av久久久久小说| 久久久国产成人精品二区| 成熟少妇高潮喷水视频| 18禁观看日本| 欧美zozozo另类| 国产亚洲精品av在线| 看片在线看免费视频| 啦啦啦免费观看视频1| 99国产精品一区二区蜜桃av| 制服人妻中文乱码| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 亚洲五月色婷婷综合| videosex国产| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交╳xxx乱大交人| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 国产免费av片在线观看野外av| 可以免费在线观看a视频的电影网站| 国产成人啪精品午夜网站| 日本五十路高清| 国产欧美日韩一区二区精品| 非洲黑人性xxxx精品又粗又长| 欧美成人午夜精品| 女人高潮潮喷娇喘18禁视频| 神马国产精品三级电影在线观看 | 久久香蕉精品热| 中文字幕人妻丝袜一区二区| aaaaa片日本免费| 成年版毛片免费区| 亚洲真实伦在线观看| 久久久久久久午夜电影| 别揉我奶头~嗯~啊~动态视频| 女人爽到高潮嗷嗷叫在线视频|