摘 要 隨著科技發(fā)展和理念更新,早期肺癌微創(chuàng)化、精準(zhǔn)化治療的認(rèn)識已深入人心。以電視胸腔鏡手術(shù)(VATS)和機(jī)器人輔助胸外科手術(shù)(RATS)為代表的微創(chuàng)技術(shù)在早期肺癌的治療中發(fā)揮著越來越重要的地位。RATS具有可以放大10~15倍的高清3D視野、靈活的操作臂和精確穩(wěn)定的操作系統(tǒng),克服了傳統(tǒng)VATS的缺點(diǎn),在手術(shù)準(zhǔn)確性和徹底性上與開放式手術(shù)不相上下。此外,RATS在精確肺段切除方面也具有很大優(yōu)勢,其可以最大限度地減少因技術(shù)限制或?yàn)橐?guī)避風(fēng)險而進(jìn)行的不必要肺組織切除。當(dāng)然,除了這些臨床公認(rèn)的優(yōu)勢外,隨著機(jī)器人手術(shù)系統(tǒng)與快速發(fā)展的5G通信相結(jié)合,進(jìn)一步打破了傳統(tǒng)手術(shù)的空間限制,使得“遠(yuǎn)程手術(shù)”不斷完善,這對促進(jìn)醫(yī)療資源的下沉及醫(yī)學(xué)技術(shù)的交流具有積極意義。本研究旨在就機(jī)器人手術(shù)在早期非小細(xì)胞肺癌治療中應(yīng)用現(xiàn)狀及前景進(jìn)行綜述。
關(guān)鍵詞 手術(shù)機(jī)器人;早期非小細(xì)胞肺癌;肺段切除術(shù);遠(yuǎn)程手術(shù)
中圖分類號 R608 R655.3 文獻(xiàn)標(biāo)識碼 A 文章編號 2096-7721(2024)04-0734-05
Application status and prospect of robot-assisted surgery in the treatment of early non-small cell lung cancer
YAN Kun1, YU Guiping1, WANG Qianyun2
(1. Department of Thoracic Surgery, Jiangyin People’s Hospital, Jiangyin 214400, China; 2. Department of Thoracic Surgery, Changzhou First People’s Hospital, Changzhou 213000, China)
Abstract With the advance of science and technology and renewal of concepts, minimally invasive and accurate treatment of early lung cancer has been widely accepted by public. Surgical technologies represented by video-assisted thoracoscopic surgery (VATS) and robot-assisted thoracic surgery (RATS) play a more and more important role in the treatment of early lung cancer. With its 3D high-definition vision, clear imaging, flexible operating arm and stable operating system, RATS overcomes the shortcomings of traditional VATS, and is comparable to open surgery in accuracy and thoroughness. In addition, RATS also has great advantages in accurate segmental pneumonectomy, which can minimize unnecessary pneumonectomy due to technical limitations or risk avoidance. Furthermore, the combination of robotic surgery and 5G communication technology also enables operators to perform telesurgeries, it breaks the limitations of time and space of surgeries, and promotes the exchange of medical technology, as well as contributes to rational distribution of medical resources. The application status and prospect of robotic surgery in the treatment of early non-small cell lung cancer is reviewed in this study.
