• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Injection Spectra of Different Species of Cosmic Rays from AMS-02, ACECRIS and Voyager-1

    2024-01-06 06:39:34XuPanandQiangYuan
    Research in Astronomy and Astrophysics 2023年11期

    Xu Pan and Qiang Yuan

    1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China; yuanq@pmo.ac.cn

    2 School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China

    Abstract Precise measurements of energy spectra of different cosmic ray(CR)species have been obtained in recent years,by particularly the AMS-02 experiment on the International Space Station.It has been shown that apparent differences exist in different groups of the primary CRs.However,it is not straightforward to conclude that the source spectra of different particle groups are different since they will experience different propagation processes (e.g., energy losses and fragmentations)either.In this work,we study the injection spectra of different nuclear species using the measurements from Voyager-1 outside the solar system,and ACR-CRIS and AMS-02 on the top of atmosphere,in a physical framework of CR transportation.Two types of injection spectra are assumed, the broken power-law(BPL)form and the non-parametric spline interpolation form.The non-parametric form fits the data better than the BPL form,implying that potential structures beyond the constrained spectral shape of BPL may exist.For different nuclei the injection spectra are overall similar in shape but do show some differences among each other.For the non-parametric spectral form, the helium injection spectrum is the softest at low energies and the hardest at high energies.For both spectral shapes, the low-energy injection spectrum of neon is the hardest among all these species,and the carbon and oxygen spectra have more prominent bumps in 1–10 GV in the R dN dR 2 presentation.Such differences suggest the existence of differences in the sources or acceleration processes of various nuclei of CRs.

    Key words: (ISM:) cosmic rays – acceleration of particles – astroparticle physics

    1.Introduction

    Although the exact origin of cosmic rays (CRs) is not clear yet, it is generally believed that CRs with energies below PeV originate from supernova remnants.Energetic CRs were accelerated by diffusive shocks and then injected into the interstellar space.Theoretically, the accelerated spectrum can be simply described by a power-law formdN dR∝R-n,with R being the particle rigidity and n being the index(Fermi 1949;Bell 1978,2014;Blandford&Ostriker 1978).Extension of the conventional diffusive shock acceleration mechanism with test particle assumption to consider the interaction between accelerated particles and the surrounding fluid results in nonlinear effects and deviation from the simple power-law spectrum (Malkov & Drury 2001; Bell 2004; Caprioli et al.2010).From the observational point of view, complicated spectral structures of CRs were also revealed by many measurements (Panov et al.2009; Ahn et al.2010; Adriani et al.2011, 2019, 2020; Aguilar et al.2015a, 2015b, 2017;Atkin et al.2018;An et al.2019;Alemanno et al.2021,2022).Particularly, apart from the breaks around a few GV, remarkable hardenings around hundreds of GV and subsequent softenings around 10 TV were shown by the data.The spectra also differ among different nuclei.The helium spectrum is found to be clearly harder than that of protons (Adriani et al.2011; Aguilar et al.2015a, 2015b).The AMS-02 measurements further showed that the high-energy spectra of neon(Ne),magnesium(Mg),and silicon(Si)are different from those of helium(He),carbon(C),and oxygen(O),and suggested that different types of primary sources exist (Aguilar et al.2020).These results may indicate that the origin and acceleration of CRs are more complicated.

    It should be noted that after the acceleration,CR particles are injected into the interstellar space, and experience complex propagation processes.The energy losses and fragmentation cross sections of various nuclei differ from each other,making the propagated spectra become diverse even for the same injection spectra.Therefore, the apparent differences of the spectra are not directly reflecting the differences at injection.To properly address this issue needs a thorough consideration of the CR propagation (Yuan et al.2017; Boschini et al.2018, 2020a, 2020b; Derome et al.2019; Wu & Chen 2019;Yuan 2019; Korsmeier & Cuoco 2022; Niu 2022).

