• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A High-Temperature Superconducting Wideband Bandpass Filter at the L Band for Radio Astronomy

    2024-01-06 06:39:36XinyuZhuJianbinLiBoyuLuBinWeiYifanJiangLinanJiangandChaoHu
    Research in Astronomy and Astrophysics 2023年11期

    Xinyu Zhu, Jianbin Li, Boyu Lu, Bin Wei, Yifan Jiang, Linan Jiang, and Chao Hu

    1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; lijb@bao.ac.cn

    2 University of Chinese Academy of Sciences, Beijing 100049, China

    3 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China

    Abstract In order to ensure the normal operation of radio astronomy observations, an extremely sensitive receiver system needs to be equipped in front of the large radio telescope.An 8-pole wideband high-temperature superconducting(HTS) filter using a Coplanar Spiral Resonator Structure with a passband of 1160~1670 MHz is developed to suppress strong radio interference.The filter is fabricated on a 36 mm×14 mm YBCO HTS film, which is deposited on a 0.5 mm thick MgO substrate.The minimum insertion loss measured in the liquid nitrogen temperature region is 0.03 dB, and the first parasitic passband appears at 2600 MHz.The measured results are in good agreement with the simulations.The filter can be used in radio telescope receivers for the observation of neutral hydrogen and pulsars, as well as in high-sensitivity satellite navigation instruments.

    Key words: instrumentation: detectors – techniques: radar astronomy – telescopes

    1.Introduction

    The L-band is an essential frequency band for satellite navigation, satellite communications, and radio astronomy observations.It covers various active radio services, including the radio satellite navigation and positioning service allocated by the International Telecommunication Union (ITU)(ITU 2020), the emission spectrum of neutral hydrogen, the molecular spectrum of hydroxyl groups in radio astronomy,etc.

    However, there exists strong radio interference from Distance Measuring Equipment (DME) and terrestrial services signals, such as mobile communication on both sides of the band.The signals from satellite and astronomical observation are much weaker than the interference,resulting in undesirable nonlinear intermodulation distortion.Besides, the distortion products in the useful band, which cannot be filtered out, will significantly raise the noise floor of the system and drown out the useful signal.Therefore, the filter is one of the essential components in high-sensitivity receiver systems.It is necessary to insert a filter before the first-stage LNA to prevent receivers from saturation.

    Since the discovery of yttrium-barium-copper-oxygen (Y–Ba–Cu–O) oxide superconductor materials, the superconducting transition temperature has been raised to the liquid nitrogen temperature region (70 K), which is easier to achieve.The surface resistance of the high-temperature superconducting(HTS)film at RF is 2–3 mag orders lower than that of copper,so the losses are negligible.Consequently, it can be used to make HTS filters with extremely low insertion loss,steep skirt slope, and high out-of-band rejection required by highsensitivity receivers.

    Narrowband HTS filters have been extensively used in mobile communications, radar detection, and radio astronomy observation(Zhang et al.2004,2005;Zhou et al.2005).At the beginning of the 21st century, an eight-pole narrowband HTS filter with an insertion loss of 0.3 dB, is developed to improve the observation of pulsars at the Jodrell Bank Observatory(JBO), UK by suppressing the substantial signal interference from TV on both sides of the Ultra High Frequency(UHF)?band (Zhou et al.2005).

    In recent years, the demand for wideband bandpass filters has also been increasing (Li et al.2003; Huang 2005; Zhang et al.2007,2006).In traditional theory,a wideband filter means the resonator coupling strength is required to be strong.The coupling coefficients will appear inevitable deviation based on the design theory of the Chebyshev prototype over the bandwidth of 20%, which brings a huge challenge to the design.A set of design approaches for wideband filters are proposed to solve the problem, consisting of Multilayer liquid crystal polymer technology (Hao & Hong 2009), Stepped Impedance Resonator (SIR) structure, parallel-coupled microstrip lines,and Defected Ground Structure(DGS),but there are limitations on the fabrication and application.

    Figure 1.The configuration of the Coplanar Spiral Resonator Structure.