Key words Surgical Robot; Early Non-small Cell Lung Cancer; Segmental Pneumonectomy; Telesurgery
近年來,肺癌的發(fā)病率不斷升高。已經(jīng)成為發(fā)病率排名第2位、死亡排名第1位的惡性腫瘤[1]。我國肺癌發(fā)病率為 60.40/10 萬,死亡率為48.42/10萬;而世界人口肺癌發(fā)病率的標(biāo)化率為36.02/10萬,死亡率為27.87/10萬[2]。由此可見,我國的肺癌負(fù)擔(dān)遠(yuǎn)超國際平均水平,不容樂觀。
隨著科技的進(jìn)步,低劑量螺旋CT開始大規(guī)模應(yīng)用在日常體檢篩查,能夠明顯提高肺癌“早檢出”的概率[3]。
對于早期肺癌,手術(shù)切除是首選的治療方式[4]。隨著時代的進(jìn)步和科技的發(fā)展,肺癌的外科治療理念也在不斷改進(jìn)。首先是切除范圍的縮小。從全肺切除到肺葉切除,再到對年齡較大或肺功能較差的患者行肺段切除術(shù)或楔形切除術(shù)[5]。其次是手術(shù)切口的縮小,目前,微創(chuàng)胸腔鏡技術(shù)已取代開胸手術(shù),成為主流[6]。通過縮小切除范圍及手術(shù)切口,微創(chuàng)手術(shù)具有減少切口疼痛、降低并發(fā)癥發(fā)生率、縮短愈合時間等優(yōu)勢。美國國立綜合癌癥網(wǎng)絡(luò)(National Comprehensive Cancer Network,NCCN)指南指出,在排除手術(shù)禁忌的前提下,如果不違背腫瘤手術(shù)治療原則,建議采用微創(chuàng)方式進(jìn)行手術(shù)治療[7]。
以電視胸腔鏡手術(shù)(Video-assisted Thor-acoscopic Surgery,VATS)和機(jī)器人輔助胸外科手術(shù)(Robot-assisted Thoracic Surgery,RATS)為代表的微創(chuàng)技術(shù)在胸外科手術(shù)治療中占據(jù)越來越重要的地位。傳統(tǒng)VATS的發(fā)展受到其固有缺點(diǎn)的限制,如學(xué)習(xí)曲線陡峭、手眼協(xié)調(diào)困難、器械操作靈活度不足等[8]。RATS則是一種相對先進(jìn)的新型微創(chuàng)手術(shù)方式,它已被提議作為VATS的替代方案。相較于VATS,RATS具有一些顯而易見的優(yōu)勢[9-11]。
1 電視胸腔鏡手術(shù)
在胸外科中,VATS是第一個介入胸膜腔且無肋骨擴(kuò)張的手術(shù),最早的 VATS 肺葉切除術(shù)報道于1993年[12]。無論VATS的切口數(shù)量多少(單孔或多孔),VATS肺葉切除術(shù)聯(lián)合系統(tǒng)性淋巴結(jié)清掃術(shù)在圍手術(shù)期并發(fā)癥方面都優(yōu)于開放式肺葉切除術(shù)[13]。VATS肺葉切除術(shù)相較于開放式肺葉切除術(shù)的優(yōu)勢如下:恢復(fù)更早、對肺功能和免疫系統(tǒng)的影響更小、疼痛更輕以及住院時間更短[14],且在延長患者生存時間的同時也改善了其生活質(zhì)量[15]。2006 年,NCCN將VATS 作為治療早期肺癌的標(biāo)準(zhǔn)術(shù)式[16]。
與傳統(tǒng)的肺葉切除術(shù)相比,解剖性肺段切除術(shù)具有相同的療效且可保留更多的肺功能[17]。但是,使用VATS進(jìn)行肺段切除術(shù)比進(jìn)行肺葉切除術(shù)更加困難,非常具有挑戰(zhàn)性,一般只有體量較大的醫(yī)療中心的外科醫(yī)生才能熟練掌握該技能。
2 機(jī)器人輔助胸外科手術(shù)
