摘 要 目的:分析順逆結合機器人輔助最大程度保留前列腺周圍結構的根治性前列腺切除術的臨床應用價值。方法:通過檢索國內(nèi)外相關文獻,系統(tǒng)闡述前列腺周圍重要解剖結構及其作用,總結順逆結合機器人輔助最大程度保留前列腺周圍結構的相關技術。結果:神經(jīng)血管束、陰部副動脈、背血管復合體,以及前列腺周圍相關支持結構如恥骨前列腺韌帶、盆側(cè)筋膜腱弓等對患者術后的尿控和性功能恢復具有重要作用。結論:順逆結合機器人輔助最大程度保留前列腺周圍結構的根治性前列腺切除術在保護患者尿控、性功能等方面具有較好的效果,在臨床應用中具有一定優(yōu)勢。
關鍵詞 機器人輔助手術;根治性前列腺切除術;周圍結構
中圖分類號 R737.25 文獻標識碼 A 文章編號 2096-7721(2024)04-0526-05
Combination of anterograde and retrograde separation in robot-assisted radical prostatectomy with maximum preservation of the periprostatic structures (with surgical video)
WU Qingjian, LUO Xing, ZHOU Tao, HE Fan, ZHU Jingzhen, ZHAO Jiang, JIA Weisheng,
FANG Zhenqiang, ZHENG Ji
(Department of Urology, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China)
Abstract Objective: To analyze the clinical application value of the combination of anterograde and retrograde separation in robot-assisted radical prostatectomy with maximum preservation of the periprostatic structures. Methods: By searching relevant literatures at home and abroad, the important anatomical structures and their functions around the prostate were systematically expounded, and the related technologies of combination of anterograde and retrograde separation in robot-assisted radical prostatectomy with maximum preservation of the periprostatic structures were summarized.
Results: Neurovascular bundle, accessory pudendal arteries, dorsal vascular complex, and periprostatic supporting structures around the prostate (such as puboprostatic ligament, tendinous arch of pelvic fascia, etc.) play an important role in postoperative recovery of urinary continence and sexual function. Conclusion: The combination of anterograde and retrograde separation in robot-assisted radical prostatectomy with maximum preservation of the periprostatic structures has shown favorable results in terms of urinary continence and sexual function, which has certain advantages in clinical application.
Key words Robotic-assisted Surgery; Radical Prostatectomy; Periprostatic Structures