    Here we investigate the source injection spectra of different primary nuclei including He, C, O, Ne, Mg, Si, and Fe,based mainly on the AMS-02 data (Aguilar et al.2017, 2020, 2021a, 2021b).At low energies the fluxes will be suppressed due to the solar modulation effect.We use the forcefield approximation to account for the solar modulation (Gleeson& Axford 1967).To break the degeneracy between the injection and the solar modulation effects,the measurements at low energies outside the solar system by Voyager-1 will also be included(Cummings et al.2016).We further use the ACE-CRIS3http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_CRIS.htmlmeasurements at the same time periods of the AMS-02 to better constrain the low-energy spectra.The GALPROP code is employed to calculate the propagation of CRs (Moskalenko &Strong 1998; Strong & Moskalenko 1998).The Markov Chain Monte Carlo (MCMC) method is used to do the fit (Liu et al.2012).

    Compared with previous works along the line of studying the injection spectra of CRs (Yuan 2019; Korsmeier &Cuoco 2022; Niu 2022), this work differs in either more species of nuclei used (e.g., Ne, Mg,Si,Fe) or the low-energy ACE and Voyager data included which better constrain the wide-band spectral shape.

    2.Cosmic Ray Injection and Propagation

    Given more and more complicated structures of the CR spectra were revealed by recent precise measurements, it is expected that simple empirical functions may not be proper enough to describe the injection spectra of CRs in a wide energy range.In this work, we use a non-parametric interpolation (NPI) spectrum determined by a cubic spline interpolation method (Ghelfi et al.2016; Zhu et al.2018),which has more freedom to reveal multiple structures of the spectra.The interpolation is done in the log (R) – log(J)parameter space, where R=pc/Ze is the particle rigidity in unit of MV and J is the flux.Specifically,we set the following rigidity knots in the analysis:

    where γ0, γ1, and γ2are spectral indices in different rigidity ranges, Rbr0and Rbr1are break rigidities.

    Following the distribution of supernova remnants,the source distribution of CRs is parameterized as

    where r⊙=8.5 kpc, zs=0.2 kpc, α=1.25, β=3.56 (Trotta et al.2011).

    The propagation of nuclei in the Milky Way includes mainly the diffusion in the random magnetic field, the energy losses due to ionization and Coulomb collisions, the fragmentation due to inelastic collisions with the interstellar medium, and possible convective transportation and reacceleration (Ginzburg&Syrovatskii 1964;Strong et al.2007).The propagation can be described by a set of differential equations for all species of nuclei, which self-consistently predict the fluxes of both primary and secondary nuclei.The general propagation equations can not be solved analytically, and numerical solutions were developed and widely employed (Moskalenko& Strong 1998; Strong & Moskalenko 1998).

    The propagation parameters we adopt are determined through fitting to the newest measurements of secondary and primary CRs (Yuan et al.2020).We work in the diffusionreacceleration framework, and the convection velocity is set to be 0.The main parameters include: the spatial diffusion coefficient Dxx=D0βη(R/4 GV)δ, with D0=7.69×1028cm2s?1, η=?0.05 which phenomenologically describes the possible resonant interactions of CRs with the magnetohydrodynamic (MHD) waves (Ptuskin et al.2006), δ=0.362,the Alfvénic velocity vA=33.76 km s?1which characterizes the reacceleration of particles during the propagation, and the half height of the propagation halo zh=6.27 kpc.

    After entering the solar system, CRs would be further affected by the magnetic field carried by the solar wind, and experience flux suppression at low energies (below tens GV).This so-called solar modulation results in an anti-correlation of the low-energy CR fluxes with solar activities.Although more sophisticated modulation models were developed (e.g.,Potgieter 2013),the simple force-field approximation(Gleeson& Axford 1967) is employed in this work.Since the particles discussed here are all positively charged with mass-to-charge ratio A/Z ≈2, we expect that their relatively differences are less sensitive to the solar modulation model.

    3.Analysis Method

    In this work we focus on the primary CR nuclei with A/Z ≈2, including He, C, O, Ne, Mg, Si, and Fe.The proton spectrum which shows clear difference from that of He is not discussed(Zhang et al.2017).The CosRayMC code(Liu et al.2012) which combines the CR propagation and the MCMC sampler is used.According to the Bayes’theorem,the posterior probability of a model described by parameters θ can beobtained as

    Table 1 The Parameters of BPL Form of Injection Spectra

    Table 2 The Parameters of NPI Form of Injection Spectra

    where J(Ei;θ) is the model predicted flux, Jiand σiare the observational flux and error of the ith energy bin.