RATS的引入有助于克服傳統(tǒng)VATS的技術(shù)局限性。RATS相較于VATS的優(yōu)勢包括:高清3D視野、靈活的腕式器械、手部震顫自動濾除以及更加符合人體工程學(xué)設(shè)計的坐式控制臺。在RATS中,可更換器械和攝像機(jī)連接在機(jī)器人系統(tǒng)的機(jī)械臂上,然后通過Trocar插入胸膜腔。與VATS類似,RATS允許通過小切口進(jìn)行肺組織切除術(shù),無需肋骨擴(kuò)張。與開放式或VATS手術(shù)相比,外科醫(yī)生在RATS手術(shù)期間并不需要站在手術(shù)臺前,而是坐在控制臺來操控機(jī)械臂。
RATS目前主要應(yīng)用于肺部腫瘤的手術(shù)治療[18-20],其中主要為Ⅰ~Ⅱ期非小細(xì)胞肺癌(NSCLC)[21],也有研究報道了RATS在Ⅲ期NSCLC的應(yīng)用效果。一項多中心回顧性研究在分析了210例RATS治療Ⅲ期NSCLC后,認(rèn)為RATS的圍手術(shù)期并發(fā)癥率較低,其長期生存率與開胸手術(shù)相似[22]。RATS的一個明顯缺點(diǎn)是缺乏觸覺反饋,但有研究表明這種缺陷可以通過適當(dāng)?shù)挠?xùn)練及立體可視化視野來得到補(bǔ)償[23]。除了缺乏觸覺反饋,手術(shù)時間延長及手術(shù)費(fèi)用高昂也是限制RATS發(fā)展的重要因素,但是隨著手術(shù)熟練度的上升、國產(chǎn)手術(shù)機(jī)器人的研發(fā)應(yīng)用、國家醫(yī)療層面的政策支持,相信這些問題都可以得到妥善解決。
3 RATS在肺段切除術(shù)上的應(yīng)用現(xiàn)狀
Jensik R J等人[24]于1973年首次介紹了肺段切除術(shù),但由于該技術(shù)較為復(fù)雜且存在長期漏氣的高風(fēng)險,它在一開始并未被外科醫(yī)生廣泛接受。隨著技術(shù)水平和手術(shù)理念的發(fā)展,大量研究表明,接受肺段切除術(shù)的T1N0(腫瘤≤2 cm)患者的5年總生存率與標(biāo)準(zhǔn)肺葉切除術(shù)相當(dāng)[25]。最近的兩項隨機(jī)對照試驗(yàn)JCOG0802[26]和CALGB140503[27]探討了肺段切除術(shù)和肺葉切除術(shù)的結(jié)果,這兩項試驗(yàn)都證明了肺段切除術(shù)和肺葉切除術(shù)具有相似的圍手術(shù)期結(jié)果。相較于使用VATS完成肺段切除術(shù)的高挑戰(zhàn)性,具有高清3D視野和靈活腕式操作的RATS可以大大降低肺段切除術(shù)的難度[28]。另外,有研究表明將手術(shù)機(jī)器人攝像系統(tǒng)調(diào)整到紅外線模式,然后靜脈注射吲哚菁綠(IV-ICG),這樣可以使分割平面的識別更加容易和精確[29-30]。一項Ⅱ期隊列試驗(yàn)評估了IV-ICG應(yīng)用于RATS中對節(jié)段間平面識別的可行性、可重復(fù)性和安全性的影響。該研究指出,胸外科醫(yī)生憑借自身觸感及經(jīng)驗(yàn)預(yù)測的節(jié)段平面與注射ICG后繪制的真實(shí)平面相比,預(yù)測的節(jié)段平面的安全邊緣要比實(shí)際的安全邊緣平均要少2.4 cm[31]。所以使用ICG可以準(zhǔn)確、安全地識別節(jié)段間平面,即使不使用手動觸診也能確保腫瘤周圍有足夠的安全邊緣[32]。
Zhou N等人[33]的研究結(jié)果顯示,在非典型肺段切除術(shù)中,RATS比 VATS的手術(shù)時間更短、術(shù)中出血量更少,其原因可能是:①RATS對于段門結(jié)構(gòu)的精確解剖,避免了副損傷,同時也減少了補(bǔ)救這些副損傷所需的時間;②RATS具有高清3D視野和精細(xì)靈活的操作,可以縮短識別靶段結(jié)構(gòu)和裸化組織的時間;③相較于VATS,RATS可以多出一個機(jī)械臂進(jìn)行操作,從而更好地輔助肺組織旋轉(zhuǎn),有助于從多個角度處理段間平面,減少了常規(guī)VATS中反復(fù)調(diào)整切割平面的操作;除了術(shù)中使用ICG識別節(jié)段間平面,術(shù)前使用3D-CTBA結(jié)合3D打印技術(shù),可以進(jìn)一步準(zhǔn)確識別正常解剖結(jié)構(gòu),明確肺段的劃分,確定病灶的位置及其與靶段的位置關(guān)系[34-35],有利于靶段的完整切除和確保手術(shù)切緣,從而進(jìn)一步提高手術(shù)的精準(zhǔn)性。