前列腺癌是全球范圍內(nèi)男性常見的惡性腫瘤之一,位于全球男性惡性腫瘤發(fā)病率第2位,其發(fā)病率在國內(nèi)也呈逐年升高趨勢,現(xiàn)已躍居我國男性泌尿生殖系統(tǒng)惡性腫瘤發(fā)病率首位[1]。
對于局限性前列腺癌,手術切除前列腺腺體仍然是主要治療方式。機器人輔助下根治性前列腺切除術具有微創(chuàng)性、三維可視化和精確性等優(yōu)勢,已逐步成為國內(nèi)外根治性前列腺切除術中應用最廣泛的術式,且在并發(fā)癥控制、瘤控、尿控、性功能恢復等方面有明顯的優(yōu)勢[2- 3]。隨著機器人技術的不斷改進,機器人輔助手術系統(tǒng)的性能和功能也得到了提升。最新一代機器人手術系統(tǒng)具有更高的精確性,更穩(wěn)定的術中操作和更智能化的功能。近年來,隨著機器人輔助根治性前列腺切除術相關技術的不斷發(fā)展和改進,國內(nèi)外學者已通過不同手術入路及技術開展機器人輔助根治性前列腺切除術[4-6],并取得了較好的手術效果。本團隊自2019年以來已完成100余例順逆結合機器人輔助最大程度保留前列腺周圍結構的根治性前列腺切除術,取得較好的瘤控、尿控及性控結果。本研究通過查閱文獻資料,系統(tǒng)闡述了前列腺周圍解剖結構,并總結團隊相關手術的經(jīng)驗,詳細介紹該術式的手術步驟并探討其應用價值。
1 前列腺周圍重要的解剖結構
1.1 恥骨前列腺韌帶 恥骨前列腺韌帶是位于恥骨與前列腺之間一個非常重要的結構,恥骨前列腺韌帶來源于盆腔內(nèi)筋膜臟層,成對附著在恥骨后表面遠端1/3處,并向下覆蓋前列腺腹側(cè)面[7]。恥骨前列腺韌帶將尿道和前列腺懸吊于恥骨上,并保持其穩(wěn)定性,其在尿控懸吊機制中發(fā)揮著重要的作用[8-9]。有研究表明,根治性前列腺切除術中保留恥骨前列腺韌帶,有助于早期尿控的恢復[10]。
1.2 背血管復合體 背血管復合體(Dorsal Vasculature Complex,DVC)又稱為背深靜脈復合體,位于前列腺尖部和尿道括約肌腹側(cè),其引流陰莖靜脈、尿道靜脈、雙側(cè)盆腔靜脈的靜脈叢以及來源于膀胱下動脈的小分支動脈[11]。隨著人們對DVC解剖結構認識的加深,發(fā)現(xiàn)DVC中不僅包含靜脈血管,同時也包含神經(jīng)及尿道括約肌肉纖維[12-13]。在運用常規(guī)方式進行前列腺癌手術控制DVC時,這部分神經(jīng)纖維往往會受到損傷[14]。DVC不僅在控制出血方面有重要作用,其在術后尿控及性功能恢復方面也發(fā)揮著重要作用[15],因此,術中完整保留DVC可有效保護尿道括約肌功能。
1.3 神經(jīng)血管束 盆腔神經(jīng)叢的纖維以籠狀圍繞精囊、膀胱頸及前列腺近端的側(cè)面,它們靠近精囊頂端并沿精囊的后外側(cè)走行[16]。該神經(jīng)束不僅包含支配陰莖海綿體的神經(jīng)纖維,而且還包含支配前列腺和尿道括約肌的神經(jīng)纖維。研究表明,這些神經(jīng)與精囊、膀胱頸、前列腺血管蒂等解剖標志的距離很近[17-19],因此在根治性前列腺切除術中極易受到損傷。腫瘤的病理分期、臨床分期、患者年齡、術前性功能狀況以及患者神經(jīng)血管束是否受到侵犯等因素是患者術后性功能能否恢復的關鍵[20-21]。根治性前列腺切除術中保留神經(jīng)血管束可以減少對神經(jīng)的損傷,以改善術后尿控和勃起功能[22]。
1.4 陰部副動脈 根治性前列腺切除術后陰莖血供不足是引起術后勃起功能障礙的重要原因之一。陰莖的血液供應目前有3種:①完全起源于陰部內(nèi)動脈,終止于陰莖動脈,并發(fā)出分支供應陰莖海綿體。②來源于陰部內(nèi)動脈、閉孔動脈和來源于膀胱下動脈解剖上變異的陰部副動脈。③完全來源于陰部副動脈[23]。陰部副動脈或變異的陰部副動脈常沿盆腔的筋膜腱弓,在膀胱、前列腺和盆腔側(cè)壁之間的凹陷中運行;研究表明另一種變異方式是從恥骨下方進入[18]。約1/3病例的陰莖血液供應部分來源于陰部副動脈。基于以上解剖學發(fā)現(xiàn),在進行根治性前列腺切除術時保留陰部副動脈能夠最大程度地保留陰莖的動脈血供,以保證術后患者性功能的恢復[24]。有研究指出,陰部副動脈在陰莖勃起功能中起到了重要的作用,在行根治性前列腺切除術時應盡量保留陰部副動脈[25- 26]。
1.5 前列腺及周圍的筋膜結構 盆內(nèi)筋膜臟層覆蓋盆腔臟器(包括直腸、膀胱和前列腺),并在前列腺腹側(cè)上部與前列腺前纖維肌肉基質(zhì)融合[27]。在前列腺和膀胱外側(cè)盆腔側(cè)壁,盆內(nèi)筋膜的臟層和壁層融合在一起形成盆筋膜腱弓。常規(guī)根治性前列腺切除術常從此處切開盆內(nèi)筋膜從而游離前列腺外側(cè)[28],但有學者認為,避免切開盆內(nèi)筋膜并同保留神經(jīng)技術相結合,可能會促進術后早期尿控的恢復和術后勃起功能的恢復,但是相關結論需要更多的研究來證實[29]。