    The AMS-02 and Voyager-1 data can be directly obtained from the publications (Cummings et al.2016; Aguilar et al.2021a).The total uncertainties used are the quadratic sum of the statistical ones and systematic ones.For the ACE-CRIS data, we extract them from the online data server.The systematic uncertainties of ACE-CRIS data include the geometry factor (2%), the scintillating optical fiber trajectory efficiency (2%), and the correction of spallation in the instrument (1%~5% depending on the charge and energy bin) (George et al.2009).For He nuclei, no ACE-CRIS data are available.For Fe nuclei, the ACE-CRIS data are not included in the likelihood calculation due to the possible excess compared with the AMS-02 data (see the discussion in Boschini et al.2021).

    4.Results

    The best-fit parameters and the 1σ uncertainties for the BPL and NPI injection spectra are presented in Tables 1 and 2.For all species,the NPI form shows smaller reduced χ2values compared with those of the BPL form.Figure 1 displays the injection spectra of various nuclei(the 1σ bands)obtained from the fitting.The top panels are for the injection spectra normalized at 10 GV, and the bottom panels display the spectra which are grouped into four groups, He, C–O, Ne–Mg–Si, and Fe, respectively.These injection spectra show a general similarity among each other.Specifically, the injection spectra for all nuclei experience softenings around several GV rigidities and hardenings around a few hundred GV.For the BPL form,our results of C,O,Ne,and Mg are consistent with those given in Niu (2022), despite the methodologies are different.The relative spectral shapes among different nuclei are different for the BPL and NPI forms.Since the NPI form introduces less constraints on the injection spectra,and the fittings are much better than the BPL form,we take the results from the NPI fitting as benchmark.The helium spectrum is the softest at low energies and the hardest at high energies.The Ne spectrum is the hardest in the low-energy range among all species.For C and O,their injection spectra show prominent bumps in the 1–10 GV range compared with other nuclei.The Fe spectrum is similar to that of Si at low energies, but is slightly harder above 10 GV.

    Figure 1.The injection spectra of different nuclei.In the top panels we normalize all spectra at 10 GV, and in the bottom panels they are shown for four different groups.The left panels are for the BPL form, and the right panels are for the NPI form.

    Figure 2.The one-dimensional probability density distributions of the solar modulation potentials, for the BPL form (left) and NPI form (right).

    Thanks to the observations by Voyager-1 outside the solar system and the low-energy fluxes by ACE-CRIS, the degeneracy between the injection spectrum and the solar modulation can be effectively broken.Figure 2 shows the probability distributions of the solar modulation potentials φ for different nuclei.For both the BPL and NPI forms, Fe has the largest φ value.The remaining nuclei exhibit similar modulation potentials within ~2σ uncertainties.The difference of modulation potentials between Fe and the other nuclei may be due to the low-energy structures of the Fe spectrum as revealed by combining the ACE-CRIS and AMS-02 data (see the discussion below).

    Figure 3.Comparison of the best-fit results of the spectra with the measurements(Cummings et al.2016;Aguilar et al.2021a).In each panel the higher line is the LIS and the lower one is the TOA spectrum.The residuals are depicted in the lower sub-panel,defined as χ=(data ?model)/error(stars are for the BPL form and circles are for the NPI form).

    Figure 3 shows the comparisons between the best-fit spectra and the measurements.The higher curve in each panel represents the local interstellar spectrum (LIS) before the solar modulation,and the lower one shows the spectrum at the top of atmosphere(TOA)of the Earth.Good consistency between the fitting results and the data can be seen.We also show that the ACE-CRIS measurement for the fluxes of Fe nuclei cannot connect smoothly with the AMS-02 data, as already being pointed out in Boschini et al.(2021).The combined AMS-02 and ACE-CRIS data may indicate a bump structure at ~2 GV,which may be due to a past supernova explosion in the Local Bubble (Boschini et al.2021).