    In addition, various novel configurations of resonators are developed to construct wideband filters by using Inter-digital Capacitor (IDC) Structure (Yu et al.2009), Double-Surface Coplanar Waveguide (CPW) Structure (Xu et al.2013), Coplanar Spiral Resonator Structure (CSRS) (Shang et al.2019), etc.In 2009,a 12-pole wideband HTS filter with a bandwidth of 38%was proposed for the Miyun 50 m radio astronomy telescope to provide a reliable guarantee for the regular operation of astronomical observation and deep space exploration.The resonators using a configuration of IDC combined with a hairpin-like structure can generate strong coupling and push its second harmonic upwards(Yu et al.2009).A novel CSRS with a compact grounded quarterwavelength spiral resonator is developed based on the CPW structure (Shang et al.2019).It can generate strong internal coupling between adjacent resonators,and the undesirable resonant mode is far away from the center frequency,providing a solution to the compact wideband filter at a low frequency.

    In this paper, an 8-pole HTS filter with a passband of 1160~1670 MHz is developed based on the CSRS.The measured responses show that the filter has a 0.03 dB minimum insertion loss with a bandwidth of 36%, and the return loss is better than ?17 dB.The measurements show excellent performance, basically consistent with the simulations.

    2.Resonator Design

    2.1.Resonant Modes Analysis and Structure Design

    Refrigeration units,which carry filter and Low Noise Amplifier(LNA)?cascade systems, are widely applied in large radio telescope receivers to reduce the noise figure (Liu et al.2021).The miniaturization of the filter contributes to more space margins.Using spiral or folded resonators is helpful for miniaturization,but the coupling coefficient is not strong enough to construct wideband filters(Ma et al.2006).The CSRS proposes a solution.Figure 1 shows the configuration of the resonator pair designed by the CSRS.The electric field is densely distributed on both sides of the transmission line, similar to the CPW structure.Whereas,the grounded stub between the adjacent resonators in the CSRS is removed, which means a more muscular coupling strength.The metal strips bend into a spiral circuit, whose ends extend to the ground,forming quarter-wavelength resonators.No undesirable resonant modes appear during the simulation.

    Figure 2.The layers of the Coplanar Spiral Resonator Structure.

    By using the full-wave electromagnetic simulation software Sonnet (Sonnet Software 2009), we can determine the detailed structures of a single resonator.The resonant frequency will decrease with the increasing length of the circuit.For a compact filter that works in low frequency, we optimize the resonator structure by balancing the spiral turns with the width of the entire resonator until the resonant peak is equal to the filter center frequency (f=fc).One end of the circuit extends to the surrounding ground plane with a length of 1.5 mm,the other is adjustable to compensate for the frequency offset.

    2.2.Structure Layers

    Figure 2 illustrates the layers of the CSRS structure.The circuit is etched on the HTS thin film deposited on the MgO substrate.Based on the electromagnetic resonant mode mentioned above, there exist two air layers on both sides of the dielectric substrate.H1represents the height of the air layer upon the substrate, and H2denotes the distance from the substrate to the ground.Simulation results indicate that the thickness of the air layers has an impact on the resonant frequency and coupling strength.As shown in Figure 3, the resonant frequency rises with increasing any two height parameters.When we keep H1constant, the growth rates decrease with the increase of H2, and vice versa.Besides, H2has a more significant impact on the frequency offset than H1,and the growth rates decrease when H2is over 2 mm.The coupling coefficient shows the same tendency.

    Considering the heat dissipation combined with the entire size and the effect of H2is relatively weak, we choose 5 and 2 mm for H1and H2, respectively.The ultimate length of h is 2.2 mm.Every resonator is set to have the same linewidth of 0.1 mm due to processing and manufacturing convenience.Eventually, the single resonator is 2.2 mm×8.5 mm.