2 手術步驟
2.1 分離前列腺背側(cè) 經(jīng)膀胱前方進入恥骨后間隙,細致分離并擴大該間隙,清除前列腺表面脂肪組織,顯露前列腺及前列腺周圍結構(如圖1A)。清除前列腺表面脂肪組織后,不打開雙側(cè)盆筋膜,且不縫扎DVC,通過牽拉導尿管確定膀胱頸位置,并在膀胱頸正中位置切開膀胱頸前唇,后從正中部位直接切開膀胱頸后唇,顯露輸精管及精囊,盡量避免其向兩側(cè)分離,保留膀胱頸側(cè)方神經(jīng)血管束(如圖1B)。最后打開Denonvillier’s筋膜,自直腸和前列腺背側(cè)面無血管區(qū)進行常規(guī)分離。
2.2 順逆結合筋膜內(nèi)分離前列腺兩側(cè) 先提起右側(cè)精囊,緊貼右側(cè)精囊采用冷刀順行分離尋找前列腺筋膜與前列腺包膜間隙,隨后自1~3點處逆行分離尋找前列腺筋膜與前列腺包膜間隙,順逆結合進行分離并最終匯合,顯露前列腺右側(cè)面(如圖1C)。同理,提起左側(cè)精囊并緊貼精囊順行分離,然后自9~11點處逆行分離,通過順逆結合分離的方式顯露前列腺左側(cè)面(如圖1D)。
2.3 分離前列腺與逼尿肌裙間 沿找到的左側(cè)和右側(cè)分離層面向前列腺腹側(cè)面進行分離,分離過程中如出現(xiàn)少量滲血,無需進行特殊處理;如出血量較大,則應用連發(fā)鈦夾臨時夾閉止血。術中可視情況對雙側(cè)進行交替分離,直至完全顯露前列腺腹側(cè)面(如圖1E)。
2.4 游離尿道并最大程度保留尿道長度 完全游離顯露尿道,最大程度保留尿道長度,緊貼前列腺尖部冷刀離斷尿道(如圖1F)并移除前列腺(如圖1G)。檢查創(chuàng)面并止血,隨后應用3-0倒刺線縫合尿道和膀胱頸。
2.5 重建盆腔基本結構 取掉連發(fā)鈦夾并應用3-0倒刺線將逼尿肌裙同膀胱頸部肌肉及纖維結締組織連續(xù)縫合,最大程度重建盆腔基本結構(如圖1H)。
3 總結與展望
機器人輔助下最大程度保留前列腺周圍結構的根治性前列腺切除術是目前局限性根治性前列腺切除術的重要發(fā)展方向。本團隊在現(xiàn)有手術基礎上,最大程度保留神經(jīng)血管束、背血管復合體、恥骨前列腺韌帶、陰部副動脈等前列腺周圍重要結構,并且不打開盆筋膜,保留盆側(cè)筋膜腱弓,順逆結合行筋膜內(nèi)前列腺根治性切除,旨在確保腫瘤控制的同時最大程度地保護術后的尿控及性控等功能,在臨床應用中具有一定的優(yōu)勢。順逆結合的術式有利于術中找到正確的分離層面,可節(jié)省手術時間、加快手術效率,保證手術在正確的分離層面進行。
隨著對前列腺周圍結構認識的深入,機器人輔助根治性前列腺切除術技術也不斷發(fā)展和改進。外科醫(yī)生能夠在確保癌癥控制的同時優(yōu)化患者尿控、性功能等。近年來,一些機器人輔助手術系統(tǒng)開始引入智能導航系統(tǒng),其可根據(jù)患者的具體解剖結構和手術計劃在術中提供實時的導航指引[30]。同時,虛擬現(xiàn)實和增強現(xiàn)實技術也被應用于機器人輔助手術中,這為外科醫(yī)生提供了更直觀的手術視圖和操作界面,有利于增強手術精確性[31]。此外,自動化和機器學習技術的引入使得機器人輔助手術更加智能化,手術機器人系統(tǒng)可以學習和適應外科醫(yī)生的手術技巧,為其提供個性化的輔助操作[32]。這些新進展和技術的應用使得機器人輔助根治性前列腺切除術更加精確、安全和個性化,有助于外科醫(yī)生更準確地定位和保留前列腺周圍結構和組織,減少術中誤差和手術風險,增強手術效果,為患者帶來更好的治療效果和術后恢復。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻聲明:吳清劍負責設計論文框架,起草論文;吳清劍、羅興、周韜、何凡、朱景振、趙江、賈維勝、方針強、鄭霽均參與該項目具體操作;吳清劍、羅興負責數(shù)據(jù)收集,手術圖片處理;方針強負責論文修改;鄭霽負責擬定寫作思路,指導撰寫文章并最后定稿。
參考文獻
[1] XIA C, DONG X, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590.
[2] Carbonara U, Srinath M, Crocerossa F, et al. Robot-assisted radical prostatectomy versus standard laparoscopic radical prostatectomy: an evidence-based analysis of comparative outcomes[J]. World J Urol, 2021, 39(10): 3721-3732.