    5.Conclusion and Discussion

    New measurements of the energy spectra of CRs with presentlevel precision enable us to investigate crucially the acceleration and propagation processes of particles.The measured spectra contain mixed effects of the acceleration and propagation, and thus cannot be directly used to infer the injection spectra of different CR particles.In this work, we thus derive the source injection spectra of a series of primary nuclei under the framework of a physical propagation model.Our results show that,even these nuclei have similar A/Z ≈2, their injection spectra show diverse behaviors.As a test, we assume identical injection spectra for all these nuclei using the NPI form, and find a reduced chi-squared value of χ2/d.o.f.=9424.3/586.If we choose two injection spectra, one is applied to He, C, and O nuclei, and the other is applied to Ne, Mg, and Si nuclei, we obtain χ2/d.o.f.=650.3/275 for the fitting to He, C, and O, and χ2/d.o.f.=223.5/265 for the fitting to Ne, Mg, and Si.The fitting to C and O gives χ2/d.o.f=71.2/165, indicating that the injection spectrum of C and O should be different from that of He.When we add Fe to Ne–Mg–Si group, we obtain χ2/d.o.f.=672.0/319.The injection spectrum of Fe appears to be similar to those of Mg and Si at low energies,but is harder at high energies.The combined fitting of Fe and He–C–O gives χ2/d.o.f.=1164.8/339.These tests show that we can perhaps classify the injection spectra into four groups,He,C–O,Ne–Mg–Si, and Fe as shown in Figure 1.Assuming the same injection spectra for different groups result in poor fittings to the data,indicating the intrinsic difference of their injection spectra.

    The diversity of the derived injection spectra may be related with the acceleration processes.Various acceleration models were proposed to explain the spectral differences of protons and helium nuclei.For example, it was proposed that the reverse shock acceleration of different supernova shocks (e.g.,Type I where hydrogen is absent,and Type II where hydrogen is abundant)could explain the harder spectrum of helium nuclei(Ptuskin et al.2013).Ohira & Ioka (2011) proposed that the acceleration in chemically enriched regions with outwarddecreasing abundance could naturally result in different spectra of different species.Those models may be extended to account for the differences of injection spectra of heavy nuclei as found in this work.In addition, models including different ionization histories of nuclei (Casse & Goret 1978) and condensation of different elements into grains (Ellison et al.1997) could also explain the diversity of the inferred injection spectra.

    Note that we have assumed a single source population in derive the injection spectra.The results may reflect the fact that there are multiple source components of CRs.For example, it has been proposed that a nearby source with element abundance different from that of the average background sources may result in different spectral shapes of various nuclei(Yuan et al.2021).

    Finally, we assume a spatially uniform propagation in this work.However, a number of new observations may suggest a spatially dependent propagation model of CRs (Tomassetti 2012; Guo & Yuan 2018; Liu et al.2018; Zhao et al.2021).Due to the differences of the energy loss rates and fragmentation cross sections of different nuclei, they experience different propagation lengths in the Milky Way.In the spatially dependent propagation model,such an effect results in additional spectral differences on the results based on homogeneous propagation assumption.Whether or not the observed spectral differences can be reproduced in a realistic spatially dependent propagation model needs future studies.

    Acknowledgment s

    We acknowledge the use of the ACE-CRIS data provided by the ACE Science Center.This work is supported by the National Key Research and Development Program of China(No.2021YFA0718404), the National Natural Science Foundation of China(No.12220101003)and the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(No.YSBR-061).