    3.Filter Design

    3.1.Resonator Coupling Design

    One of the requirements for designing a wideband filter is realizing strong adjacent coupling (Hong 2011).The coupling coefficient M as a function of the width S between resonators,is defined as (1)

    Figure 3.Left: The resonant frequency with different thicknesses of air.Right: Coupling coefficients of adjacent resonators with different thicknesses of air.

    where f1and f2correspond to the lower and upper resonance peak frequencies, respectively.As the first step of our design,the ideal coupling coefficients of the filter pairs suitable for Chebyshev polynomials are calculated through the simulation software.Then we adjust the width S until the value of simulation M is equal to the ideal one.Considering the requirements of miniaturization and low insertion loss, an 8-pole filter with a return loss greater than 20 dB is derived.The coupling matrix is

    where mi,j(i=1, 2,3, 4,5, 6,7;j=i+1)denotes the adjacent coupling.The external coupling coefficient qe,which is defined as the coupling strength of the input/output ports to the first resonator, can be conducted by (2)

    where FBW is the fractional bandwidth,Qedenotes the external quality factor,which can be obtained by the center frequency fcand the corresponding group delay τ0as (3)

    3.2.External Coupling Design

    Figure 4.The configuration of the external coupling.

    In traditional theory, there are two common structures for external coupling.Open-circuit coupled lines are widely applied in narrowband filters as a result of weak coupling strength.The tapped feed line structure proposed in Hong(2011), provides a strong coupling strength that can be employed in this design.The configuration of the external coupling is shown in Figure 4 (only one side).The input/output feed line is placed at the center of the substrate width for processing and manufacturing convenience.To realize 50 Ω impedance matching, the length and width of the feed line are selected as 2 mm and 0.48 mm, respectively.The input and output feed lines are directly connected to the end of the first resonator.In order to strengthen the external coupling and suppress undesirable resonance,an additional grounded stub is implemented in the first resonator.The external coupling can be adjusted by three parameters in this design:the width of the grounded stub W,the length of the vertical feed line to the edge of the ground plane L, and H.

    Figure 5.The configuration of the entire filter (not to scale).(L12=0.44 mm, L23=0.8 mm, L34=1.02 mm, L45=0.92 mm).

    Figure 5 depicts the layout of the entire filter.Every resonator has the same winding direction, which means adjacent resonator pairs have different coupling modes.Both of the two modes can realize strong coupling strength that reaches up to 0.55 and 0.65, respectively (dashed box in Figure 5).We combine resonator pairs with the external coupling part to form a complete filter.However, the simulation response seems not as expected.It is speculated that the extraction of narrowband coupling coefficients based on Chebyshev is not suitable for wideband filters.The optimization consists of narrowing the width of the first resonator pair (L12) and tuning the external coupling parameters.H0is adjusted to compensate for the frequency offset.Eventually,simulation results show excellent performance with 0.03 dB minimum insertion loss and better than ?20 dB return loss.The first parasitic passband appears at 2700 MHz,approximately 1.9 times the center frequency.

    4.Fabrication and Measurement

    The filter is fabricated on a 500 nm thick YBCO thin film deposited on a 0.5 mm thick MgO substrate, of which the relative dielectric constant is taken to be 9.7.After standard photolithography and ion beam etching, the 36 mm×14 mm filter circuit is formed.Then we package it into a metal box to reduce radiation loss.Different from the traditional microstrip line structure, the substrate of CSRS does not directly contact the ground.As a result,we hollow out the bottom of the metal box and preserve a slot to support the substrate, as shown in Figure 2.The input and output feed lines are connected to the sub-miniature A (SMA) connector through the gold wire.The gold wire is combined with the circuit feed lines by Ultrasonic Molecular Bonding Machine.

    As shown in Figure 6,the sealed metal box is mounted on a platform inside the Stirling cooler,with an associated computer that can be used to adjust the cooling temperature.After setting the cooling temperature to 65 K, the cooling system begins to create a vacuum and cool down, a process that takes approximately one hour.Prior to testing, we select the Agilent N5230C vector network analyzer (VNA) for this task and calibrate it.The first step involves connecting the calibration device with the VNA, the calibrator’s input port(Port A)links to Port 1 of the VNA, and the output port(Port B)connects to Port 2.When the calibrator’s red light illuminates, we wait for it to turn green, indicating a successful connection.The start and end frequencies can be set through the“Freq”button on the dashboard.In accordance with the test frequency requirements,the frequency range of the VNA is set from 300 MHz to 2 GHz.Afterward,press the“Cal”button on the VNA,select the E-Cal mode on the screen, choose the “2-Port Cal,” and initiate calibration.The calibrator can be disconnected after waiting for the system to auto-calibrate.