重建的3D圖像可自由旋轉(zhuǎn),借助軟件可以在任意角度進(jìn)行交互,從而直接測量血管、支氣管與病灶之間的距離和位置關(guān)系。RATS的術(shù)者可以在術(shù)中自由觀看并操控3D圖像[36],明確解剖結(jié)構(gòu),避免損傷不必要的肺組織,減少術(shù)中出血,節(jié)省術(shù)中辨別和尋找肺段血管的時間[37],從而縮短手術(shù)時間,降低手術(shù)風(fēng)險,提高手術(shù)成功率。
4 圍手術(shù)期結(jié)果
有研究[38-39]對比了RATS及VATS行肺葉切除術(shù)時的療效,結(jié)果顯示RATS組與VATS組的圍術(shù)期并發(fā)癥發(fā)生率及中轉(zhuǎn)開胸的概率并無統(tǒng)計學(xué)差異,這說明RATS具有和VATS相當(dāng)?shù)陌踩浴?/p>
Cerfolio R J等人[40]總結(jié)了100例RATS肺段切除術(shù)的初步研究,認(rèn)為RATS肺段切除是安全可行的,圍手術(shù)期結(jié)果是可接受的。Zhou N等人[33]的研究對比了三種肺段切除的術(shù)式,認(rèn)為RATS的中位手術(shù)時間長于VATS和開放手術(shù)。即使是簡單的肺段切除,RATS也需要更長的時間。在該研究中,RATS進(jìn)行了更復(fù)雜的節(jié)段切除術(shù),然而在失血量、保留胸管天數(shù)和住院時間上與VATS和開放手術(shù)相比并無劣勢。
肺癌根治術(shù)的關(guān)鍵是系統(tǒng)性淋巴結(jié)清掃。就操作難度而言,受限于視野角度及“筷子效應(yīng)”,VATS在暴露淋巴結(jié)上難度更大。在既往報道中,在淋巴結(jié)清掃的徹底度及淋巴結(jié)升期方面,VATS均劣于傳統(tǒng)開胸手術(shù)[41]。Zirafa C等人[42]的研究顯示,在淋巴結(jié)清掃數(shù)量及淋巴結(jié)升期比例上,RATS組明顯高于VATS組,而RATS組與開胸手術(shù)組的表現(xiàn)無顯著差異。對于早期NSCLC的肺段切除,在對比RATS與VATS肺段切除術(shù)之后,ZHANG Y J等人[43]發(fā)現(xiàn)RATS在N1淋巴結(jié)清掃方面具有明顯優(yōu)勢。RATS手術(shù)在淋巴結(jié)清掃和淋巴結(jié)升期方面的優(yōu)異表現(xiàn)有助于降低局部復(fù)發(fā)率,從而使患者獲得較好的腫瘤學(xué)收益。
5 學(xué)習(xí)曲線
為了更好地反映外科醫(yī)師學(xué)習(xí)RATS的成長過程,研究者提出用“學(xué)習(xí)曲線”來評估學(xué)習(xí)效果并進(jìn)行針對性指導(dǎo),它主要以手術(shù)時間、術(shù)中出血量、拔管時間、引流時間、術(shù)中開胸率、術(shù)后并發(fā)癥發(fā)生率來作為學(xué)習(xí)曲線的評估指標(biāo)[44]。
Meyer M等人[45]從手術(shù)時間、死亡率和外科醫(yī)生舒適度等方面分析了185例RATS肺葉切除術(shù)的學(xué)習(xí)曲線,學(xué)習(xí)者分別在15例、20例和19例時跨越峰點(diǎn),實(shí)現(xiàn)了由初期學(xué)習(xí)階段到熟練掌握階段的轉(zhuǎn)換。Toker A等人[46]分析了102例RATS的結(jié)果,包括肺葉切除和肺段切除,并確定了熟練掌握的最少手術(shù)例數(shù)是14例。Gómez Hernández M T等人[47]的研究發(fā)現(xiàn),RATS的學(xué)習(xí)曲線可分為3個階段:前14例是初始學(xué)習(xí)期,接下來的16例是鞏固階段,從第31例手術(shù)開始步入熟練期。