    成人无遮挡网站| 国产毛片a区久久久久| 亚洲欧美日韩高清在线视频| 国产成人啪精品午夜网站| 国产在线精品亚洲第一网站| 免费观看精品视频网站| 亚洲在线自拍视频| 天堂av国产一区二区熟女人妻| 国内精品一区二区在线观看| eeuss影院久久| 色综合站精品国产| 精品人妻熟女av久视频| 天堂av国产一区二区熟女人妻| 亚洲一区二区三区色噜噜| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲欧美在线一区二区| 国产精品98久久久久久宅男小说| 2021天堂中文幕一二区在线观| 亚洲国产欧洲综合997久久,| 欧美成狂野欧美在线观看| 欧美日韩福利视频一区二区| 中文字幕av成人在线电影| 国产精品av视频在线免费观看| 日本a在线网址| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 成人特级黄色片久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 中文字幕av在线有码专区| 国内精品美女久久久久久| 久久99热这里只有精品18| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 又紧又爽又黄一区二区| 免费电影在线观看免费观看| 一本久久中文字幕| 又爽又黄a免费视频| 伊人久久精品亚洲午夜| 91午夜精品亚洲一区二区三区 | 亚洲真实伦在线观看| 一二三四社区在线视频社区8| 丰满人妻一区二区三区视频av| 一a级毛片在线观看| 亚洲精品在线观看二区| 色哟哟哟哟哟哟| 成人毛片a级毛片在线播放| 亚洲精品在线美女| 老熟妇乱子伦视频在线观看| 亚洲av二区三区四区| 欧美不卡视频在线免费观看| 内地一区二区视频在线| 九九热线精品视视频播放| 日韩欧美一区二区三区在线观看| 亚州av有码| 久久久久久大精品| 91久久精品国产一区二区成人| 久久性视频一级片| 在线看三级毛片| 黄色丝袜av网址大全| 国产欧美日韩精品一区二区| 亚洲最大成人中文| 每晚都被弄得嗷嗷叫到高潮| 丁香欧美五月| 欧美黑人欧美精品刺激| 欧美性猛交╳xxx乱大交人| 18禁裸乳无遮挡免费网站照片| aaaaa片日本免费| 国产精品不卡视频一区二区 | 日本黄色片子视频| 黄色配什么色好看| 国产免费av片在线观看野外av| 久久6这里有精品| 亚洲欧美精品综合久久99| 免费看光身美女| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影| 国产69精品久久久久777片| 国产精品不卡视频一区二区 | 亚洲第一电影网av| 国产精品98久久久久久宅男小说| 久久人人爽人人爽人人片va | 免费av不卡在线播放| 亚洲激情在线av| 日韩高清综合在线| 欧美最黄视频在线播放免费| 亚洲美女黄片视频| 女人十人毛片免费观看3o分钟| 欧美高清性xxxxhd video| 国产乱人伦免费视频| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 日韩中字成人| 禁无遮挡网站| 日韩欧美在线乱码| 午夜福利欧美成人| 久久九九热精品免费| 免费在线观看日本一区| 91久久精品电影网| 男女之事视频高清在线观看| 九色国产91popny在线| 全区人妻精品视频| 天堂动漫精品| 在线观看午夜福利视频| 97热精品久久久久久| 色哟哟哟哟哟哟| 成年女人看的毛片在线观看| 国产三级在线视频| 少妇被粗大猛烈的视频| 久久亚洲精品不卡| 国产国拍精品亚洲av在线观看| 亚洲黑人精品在线| bbb黄色大片| 黄色丝袜av网址大全| 国产精品99久久久久久久久| 91久久精品电影网| 国产欧美日韩一区二区三| 亚洲av一区综合| 1024手机看黄色片| 老女人水多毛片| 91狼人影院| 国产一区二区在线观看日韩| 欧美乱妇无乱码| av专区在线播放| 亚洲精品在线观看二区| 91久久精品国产一区二区成人| 日本在线视频免费播放| 亚洲中文字幕日韩| 哪里可以看免费的av片| 特大巨黑吊av在线直播| 国产精品亚洲一级av第二区| 国产一区二区亚洲精品在线观看| 免费在线观看亚洲国产| 免费无遮挡裸体视频| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 国内精品久久久久精免费| 久久久久亚洲av毛片大全| 俄罗斯特黄特色一大片| 国产大屁股一区二区在线视频| 麻豆久久精品国产亚洲av| a级毛片a级免费在线| 国产亚洲欧美98| 一个人看视频在线观看www免费| 亚洲美女视频黄频| 别揉我奶头~嗯~啊~动态视频| 亚洲无线观看免费| 国产精品,欧美在线| 日韩 亚洲 欧美在线| 内射极品少妇av片p| 国产精品av视频在线免费观看| 欧美色视频一区免费| 