    After the calibration,we connect the VNA with the reserved ports of the cryogenic cooling platform via the transmission line,with the input power set at ?10dBm.The S-parameters of the filter can then be read from the screen.No tuning is implemented during the measurement.As depicted in Figure 7,the measured passband ranges from 1160 to 1674 MHz,corresponding to a bandwidth of 36%.The filter has a 0.03 dB minimum insertion loss and the return loss is better than?17 dB.The first spurious passband starts from 2600 MHz,which is a lower frequency range than that predicted by the simulation results.Figure 8 compares measured and simulated curves with different types of lines representing specific parameters.There is no obvious offset in the passband of the overall curve.The measured results show good agreement with the simulations.

    In order to test the power stability and temperature variability of the filter, the S-parameters under different input power and refrigeration temperatures are measured shown in Figure 9.Input power changes have little impact on the filter in Figure 9 Left.However,as shown in Figure 9 Right,the rise in temperature will cause the deterioration of insertion loss and the deviation of the passband.The optimal response curve is reached when the temperature drops below 62k.Table 1 shows the comparison with other reported wideband filters.It can be seen that the filter using the CSRS offers a wider passband and minimal insertion loss.

    Figure 6.The low-temperature test device and the fabricated filter circuit.

    Figure 7.The measured S-parameters of the filter at 65 K.

    Figure 8.Comparison of measured and simulated results at 65 K.

    5.Conclusions

    In this paper, a Coplanar Spiral Resonator Structure is applied to design a wideband filter at the L band for radio astronomy.The filter is fabricated on a 36 mm×14 mm YBCO HTS film deposited on a 0.5 mm MgO substrate and shows excellent performance at 65 K.The filter has the advantage of compact configuration and high power handling capacity that can not only be applied in radio astronomical telescope receivers, but also in high-demand satellite navigation communication, radio signals monitoring, and other services.

    Figure 9.Left: The comparison of different input power.Right: The comparison of different temperatures.

    Table 1 Comparison with Other HTS Filters

    Acknowledgments

    This work was supported by the Science and Technology Project of Tibet Autonomous under grant XZ201901-GB-21,the National Natural Science Foundation of China under grant 11073027, and the Science and Technology Research and Development Program Project of China National Railway Group under grant P2021G011.