[3] Coughlin G D, Yaxley J W, Chambers S K, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study[J]. Lancet Oncol, 2018, 19(8): 1051-1060.
[4] Abou Z M, Beksac A T, Ferguson E, et al. Transvesical versus extraperitoneal single-port robotic radical prostatectomy: a matched-pair analysis[J]. World J Urol, 2022, 40(8): 2001-2008.
[5] Umari P, Eden C, Cahill D, et al. Retzius-sparing versus standard robot-assisted radical prostatectomy: a comparative prospective study of nearly 500 patients[J]. J Urol, 2021, 205(3): 780-790.
[6] Asimakopoulos A D, Annino F, D’Orazio A, et al. Complete periprostatic anatomy preservation during robot-assisted laparoscopic radical prostatectomy (RALP): the new pubovesical complex-sparing technique[J]. Eur Urol, 2010, 58(3): 407-417.
[7] Choi H M, Jung S Y, Kim S J, et al. Clinical anatomy of the puboprostatic ligament for the safe guidance for the prostate surgery[J]. Urology, 2020. DOI: 10.1016/j.urology.2019.10.015.
[8] Deliveliotis C, Protogerou V, Alargof E, et al. Radical prostatectomy: bladder neck preservation and puboprostatic ligament sparing-effects on continence and positive margins[J]. Urology, 2002, 60(5): 855-858.
[9] Burnett A L, Mostwin J L. In situ anatomical study of the male urethral sphincteric complex: relevance to continence preservation following major pelvic surgery[J]. J Urol, 1998, 160(4): 1301-1306.
[10] Assem A, Abou Y T, Hamdy S M, et al. Role of sparing of puboprostatic ligaments on continence recovery after radical prostatectomy: a randomized controlled trial[J]. Scand J Urol, 2021, 55(1): 22-26.
[11] WANG Y, CHENG X, XIONG Q, et al. The progress of dorsal vascular complex control strategy in radical prostatectomy[J]. J Int Med Res, 2023, 51(2): 3000605231152091.
[12] Gaivoronskii I V, Mazurenko R G. Variant anatomy of penile venous vascular bed in adult man[J]. Morfologiia, 2012, 141(1): 47-51.
[13] Herranz A F. Ultrasound morphology of prostatic apex: implications for its dissection in prostatectomy[J]. Actas Urol Esp, 2004, 28(6): 413-417.