亚洲午夜理论影院| 一区福利在线观看| 狂野欧美白嫩少妇大欣赏| 欧美乱色亚洲激情| 天堂√8在线中文| 国内精品久久久久久久电影| 又紧又爽又黄一区二区| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 国产精品影院久久| 中亚洲国语对白在线视频| 国内精品久久久久精免费| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 赤兔流量卡办理| 一级a爱片免费观看的视频| 18美女黄网站色大片免费观看| 国内精品久久久久精免费| 国产午夜精品久久久久久一区二区三区 | 给我免费播放毛片高清在线观看| 欧美激情国产日韩精品一区| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 免费看a级黄色片| 日本免费a在线| 在线播放国产精品三级| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 国产探花极品一区二区| 色哟哟·www| 欧美成人免费av一区二区三区| 精品国产亚洲在线| 亚洲aⅴ乱码一区二区在线播放| 国产色爽女视频免费观看| 午夜免费成人在线视频| 精品欧美国产一区二区三| 色5月婷婷丁香| 国产免费av片在线观看野外av| 精品人妻熟女av久视频| 亚洲人成网站在线播放欧美日韩| 一夜夜www| 成人美女网站在线观看视频| 搡老岳熟女国产| 国产精华一区二区三区| 搞女人的毛片| АⅤ资源中文在线天堂| 日本黄色片子视频| 国产免费一级a男人的天堂| 精品免费久久久久久久清纯| 欧美潮喷喷水| 亚洲自拍偷在线| 最后的刺客免费高清国语| 国产亚洲精品av在线| 亚洲av.av天堂| 在线免费观看不下载黄p国产 | 综合色av麻豆| 国产高清三级在线| 无遮挡黄片免费观看| a在线观看视频网站| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| 如何舔出高潮| 欧美+亚洲+日韩+国产| 啪啪无遮挡十八禁网站| 国产精品野战在线观看| 宅男免费午夜| 午夜福利成人在线免费观看| 精品人妻偷拍中文字幕| 午夜福利视频1000在线观看| 又黄又爽又免费观看的视频| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 亚洲综合色惰| 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 国产精品久久视频播放| 日韩欧美在线乱码| 哪里可以看免费的av片| 九色国产91popny在线| 精品人妻视频免费看| 亚洲av免费高清在线观看| 欧美绝顶高潮抽搐喷水| 我要看日韩黄色一级片| 日韩大尺度精品在线看网址| 久久中文看片网| 美女高潮的动态| 麻豆久久精品国产亚洲av| 欧美zozozo另类| 午夜免费男女啪啪视频观看 | 亚洲精品在线美女| 男女做爰动态图高潮gif福利片| 白带黄色成豆腐渣| 久久久久亚洲av毛片大全| 哪里可以看免费的av片| 俺也久久电影网| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av涩爱 | 最好的美女福利视频网| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| 老司机深夜福利视频在线观看| 在线观看一区二区三区| 色精品久久人妻99蜜桃| 色尼玛亚洲综合影院| 亚洲专区国产一区二区| 国产精品,欧美在线| 久9热在线精品视频| 真人做人爱边吃奶动态| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 熟女电影av网| 最近最新免费中文字幕在线| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| 最近最新中文字幕大全电影3| 亚洲国产精品sss在线观看| 国产成人aa在线观看| 久久香蕉精品热| 久久6这里有精品| 亚洲成av人片在线播放无| 日韩欧美三级三区| 国内久久婷婷六月综合欲色啪| 免费看a级黄色片| 午夜精品久久久久久毛片777| 日本成人三级电影网站| 久久天躁狠狠躁夜夜2o2o| 久久久久免费精品人妻一区二区| 露出奶头的视频| 真实男女啪啪啪动态图| 久久久成人免费电影| 女人被狂操c到高潮| 每晚都被弄得嗷嗷叫到高潮| 1024手机看黄色片| 女同久久另类99精品国产91| 欧美黑人巨大hd| 欧美乱色亚洲激情| 国产精品女同一区二区软件 | 老熟妇仑乱视频hdxx| 午夜福利在线观看吧| 内射极品少妇av片p| 国产精品日韩av在线免费观看| 人妻久久中文字幕网| 欧美不卡视频在线免费观看| 观看美女的网站| 亚洲avbb在线观看| 国产免费一级a男人的天堂| 亚洲七黄色美女视频| 搡老熟女国产l中国老女人| www.999成人在线观看| 日韩欧美国产在线观看| 久久精品国产清高在天天线| www.