    永久免费av网站大全| 黄片wwwwww| 日韩欧美在线乱码| 欧美成人午夜免费资源| 午夜爱爱视频在线播放| 亚洲欧美清纯卡通| 久久久久久大精品| 久久这里只有精品中国| 中文字幕av成人在线电影| 你懂的网址亚洲精品在线观看 | 国产高潮美女av| 欧美+日韩+精品| 精品久久久久久久久久久久久| 国产黄色视频一区二区在线观看 | 日韩一区二区视频免费看| 18禁动态无遮挡网站| 麻豆乱淫一区二区| 午夜老司机福利剧场| 亚洲国产精品成人综合色| or卡值多少钱| 精品一区二区免费观看| 日日啪夜夜撸| 全区人妻精品视频| av在线亚洲专区| 99热这里只有是精品50| 高清在线视频一区二区三区 | 精品无人区乱码1区二区| 最近的中文字幕免费完整| 少妇熟女欧美另类| 女人被狂操c到高潮| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区国产| 亚洲最大成人手机在线| 午夜老司机福利剧场| 久久久久九九精品影院| 天天躁日日操中文字幕| 国产视频首页在线观看| 亚洲av成人av| 99久久精品热视频| 少妇人妻一区二区三区视频| 国产精品福利在线免费观看| 国产亚洲5aaaaa淫片| 久久精品91蜜桃| 麻豆精品久久久久久蜜桃| 国产老妇伦熟女老妇高清| 男插女下体视频免费在线播放| 国产精品女同一区二区软件| 偷拍熟女少妇极品色| 国产高清国产精品国产三级 | 亚洲美女视频黄频| 黄片wwwwww| 欧美日韩精品成人综合77777| 亚洲精品久久久久久婷婷小说 | 色综合亚洲欧美另类图片| 日本午夜av视频| 婷婷色综合大香蕉| 亚洲自拍偷在线| 亚洲乱码一区二区免费版| 日韩av不卡免费在线播放| 成人毛片a级毛片在线播放| 免费观看在线日韩| 看十八女毛片水多多多| 搞女人的毛片| 97超碰精品成人国产| 国产乱人偷精品视频| 色视频www国产| 久久草成人影院| 日本欧美国产在线视频| 男人的好看免费观看在线视频| 在线免费十八禁| 国内精品宾馆在线| 亚洲最大成人av| 国产亚洲91精品色在线| av国产免费在线观看| 2021天堂中文幕一二区在线观| 大香蕉久久网| 九九在线视频观看精品| 国产av一区在线观看免费| 18禁动态无遮挡网站| 1024手机看黄色片| 色噜噜av男人的天堂激情| 亚洲国产精品专区欧美| 日韩大片免费观看网站 | 国产精品一区二区三区四区免费观看| 小蜜桃在线观看免费完整版高清| 欧美成人精品欧美一级黄| 久久久色成人| 最后的刺客免费高清国语| 亚洲高清免费不卡视频| 女人十人毛片免费观看3o分钟| 黑人高潮一二区| 精品国产三级普通话版| 成年女人看的毛片在线观看| 麻豆久久精品国产亚洲av| 夜夜看夜夜爽夜夜摸| av.在线天堂| 大话2 男鬼变身卡| 一个人看视频在线观看www免费| 久久久久久久久中文| 美女被艹到高潮喷水动态| 又黄又爽又刺激的免费视频.| 午夜精品一区二区三区免费看| 成人欧美大片| 中文资源天堂在线| 尾随美女入室| 欧美日韩国产亚洲二区| 伊人久久精品亚洲午夜| 欧美日韩国产亚洲二区| 国产淫语在线视频| 亚洲精品一区蜜桃| 国产精品麻豆人妻色哟哟久久 | 亚洲久久久久久中文字幕| 成人二区视频| 欧美高清性xxxxhd video| 亚洲在线自拍视频| 国产探花在线观看一区二区| 天堂网av新在线| 欧美一级a爱片免费观看看| 亚洲人成网站高清观看| 波多野结衣巨乳人妻| 国产伦一二天堂av在线观看| 不卡视频在线观看欧美| 网址你懂的国产日韩在线| 91久久精品电影网| 2021天堂中文幕一二区在线观| 成人国产麻豆网| 亚洲精品乱码久久久久久按摩| 日本与韩国留学比较| 午夜日本视频在线| 日本五十路高清| 日本免费在线观看一区| 一区二区三区高清视频在线| 午夜福利在线观看免费完整高清在| 国内揄拍国产精品人妻在线| 亚洲真实伦在线观看| 只有这里有精品99| 久久99热这里只有精品18| 亚洲av一区综合| 久久久国产成人免费| 91精品国产九色| 国产精品一二三区在线看| kizo精华| 在线观看66精品国产| 精华霜和精华液先用哪个| 国产成人91sexporn| 国产一区二区在线av高清观看| 少妇裸体淫交视频免费看高清| 国语对白做爰xxxⅹ性视频网站| 青春草国产在线视频| 成年av动漫网址| 午夜久久久久精精品| 小蜜桃在线观看免费完整版高清| 中文资源天堂在线| 日韩国内少妇激情av| 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 国产精品一区二区性色av| 婷婷色麻豆天堂久久 | 嫩草影院新地址| 好男人视频免费观看在线| 简卡轻食公司| 亚洲精品456在线播放app| 99久久成人亚洲精品观看| 亚洲av中文字字幕乱码综合| 