6 遠(yuǎn)程醫(yī)療與5G通訊
自21世紀(jì)初,國外首例遠(yuǎn)程RATS,即著名的“林白”手術(shù)[48]開展以來,機(jī)器人手術(shù)開始與遠(yuǎn)程通信相結(jié)合,人類外科手術(shù)歷程進(jìn)入了新時代。我國第一臺遠(yuǎn)程RATS完成于2003年,海軍總醫(yī)院為600 km以外的腦出血患者進(jìn)行了遠(yuǎn)程機(jī)器人輔助下定向穿刺血腫抽吸手術(shù)[49]。
隨著我國醫(yī)療技術(shù)的進(jìn)步,北京積水潭醫(yī)院在2006年成功完成了一例遠(yuǎn)程機(jī)器人輔助下脛骨骨折髓內(nèi)釘內(nèi)固定手術(shù),標(biāo)志著我國遠(yuǎn)程機(jī)器人手術(shù)走向初步成熟[50]。隨著5G通訊和機(jī)器人手術(shù)系統(tǒng)的不斷完善,手術(shù)機(jī)器人在遠(yuǎn)程醫(yī)療領(lǐng)域的應(yīng)用會越來越廣泛,機(jī)器人輔助下的遠(yuǎn)程手術(shù)必將成為一個新趨勢。5G 網(wǎng)絡(luò)技術(shù)的快速發(fā)展使數(shù)據(jù)的傳遞更加穩(wěn)定、迅速,使得跨地區(qū)、跨國界遠(yuǎn)程手術(shù)充滿了可能。人工智能的不斷完善,也可以使機(jī)器人系統(tǒng)更加順暢地執(zhí)行命令,從而輔助術(shù)者更好地完成手術(shù)[51]。以5G傳輸及遠(yuǎn)程機(jī)器人手術(shù)技術(shù)為基石的“手術(shù)4.0時代”正在到來。
綜上所述,隨著微創(chuàng)手術(shù)技術(shù)的不斷發(fā)展,VATS的安全性和可行性已在實(shí)踐中被證明。與開放式手術(shù)相比,VATS具有多項優(yōu)勢,但在實(shí)際應(yīng)用中同樣具有一些局限性。而RATS克服了VATS的局限性,使微創(chuàng)肺段切除術(shù)變得更易操作、更安全,并且RATS在淋巴結(jié)清掃及腫瘤學(xué)獲益上具有明顯優(yōu)勢。隨著5G通信技術(shù)的成熟,與其相結(jié)合的遠(yuǎn)程機(jī)器人手術(shù)可以促進(jìn)遠(yuǎn)程手術(shù)從“遙規(guī)劃”跨越到“遙操作”,打破醫(yī)療機(jī)構(gòu)、醫(yī)療資源地域限制。在 “云醫(yī)療”的支持下,基層群眾也可以享受到高水平、高質(zhì)量的醫(yī)療服務(wù),節(jié)約看病時間,降低就醫(yī)負(fù)擔(dān)。RATS作為一項新興技術(shù),發(fā)展時間尚短,其手術(shù)時間較長、費(fèi)用較高的缺點(diǎn)不容忽視,但相信隨著科學(xué)技術(shù)不斷發(fā)展、手術(shù)技能的不斷完善、應(yīng)用環(huán)境的不斷成熟,RATS會在不斷進(jìn)步中為人類醫(yī)療做出更大貢獻(xiàn)。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)說明:嚴(yán)坤負(fù)責(zé)設(shè)計論文框架,起草論文;汪潛云負(fù)責(zé)論文修改;虞桂平負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn)
[1] Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] Achudan S, Kwek E B K. A novel technique for supplementing transosseous suture repair of inferior pole patella fractures with a tension band[J]. Indian J Orthop, 2020, 54(Suppl 2): 322-327.