熟女人妻精品国产| 国产主播在线观看一区二区| 99热这里只有精品一区| 男人舔女人下体高潮全视频| 如何舔出高潮| 少妇被粗大猛烈的视频| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久久亚洲 | 国产精品不卡视频一区二区 | 激情在线观看视频在线高清| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 欧美性感艳星| 中文资源天堂在线| 最近视频中文字幕2019在线8| 成人一区二区视频在线观看| 九色成人免费人妻av| av在线老鸭窝| 国产精品,欧美在线| 黄色丝袜av网址大全| 日本 av在线| 成年女人毛片免费观看观看9| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 国产在线精品亚洲第一网站| 五月玫瑰六月丁香| 99热这里只有是精品50| 日韩欧美三级三区| 成人美女网站在线观看视频| 国产欧美日韩精品亚洲av| 国产高清三级在线| 亚洲18禁久久av| 国产色爽女视频免费观看| 一进一出好大好爽视频| 黄色丝袜av网址大全| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 亚洲av美国av| 最近最新中文字幕大全电影3| 黄色女人牲交| 国产aⅴ精品一区二区三区波| 黄色女人牲交| 日本在线视频免费播放| 高清日韩中文字幕在线| 天堂影院成人在线观看| 深夜精品福利| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 成人美女网站在线观看视频| 亚洲内射少妇av| 怎么达到女性高潮| 国产国拍精品亚洲av在线观看| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 看免费av毛片| a级毛片免费高清观看在线播放| 精品久久久久久久人妻蜜臀av| 久久精品影院6| 免费在线观看日本一区| 亚洲无线在线观看| 99久久99久久久精品蜜桃| 欧美一区二区国产精品久久精品| 在线播放无遮挡| 90打野战视频偷拍视频| 91狼人影院| 日本免费a在线| 欧美绝顶高潮抽搐喷水| 色播亚洲综合网| 少妇高潮的动态图| 免费大片18禁| 看免费av毛片| 少妇高潮的动态图| 国产熟女xx| 国产精品av视频在线免费观看| 亚洲五月婷婷丁香| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 99riav亚洲国产免费| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区 | 免费大片18禁| 日韩大尺度精品在线看网址| 日本 av在线| 色视频www国产| 免费在线观看影片大全网站| 亚洲精品影视一区二区三区av| 在线国产一区二区在线| 丰满人妻一区二区三区视频av| 亚洲精品456在线播放app | 国产真实伦视频高清在线观看 | 国产伦在线观看视频一区| 亚洲性夜色夜夜综合| 特级一级黄色大片| 最近中文字幕高清免费大全6 | 免费无遮挡裸体视频| 久久午夜福利片| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| 成人av一区二区三区在线看| 国产视频内射| 午夜影院日韩av| 少妇人妻精品综合一区二区 | 88av欧美| aaaaa片日本免费| 小说图片视频综合网站| 制服丝袜大香蕉在线| 啦啦啦观看免费观看视频高清| 国产高清激情床上av| aaaaa片日本免费| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 有码 亚洲区| 日本一本二区三区精品| 在线观看一区二区三区| 99热这里只有是精品在线观看 | 欧美色视频一区免费| 免费av不卡在线播放| 日本免费a在线| 9191精品国产免费久久| 波多野结衣高清作品| 精品久久久久久久久久免费视频| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 国产麻豆成人av免费视频| 精品人妻1区二区| 老司机福利观看| 高清日韩中文字幕在线| 日日摸夜夜添夜夜添小说| 国产亚洲欧美在线一区二区| 天天一区二区日本电影三级| 俺也久久电影网| ponron亚洲| 在线看三级毛片| 午夜福利欧美成人| 精品久久久久久久久久免费视频| 噜噜噜噜噜久久久久久91| 特级一级黄色大片| www.www免费av| 一区二区三区高清视频在线| 国产精品亚洲av一区麻豆| 中文字幕人成人乱码亚洲影| 中文字幕人妻熟人妻熟丝袜美| 国产av不卡久久| 欧美高清成人免费视频www| 欧美成人性av电影在线观看| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 一级黄色大片毛片| 国产真实乱freesex| 国产三级在线视频| www.