高清视频免费观看一区二区 | 18+在线观看网站| 白带黄色成豆腐渣| 天天躁夜夜躁狠狠久久av| 国产精品无大码| 国产精品久久久久久精品电影| 国产不卡一卡二| av国产免费在线观看| 国产亚洲5aaaaa淫片| 亚洲av中文av极速乱| 精品人妻视频免费看| 亚洲国产欧洲综合997久久,| 国产黄片视频在线免费观看| 国产亚洲精品久久久com| 久久人人爽人人片av| 亚洲国产精品国产精品| 夜夜爽夜夜爽视频| 亚洲经典国产精华液单| 亚洲精品aⅴ在线观看| 26uuu在线亚洲综合色| 久久久成人免费电影| 我要看日韩黄色一级片| 午夜福利在线观看吧| 国产美女午夜福利| 女的被弄到高潮叫床怎么办| 国产高清三级在线| 亚洲成av人片在线播放无| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近2019中文字幕mv第一页| 三级国产精品片| 国产av一区在线观看免费| av在线亚洲专区| 成年女人看的毛片在线观看| 久久精品人妻少妇| 国产真实伦视频高清在线观看| 国产私拍福利视频在线观看| 亚洲成人中文字幕在线播放| 亚洲18禁久久av| 舔av片在线| 久久午夜福利片| 成人鲁丝片一二三区免费| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 亚洲乱码一区二区免费版| 一级毛片电影观看 | 国产亚洲一区二区精品| 国产色爽女视频免费观看| 久久亚洲国产成人精品v| 高清午夜精品一区二区三区| eeuss影院久久| 最近视频中文字幕2019在线8| 丰满少妇做爰视频| 三级国产精品片| 国产一区有黄有色的免费视频 | 亚洲成人久久爱视频| 九九爱精品视频在线观看| 又爽又黄a免费视频| av在线亚洲专区| 永久免费av网站大全| av播播在线观看一区| or卡值多少钱| 欧美激情在线99| 91精品伊人久久大香线蕉| 欧美成人一区二区免费高清观看| 狂野欧美白嫩少妇大欣赏| 99久久精品一区二区三区| 国产老妇女一区| 精品一区二区免费观看| 日日摸夜夜添夜夜爱| 欧美3d第一页| 久久久久久久久久久丰满| 亚洲精品,欧美精品| 精品午夜福利在线看| 99国产精品一区二区蜜桃av| 人妻系列 视频| 联通29元200g的流量卡| 在线a可以看的网站| 色噜噜av男人的天堂激情| 亚洲无线观看免费| 天堂影院成人在线观看| 少妇人妻精品综合一区二区| 欧美成人午夜免费资源| 国产伦在线观看视频一区| 免费观看在线日韩| 亚洲自拍偷在线| 国产精品人妻久久久影院| 日韩av不卡免费在线播放| 色噜噜av男人的天堂激情| 五月玫瑰六月丁香| 丰满少妇做爰视频| 国产精品熟女久久久久浪| 日本三级黄在线观看| 看黄色毛片网站| 97超碰精品成人国产| 国产av码专区亚洲av| 久久精品国产自在天天线| 欧美一区二区国产精品久久精品| 一区二区三区免费毛片| 欧美3d第一页| 精品久久久久久久人妻蜜臀av| 嫩草影院精品99| 美女内射精品一级片tv| 干丝袜人妻中文字幕| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 久久国产乱子免费精品| 床上黄色一级片| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 欧美一级a爱片免费观看看| 一个人看的www免费观看视频| 亚洲精品,欧美精品| 色哟哟·www| 一级毛片久久久久久久久女| 午夜激情欧美在线| 日本一本二区三区精品| 少妇高潮的动态图| 日日啪夜夜撸| 免费播放大片免费观看视频在线观看 | 国产亚洲av嫩草精品影院| 国产久久久一区二区三区| 日本熟妇午夜| 亚洲精品,欧美精品| a级毛片免费高清观看在线播放| 亚洲欧美中文字幕日韩二区| 国产在视频线在精品| 亚洲三级黄色毛片| 日本熟妇午夜| 天天躁夜夜躁狠狠久久av| 99热网站在线观看| 嫩草影院新地址| 99热这里只有是精品在线观看| 国产成人午夜福利电影在线观看| 亚洲精品自拍成人| 国产成人精品婷婷| 免费观看人在逋| 最近手机中文字幕大全| 内地一区二区视频在线| 伦理电影大哥的女人| av国产免费在线观看| 亚洲av熟女| 亚洲国产成人一精品久久久| 伊人久久精品亚洲午夜| 三级国产精品欧美在线观看| 久久久成人免费电影| 少妇裸体淫交视频免费看高清| 麻豆乱淫一区二区| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 国产精品一及| 免费搜索国产男女视频| 亚洲精品乱码久久久v下载方式| 久久久久免费精品人妻一区二区| 久久欧美精品欧美久久欧美| 久久久精品94久久精品| 国内精品宾馆在线| 