[3] Chatzidionysiou K, di Giuseppe D, Soderling J, et al. Risk of lung cancer in rheumatoid arthritis and in relation to autoantibody positivity and smoking[J]. RMD Open, 2022, 8(2): e002465.
[4] Ettinger D S, Wood D E, Aisner D L, et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2022, 20(5): 497-530.
[5] Nguyen D, Gharagozloo F, Tempesta B, et al. Long-term results of robotic anatomical segmentectomy for early-stage non-small-cell lung cancer[J]. Eur J Cardiothorac Surg, 2019, 55(3): 427-433.
[6] Kneuertz P J, D’Souza D M, Richardson M, et al. Long-term oncologic outcomes after robotic lobectomy for early-stage non-small-cell lung cancer versus video-assisted thoracoscopic and open thoracotomy approach[J]. Clin Lung Cancer, 2020, 21(3): 214-224.e212.
[7] Chansky K, Detterbeck F C, Nicholson A G, et al. The IASLC lung cancer staging project: external validation of the revision of the TNM Stage groupings in the eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol, 2017, 12(7): 1109-1121.
[8] MA J L, LI X Y, ZHAO S F, et al. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: a meta-analysis[J]. BMC Cancer, 2021, 21(1): 498.
[9] Terra R M, Araujo P, Lauricella L L, et al. A Brazilian randomized study: robotic-assisted vs. video-assisted lung lobectomy outcomes (BRAVO trial)[J]. J Bras Pneumol, 2022, 48(4): e20210464.
[10] Tajè R, Gallina F T, Forcella D, et al. Multimodal evaluation of locoregional anaesthesia efficacy on postoperative pain after robotic pulmonary lobectomy for NSCLC: a pilot study[J]. J Robot Surg, 2023. DOI: 10.1007/s11701-023-01578-y.
[11] XU J M, NI H, WU Y H, et al. Perioperative comparison of video-assisted thoracic surgery and open lobectomy for pT1-stage non-small cell lung cancer patients in China: a multi-center propensity score-matched analysis[J]. Transl Lung Cancer Res, 2021, 10(1): 402-414.
[12] Kirby T J, Mack M J, Landreneau R J, et al. Initial experience with video-assisted thoracoscopic lobectomy[J]. Ann Thorac Surg, 1993; 56(6): 1248-1252.
[13] LUO J Z, JI C Y, Campisi A, et al. Surgical outcomes of video-assisted versus open pneumonectomy for lung cancer: a real-world study[J]. Cancers (Basel), 2022, 14(22): 5683.
[14] Nwogu C E, D’Cunha J, Pang H, et al. VATS lobectomy has better perioperative outcomes than open lobectomy: CALGB 31001, an ancillary analysis of CALGB 140202 (Alliance) [J]. Ann Thorac Surg, 2015, 99(2): 399-405.
[15] Lim E, Harris R A, McKeon H E, et al. Impact of video-assisted thoracoscopic lobectomy versus open lobectomy for lung cancer on recovery assessed using self-reported physical function: VIOLET RCT[J]. Health Technol Assess, 2022, 26(48): 1-162.
[16] Ettinger D S, Bepler G, Bueno R, et al. Non-small cell lung cancer clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2006, 4(6): 548-582.