熟女人妻精品国产| 成年女人永久免费观看视频| 熟妇人妻久久中文字幕3abv| 高清毛片免费观看视频网站| 大型黄色视频在线免费观看| 成人亚洲精品av一区二区| 亚洲av美国av| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 小说图片视频综合网站| 欧美xxxx性猛交bbbb| 此物有八面人人有两片| 免费在线观看亚洲国产| 97碰自拍视频| 一区二区三区四区激情视频 | 校园春色视频在线观看| 国产一级毛片七仙女欲春2| 嫁个100分男人电影在线观看| 国产白丝娇喘喷水9色精品| 国产精品三级大全| 免费在线观看日本一区| 精品乱码久久久久久99久播| 国产高清三级在线| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 一级av片app| av国产免费在线观看| 国产v大片淫在线免费观看| 深夜a级毛片| 免费看日本二区| 久久国产乱子免费精品| 色av中文字幕| 国产精品久久久久久精品电影| 99久久成人亚洲精品观看| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 高清日韩中文字幕在线| 又黄又爽又刺激的免费视频.| 亚洲av美国av| 亚洲人成网站高清观看| 亚洲精品色激情综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色视频,在线免费观看| 亚洲,欧美,日韩| 18禁在线播放成人免费| 中文资源天堂在线| 99国产综合亚洲精品| 人人妻人人看人人澡| or卡值多少钱| 国产在线精品亚洲第一网站| 亚洲精品色激情综合| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 亚洲精品日韩av片在线观看| 蜜桃亚洲精品一区二区三区| 国产三级中文精品| 简卡轻食公司| 亚洲成人久久性| 久9热在线精品视频| 亚洲精品在线美女| 久久久色成人| 国内精品美女久久久久久| 99在线视频只有这里精品首页| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 亚洲一区二区三区色噜噜| 好男人在线观看高清免费视频| 色哟哟哟哟哟哟| 国产成人aa在线观看| 国产爱豆传媒在线观看| 好男人在线观看高清免费视频| 国产真实伦视频高清在线观看 | 国产精品久久久久久久电影| 午夜激情欧美在线| 国产伦精品一区二区三区视频9| 成人精品一区二区免费| 91久久精品国产一区二区成人| 久久热精品热| 亚洲美女搞黄在线观看 | 亚洲自偷自拍三级| 国产精品99久久久久久久久| 毛片女人毛片| www日本黄色视频网| 亚洲av成人精品一区久久| 精品免费久久久久久久清纯| 欧美日韩黄片免| 欧美3d第一页| 男女床上黄色一级片免费看| 欧美日韩国产亚洲二区| 男插女下体视频免费在线播放| 亚洲欧美日韩无卡精品| 久久久精品大字幕| 国产黄色小视频在线观看| 悠悠久久av| 国产成人啪精品午夜网站| 国产一区二区亚洲精品在线观看| 在线观看66精品国产| 国产亚洲欧美98| 日韩欧美三级三区| 少妇熟女aⅴ在线视频| 麻豆国产av国片精品| 3wmmmm亚洲av在线观看| 成人精品一区二区免费| 成人无遮挡网站| 日韩成人在线观看一区二区三区| 脱女人内裤的视频| 黄色视频,在线免费观看| 午夜福利在线观看免费完整高清在 | 欧美高清成人免费视频www| av在线天堂中文字幕| 婷婷亚洲欧美| 国产成人影院久久av| 特级一级黄色大片| 在线观看av片永久免费下载| 日韩 亚洲 欧美在线| 人人妻,人人澡人人爽秒播| 别揉我奶头~嗯~啊~动态视频| 好男人电影高清在线观看| 久久草成人影院| 一区福利在线观看| 久久久精品大字幕| 乱人视频在线观看| 小说图片视频综合网站| 午夜激情福利司机影院| 美女大奶头视频| 尤物成人国产欧美一区二区三区| 国产高清视频在线观看网站| 免费av观看视频| 国产高清有码在线观看视频| 中文亚洲av片在线观看爽| 久9热在线精品视频| 色在线成人网| 午夜激情福利司机影院| avwww免费| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 特级一级黄色大片| 性插视频无遮挡在线免费观看| 亚洲 欧美 日韩 在线 免费| x7x7x7水蜜桃| 午夜福利欧美成人| 精品一区二区三区av网在线观看| 有码 亚洲区| 欧美激情国产日韩精品一区| 成人无遮挡网站|