国产又黄又爽又无遮挡在线| www.av在线官网国产| 欧美日韩在线观看h| 午夜亚洲福利在线播放| 久久精品国产亚洲网站| 国产成人午夜福利电影在线观看| 国产爱豆传媒在线观看| 国产男人的电影天堂91| 毛片女人毛片| 国产乱人偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲内射少妇av| 简卡轻食公司| 久久精品熟女亚洲av麻豆精品 | 午夜爱爱视频在线播放| 久久久久久久亚洲中文字幕| av在线蜜桃| 天堂√8在线中文| 国产精品国产三级国产专区5o | 床上黄色一级片| 久久精品久久久久久久性| 看十八女毛片水多多多| 91aial.com中文字幕在线观看| 最近中文字幕高清免费大全6| 美女高潮的动态| 天天一区二区日本电影三级| 日韩中字成人| 一个人观看的视频www高清免费观看| 99久久成人亚洲精品观看| 你懂的网址亚洲精品在线观看 | 三级毛片av免费| av在线老鸭窝| 精品国产一区二区三区久久久樱花 | 亚洲欧美成人综合另类久久久 | 亚洲精品456在线播放app| 看片在线看免费视频| 久久热精品热| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 日韩制服骚丝袜av| 日本一二三区视频观看| 亚洲三级黄色毛片| 人妻夜夜爽99麻豆av| 亚洲国产欧美人成| 国产黄色视频一区二区在线观看 | 国产成人一区二区在线| 在线观看av片永久免费下载| 亚洲国产欧洲综合997久久,| 午夜福利视频1000在线观看| 国产 一区 欧美 日韩| 国产老妇女一区| 变态另类丝袜制服| 亚洲va在线va天堂va国产| 高清毛片免费看| 夫妻性生交免费视频一级片| 热99re8久久精品国产| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在| 久久久精品欧美日韩精品| 欧美成人免费av一区二区三区| 纵有疾风起免费观看全集完整版 | 少妇高潮的动态图| 九色成人免费人妻av| 干丝袜人妻中文字幕| 中文亚洲av片在线观看爽| 九九热线精品视视频播放| 老司机福利观看| 精品一区二区三区人妻视频| 天美传媒精品一区二区| 久久精品国产亚洲av天美| 国产精品综合久久久久久久免费| 91在线精品国自产拍蜜月| 最近最新中文字幕大全电影3| 黄片无遮挡物在线观看| 亚洲va在线va天堂va国产| 熟妇人妻久久中文字幕3abv| 亚洲av免费在线观看| 欧美成人精品欧美一级黄| 成年女人看的毛片在线观看| 99九九线精品视频在线观看视频| 免费看日本二区| 欧美潮喷喷水| 成人三级黄色视频| 国产成人a∨麻豆精品| 亚洲天堂国产精品一区在线| 欧美日韩一区二区视频在线观看视频在线 | 网址你懂的国产日韩在线| 黑人高潮一二区| 中文字幕精品亚洲无线码一区| 国产成人一区二区在线| 久久精品国产自在天天线| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 久久久亚洲精品成人影院| 国产高清有码在线观看视频| 亚洲精品456在线播放app| 国产毛片a区久久久久| 高清日韩中文字幕在线| 中文字幕精品亚洲无线码一区| 欧美激情国产日韩精品一区| 在线观看一区二区三区| 亚洲av熟女| 高清在线视频一区二区三区 | 小蜜桃在线观看免费完整版高清| 久久热精品热| 免费观看人在逋| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 99久久无色码亚洲精品果冻| 亚洲欧美中文字幕日韩二区| 久久久久免费精品人妻一区二区| 黄片无遮挡物在线观看| 丝袜美腿在线中文| 日本一本二区三区精品| 免费看a级黄色片| 久久6这里有精品| 十八禁国产超污无遮挡网站| 欧美精品一区二区大全| 欧美性猛交黑人性爽| 69人妻影院| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 免费黄色在线免费观看| 少妇高潮的动态图| 欧美一区二区国产精品久久精品| 我的女老师完整版在线观看| 亚洲国产精品成人综合色| 少妇的逼水好多| 亚洲18禁久久av| 午夜精品国产一区二区电影 | 最新中文字幕久久久久| 亚洲欧美一区二区三区国产| .