[14] Bessede T, Sooriakumaran P, Takenaka A, et al. Neural supply of the male urethral sphincter: comprehensive anatomical review and implications for continence recovery after radical prostatectomy[J]. World J Urol, 2017, 35(4): 549-565.
[15] Walz J, Epstein J I, Ganzer R, et al. A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update[J]. Eur Urol, 2016, 70(2): 301-311.
[16] Rai S, Srivastava A, Sooriakumaran P, et al. Advances in imaging the neurovascular bundle[J]. Curr Opin Urol, 2012, 22(2): 88-96.
[17] Costello A J, Brooks M, Cole O J. Anatomical studies of the neurovascular bundle and cavernosal nerves[J]. BJU Int, 2004, 94(7): 1071-1076.
[18] Walz J, Burnett A L, Costello A J, et al. A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy[J]. Eur Urol, 2010, 57(2): 179-192.
[19] Myers R P. Practical surgical anatomy for radical prostatectomy[J]. Urol Clin North Am, 2001, 28(3): 473-490.
[20] Rabbani F, Stapleton A M, Kattan M W, et al. Factors predicting recovery of erections after radical prostatectomy[J]. J Urol, 2000, 164(6): 1929-1934.
[21] Dubbelman Y D, Dohle G R, Schroder F H. Sexual function before and after radical retropubic prostatectomy: a systematic review of prognostic indicators for a successful outcome[J]. Eur Urol, 2006, 50(4): 711-720.
[22] Shin T Y, Lee Y S. Robot-assisted radical prostatectomy with clipless intrafascial neurovascular bundle-sparing approach: surgical technique and one-year functional and oncologic outcomes[J]. Sci Rep, 2020, 10(1): 17595.
[23] Droupy S, Benoit G, Giuliano F, et al. Penile arteries in humans. Origin-distribution-variations[J]. Surg Radiol Anat, 1997, 19(3): 161-167.
[24] Henry B M, Pekala P A, Vikse J, et al. Variations in the arterial blood supply to the penis and the accessory pudendal artery: a meta-analysis and review of implications in radical prostatectomy[J]. J Urol, 2017, 198(2): 345-353.
[25] Thai C T, Karam I M, Nguyen-Thi P L, et al. Pelvic magnetic resonance imaging angioanatomy of the arterial blood supply to the penis in suspected prostate cancer patients[J]. Eur J Radiol, 2015, 84(5): 823-827.
[26] Nehra A, Kumar R, Ramakumar S, et al. Pharmacoangiographic evidence of the presence and anatomical dominance of accessory pudendal artery(s)[J]. J Urol, 2008, 179(6): 2317-2320.
[27] Savera A T, Kaul S, Badani K, et al. Robotic radical prostatectomy with the“Veil of Aphrodite”technique: histologic evidence of enhanced nerve sparing[J]. Eur Urol, 2006, 49(6): 1065-1074.
[28] Wimpissinger T F, Tschabitscher M, Feichtinger H, et al. Surgical anatomy of the puboprostatic complex with special reference to radical perineal prostatectomy[J]. BJU Int, 2003, 92(7): 681-684.
[29] Stolzenburg J U, Rabenalt R, Do M, et al. Intrafascial nerve-sparing endoscopic extraperitoneal radical prostatectomy[J]. Eur Urol, 2008, 53(5): 931-940.
[30] Cheikh Y S, Hachach-Haram N, Aydin A, et al. Video labelling robot-assisted radical prostatectomy and the role of artificial intelligence (AI): training a novice[J]. J Robot Surg, 2023, 17(2): 695-701.
[31] Schiavina R, Bianchi L, Lodi S, et al. Real-time augmented reality three-dimensional guided robotic radical prostatectomy: preliminary experience and evaluation of the impact on surgical planning[J]. Eur Urol Focus, 2021, 7(6): 1260-1267.
[32] Moglia A, Georgiou K, Georgiou E, et al. A systematic review on artificial intelligence in robot-assisted surgery[J]. Int J Surg, 2021. DOI: 10.1016/j.ijsu.2021.106151.
編輯:魏小艷