[17] Kagimoto A, Tsutani Y, Izaki Y, et al. Initial experience of robotic anatomical segmentectomy for non-small cell lung cancer[J]. Jpn J Clin Oncol, 2020, 50(4): 440-445.
[18] Nelson D B, Mehran R J, Mitchell K G, et al. Robotic-assisted lobectomy for non-small cell lung cancer: a comprehensive institutional experience[J]. Ann Thorac Surg, 2019, 108(2): 370-376.
[19] Reddy R M, Gorrepati M L, Oh D S, et al. Robotic-assisted versus thoracoscopic lobectomy outcomes from high-volume thoracic surgeons[J]. Ann Thorac Surg, 2018, 106(3): 902-908.
[20] Louie B E, Wilson J L, Kim S, et al. Comparison of video-assisted thoracoscopic surgery and robotic approaches for clinical stage I and stage II non-small cell lung cancer using The Society of Thoracic Surgeons Database[J]. Ann Thorac Surg, 2016, 102(3): 917-924.
[21] Novellis P, Bottoni E, Voulaz E, et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: comparison of costs and outcomes at a single institute[J]. J Thorac Dis, 2018, 10(2): 790-798.
[22] Veronesi G, Park B, Cerfolio R, et al. Robotic resection of stage III lung cancer: an international retrospective study[J]. Eur J Cardiothorac Surg, 2018, 54(5): 912-919.
[23] Meccariello G, Faedi F, AlGhamdi S, et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? [J]. J Robot Surg, 2016, 10(1): 57-61.
[24] Jensik R J, Faber L P, Milloy F J, et al. Segmental resection for lung cancer. A fifteen-year experience[J]. J Thorac Cardiovasc Surg, 1973, 66(4): 563-572.
[25] Onaitis M W, Furnary A P, Kosinski A S, et al. Equivalent survival between lobectomy and segmentectomy for clinical stage IA lung cancer[J]. Ann Thorac Surg, 2020, 110(6): 1882-1891.
[26] Suzuki K, Saji H, Aokage K, et al. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial[J]. J Thorac Cardiovasc Surg, 2019, 158(3): 895-907.
[27] Altorki N K, Wang X, Wigle D, et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503) [J]. Lancet Respir Med, 2018, 6(12): 915-924.
[28] Veronesi G. Robotic lobectomy and segmentectomy for lung cancer: results and operating technique[J]. J Thorac Dis, 2015, 7(Suppl 2): S122-130.
[29] Ferrari-Light D, Geraci T C, Sasankan P, et al. The utility of near-infrared fluorescence and Indocyanine green during robotic pulmonary resection[J]. Front Surg, 2019. DOI: 10.3389/fsurg.2019.00047.
[30] Pardolesi A, Veronesi G, Solli P, et al. Use of indocyanine green to facilitate intersegmental plane identification during robotic anatomic segmentectomy[J]. J Thorac Cardiovasc Surg, 2014, 148(2): 737-738.
[31] Mehta M, Patel Y S, Yasufuku K, et al. Near-infrared mapping with indocyanine green is associated with an increase in oncological margin length in minimally invasive segmentectomy[J]. J Thorac Cardiovasc Surg, 2019, 157(5): 2029-2035.
[32] Watkins A A, Quadri S M, Servais E L. Robotic-assisted complex pulmonary resection: sleeve lobectomy for cancer[J]. Innovations (Phila), 2021, 16(2): 132-135.
[33] Zhou N, Corsini E M, Antonoff M B, et al. Robotic surgery and anatomic segmentectomy: an analysis of trends, patient selection, and outcomes[J]. Ann Thorac Surg, 2022, 113(3): 975-983.
[34] Kato H, Oizumi H, Suzuki J, et al. Thoracoscopic anatomical lung segmentectomy using 3D computed tomography simulation without tumour markings for non-palpable and non-visualized small lung nodules[J]. Interact Cardiovasc Thorac Surg, 2017, 25(3): 434-441.