国产精品久久| 日本免费a在线| 老女人水多毛片| 久久久久精品久久久久真实原创| 男插女下体视频免费在线播放| 亚洲在线观看片| 日本午夜av视频| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看 | 免费一级毛片在线播放高清视频| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 成人二区视频| 日本五十路高清| 麻豆成人午夜福利视频| 日本免费在线观看一区| av视频在线观看入口| 午夜视频国产福利| 久久精品影院6| 18禁动态无遮挡网站| 免费观看在线日韩| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 综合色av麻豆| 天堂网av新在线| 久久久久久伊人网av| 干丝袜人妻中文字幕| 国产爱豆传媒在线观看| 99久久无色码亚洲精品果冻| 日韩一区二区视频免费看| 久久婷婷人人爽人人干人人爱| 国内精品宾馆在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美成人综合另类久久久 | 别揉我奶头 嗯啊视频| 日本黄色视频三级网站网址| 久久久久久久久久久免费av| 美女黄网站色视频| 麻豆乱淫一区二区| 精品熟女少妇av免费看| 一级毛片久久久久久久久女| 高清在线视频一区二区三区 | h日本视频在线播放| 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 国产极品精品免费视频能看的| 嫩草影院精品99| 九九爱精品视频在线观看| av.在线天堂| 狠狠狠狠99中文字幕| kizo精华| 美女国产视频在线观看| 成人鲁丝片一二三区免费| 熟女电影av网| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 天天一区二区日本电影三级| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 日本一二三区视频观看| 国产伦理片在线播放av一区| 色综合亚洲欧美另类图片| 国产美女午夜福利| 日本熟妇午夜| 亚洲国产欧美在线一区| 一级av片app| 国产精品一区二区性色av| 91久久精品国产一区二区成人| 国产在线男女| 免费av毛片视频| 热99re8久久精品国产| 九九在线视频观看精品| 亚洲最大成人av| 观看免费一级毛片| 在线观看一区二区三区| 最近的中文字幕免费完整| 国产老妇女一区| 舔av片在线| 又黄又爽又刺激的免费视频.| 日本午夜av视频| 狂野欧美白嫩少妇大欣赏| 又粗又爽又猛毛片免费看| 2021少妇久久久久久久久久久| 麻豆成人av视频| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 国产精品一区二区性色av| 听说在线观看完整版免费高清| 国产 一区 欧美 日韩| 日本午夜av视频| 水蜜桃什么品种好| 国产熟女欧美一区二区| 深爱激情五月婷婷| 大又大粗又爽又黄少妇毛片口| 久久婷婷人人爽人人干人人爱| 免费看av在线观看网站| 日本免费一区二区三区高清不卡| 日韩人妻高清精品专区| 国产人妻一区二区三区在| 中文天堂在线官网| 国语对白做爰xxxⅹ性视频网站| 少妇熟女aⅴ在线视频| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久久久久| 久久久午夜欧美精品| 性色avwww在线观看| 岛国毛片在线播放| 国产亚洲最大av| 夜夜爽夜夜爽视频| 日韩制服骚丝袜av| 天堂影院成人在线观看| 免费电影在线观看免费观看| 国产成人精品一,二区| 国产黄a三级三级三级人| 国产在视频线精品| 久久久久久久久久久丰满| 亚洲伊人久久精品综合 | 国产欧美日韩精品一区二区| 男女边吃奶边做爰视频| 久久久欧美国产精品| 日本av手机在线免费观看| 日韩,欧美,国产一区二区三区 | 麻豆成人av视频| 我要搜黄色片| 少妇熟女aⅴ在线视频| 免费搜索国产男女视频| 精品不卡国产一区二区三区| 国产在视频线精品| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 亚洲精品成人久久久久久| 高清毛片免费看| 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 国模一区二区三区四区视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品成人久久小说| 亚洲激情五月婷婷啪啪| 桃色一区二区三区在线观看| 男人舔女人下体高潮全视频| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看 | 精品久久国产蜜桃| 精品久久久久久久人妻蜜臀av| 青春草亚洲视频在线观看| 伦精品一区二区三区| 一个人观看的视频www高清免费观看| 中文亚洲av片在线观看爽| 成人性生交大片免费视频hd| 日韩av在线免费看完整版不卡| 如何舔出高潮| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频|