[35] JI Y, ZHANG T, YANG L, et al. The effectiveness of three-dimensional reconstruction in the localization of multiple nodules in lung specimens: a prospective cohort study[J]. Transl Lung Cancer Res, 2021, 10(3): 1474-1483.
[36] HE H, WANG F, WANG P Y, et al. Anatomical analysis of variations in the bronchus pattern of the left upper lobe using three-dimensional computed tomography angiography and bronchography[J]. Ann Transl Med, 2022, 10(6): 305.
[37] WANG B, GUO Y W, TANG J Q, et al. Three-dimensional custom-made carbon-fiber prosthesis for sternal reconstruction after sarcoma resection[J]. Thorac Cancer, 2019, 10(6): 1500-1502.
[38] LI C W, HU Y J, HUANG J, et al. Comparison of robotic-assisted lobectomy with video-assisted thoracic surgery for stage IIB-IIIA non-small cell lung cancer[J]. Transl Lung Cancer Res, 2019, 8(6): 820-828.
[39] JIN R S, ZHENG Y Y, YUAN Y, et al. Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy: Short-term Results of a Randomized Clinical Trial (RVlob Trial) [J]. Ann Surg, 2022, 275(2): 295-302.
[40] Cerfolio R J, Watson C, Minnich D J, et al. One hundred planned robotic segmentectomies: early results, technical details, and preferred port placement[J]. Ann Thorac Surg, 2016, 101(3): 1089-1095.
[41] Medbery R L, Gillespie T W, Liu Y, et al. Nodal upstaging is more common with thoracotomy than with VATS during lobectomy for early-stage lung cancer: an analysis from the National Cancer Data Base[J]. J Thorac Oncol, 2016, 11(2): 222-233.
[42] Zirafa C, Aprile V, Ricciardi S, et al. Nodal upstaging evaluation in NSCLC patients treated by robotic lobectomy[J]. Surg Endosc, 2019, 33(1): 153-158.
[43] ZHANG Y J, CHEN C, HU J, et al. Early outcomes of robotic versus thoracoscopic segmentectomy for early-stage lung cancer: a multi-institutional propensity score-matched analysis[J]. J Thorac Cardiovasc Surg, 2020, 160(5): 1363-1372.
[44] Matsumoto J, Hiyama N, Yanagiya M. The Current Status and Future of Robot-assisted Thoracic Surgery[J]. Kyobu Geka, 2020, 73(4): 250-255.
[45] Meyer M, Gharagozloo F, Tempesta B, et al. The learning curve of robotic lobectomy[J]. Int J Med Robot, 2012, 8(4): 448-452.
[46] Toker A, ?zyurtkan M O, Kaba E, et al. Robotic anatomic lung resections: the initial experience and description of learning in 102 cases[J]. Surg Endosc, 2016, 30(2): 676-683.
[47] Gómez Hernández M T, Fuentes Gago M, Novoa Valentín N, et al. Robotic anatomical lung resections: Analysis of the learning curve[J]. Cir Esp (Engl Ed), 2021, 99(6): 421-427.
[48] Marescaux J, Leroy J, Rubino F, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications[J]. Ann Surg, 2002, 235(4): 487-492.
[49] 唐粲, 王田苗, 丑武勝, 等. 腦外科機(jī)器人控制系統(tǒng)的設(shè)計和實(shí)現(xiàn)[J]. 機(jī)器人, 2004, 26(6): 543-547+552.
[50] 王軍強(qiáng), 趙春鵬, 胡磊, 等. 遠(yuǎn)程外科機(jī)器人輔助脛骨髓內(nèi)釘內(nèi)固定系統(tǒng)的初步應(yīng)用[J]. 中華骨科雜志, 2006(10): 682-686.
[51] 安芳芳, 荊朝俠, 彭燕, 等. 達(dá)芬奇機(jī)器人的“前世、今生、來世”[J]. 中國醫(yī)療設(shè)備, 2020, 35(7): 148-151+168.
編輯:劉靜凱