【摘要】 神經(jīng)退行性疾病是中樞神經(jīng)系統(tǒng)中神經(jīng)元功能或結(jié)構(gòu)進(jìn)行性喪失而導(dǎo)致的一組疾病,雖然神經(jīng)退行性疾病的身體或精神癥狀可通過(guò)聯(lián)合治療來(lái)緩解,但目前還沒(méi)有直接減緩或預(yù)防神經(jīng)退行性疾病的策略。近年來(lái)對(duì)腸道微生物群-腸-腦軸研究發(fā)現(xiàn),腸道微生物群及其代謝產(chǎn)物在神經(jīng)系統(tǒng)疾病的發(fā)生、發(fā)展中發(fā)揮著重要作用,而短鏈脂肪酸作為腸道微生物群的主要代謝產(chǎn)物,是腸-腦溝通的關(guān)鍵遞質(zhì),對(duì)神經(jīng)退行性疾病具有神經(jīng)保護(hù)作用,但其具體機(jī)制尚不清楚。本文主要綜述了短鏈脂肪酸對(duì)神經(jīng)退行性疾病的作用機(jī)制,得出通過(guò)改變飲食習(xí)慣增加膳食纖維的攝入含量、補(bǔ)充益生菌與外源性短鏈脂肪酸等方法從而改變體內(nèi)短鏈脂肪酸水平,可能會(huì)成為神經(jīng)退行性疾病安全有效的防治新靶點(diǎn),以期為神經(jīng)退行性疾病的治療提供參考。
【關(guān)鍵詞】 神經(jīng)變性疾病;短鏈脂肪酸;氧化應(yīng)激;線粒體功能;神經(jīng)炎癥;小膠質(zhì)細(xì)胞
【中圖分類號(hào)】 R 742 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2022.0783
【引用本文】 朱莉,幸佳佳,魏娟芳,等. 短鏈脂肪酸在神經(jīng)退行性疾病中的相關(guān)機(jī)制研究進(jìn)展[J]. 中國(guó)全科醫(yī)學(xué),2023,26(24):3061-3066. DOI:10.12114/j.issn.1007-9572.2022.0783. [www.chinagp.net]
【Abstract】 Neurodegenerative diseases are a group of conditions caused by the progressive loss of the function or structure of neurons in the central nervous system. Although the physical or mental symptoms of neurodegenerative diseases can be alleviated by combined therapy,there is no strategy to directly slow down or prevent neurodegenerative diseases. Recent studies on the microbiota-gut-brain axis have found that gut microbiota and their metabolites play an important role in the occurrence and development of nervous system diseases. As the main metabolites of gut microbiota,short-chain fatty acids(SCFAs),are the key transmitter involved in gut-brain communication and have neuroprotective effect on neurodegenerative diseases,but the specific mechanism is not clear. This article mainly reviews the mechanism of SCFAs in neurodegenerative diseases. It is concluded that improving the level of SCFAs in vivo by changing dietary habits via increasing dietary fiber intake and supplementing probiotics and exogenous SCFAs,may become a new safe and effective target for the prevention and treatment of neurodegenerative diseases,which may provide guidance for the treatment of neurodegenerative diseases.
【Key words】 Neurodegenerative diseases;Short-chain fatty acids;Oxidative stress;Mitochondrial function;Neuroinflammation;Microglia
神經(jīng)退行性疾病,如阿爾茨海默?。ˋlzheimer's disease,AD)、帕金森?。≒arkinson's disease,PD)、亨廷頓病(Huntington's diseases,HD)、多發(fā)性硬化癥(multiple sclerosis,MS)和肌萎縮側(cè)索硬化癥(amyotrophic lateral sclerosis,ALS),是一組以大腦特定區(qū)域神經(jīng)元進(jìn)行性和不可逆轉(zhuǎn)喪失為特征,最終導(dǎo)致運(yùn)動(dòng)和/或認(rèn)知功能障礙的疾病[1]。據(jù)報(bào)道,超過(guò)10億人受到神經(jīng)退行性疾病的影響,全球每年約有700萬(wàn)人死于這些疾病。目前,神經(jīng)系統(tǒng)疾病已經(jīng)成為全球第二大死亡原因[2]。既往研究提出,神經(jīng)退行性疾病與蛋白質(zhì)聚集、神經(jīng)元氧化應(yīng)激、線粒體功能障礙、神經(jīng)炎癥和腸道微生物群失調(diào)等機(jī)制密切相關(guān)[3]。并且,越來(lái)越多的臨床證據(jù)表明,腸道微生物群與神經(jīng)退行性疾病的大多數(shù)常見(jiàn)機(jī)制廣泛相交。研究發(fā)現(xiàn),由飲食變化等因素引起的腸道微生物群失調(diào)會(huì)導(dǎo)致機(jī)體內(nèi)平衡被打破,這將促進(jìn)神經(jīng)退行性疾病的進(jìn)展[4]。盡管潛在的機(jī)制目前仍然未知,但腸道微生物群的代謝產(chǎn)物短鏈脂肪酸(short-chain fatty acids,SCFAs)通過(guò)腸-腦軸影響神經(jīng)退行性疾病的假設(shè)已受到越來(lái)越多的關(guān)注。
本文文獻(xiàn)檢索策略:以“short-chain fatty acids,SCFAs,neurodegenerative diseases,oxidative stress,mitochondrial function,neuroinflammation,microglia,mitochondrial autophagy,mitochondrial biogenesis”為英文關(guān)鍵詞檢索PubMed、Medline、Web of Science、SCI-Hub;以“短鏈脂肪酸、神經(jīng)退行性疾病、氧化應(yīng)激、線粒體功能、神經(jīng)炎癥、小膠質(zhì)細(xì)胞、線粒體自噬、線粒體生物發(fā)生”為中文關(guān)鍵詞檢索中國(guó)知網(wǎng)、萬(wàn)方數(shù)據(jù)知識(shí)服務(wù)平臺(tái)、維普網(wǎng)及中國(guó)生物醫(yī)學(xué)文獻(xiàn)服務(wù)系統(tǒng)。檢索時(shí)間為建庫(kù)至2022-07-20。納入標(biāo)準(zhǔn):已發(fā)表的文獻(xiàn);排除標(biāo)準(zhǔn):數(shù)據(jù)信息少、重復(fù)發(fā)表、無(wú)法獲得全文或質(zhì)量差的文獻(xiàn)。
1 神經(jīng)退行性疾病與SCFAs
SCFAs又稱揮發(fā)性脂肪酸,是含6個(gè)或6個(gè)以下碳原子的飽和脂肪酸,是結(jié)腸中膳食纖維和抗性淀粉等難消化的多糖經(jīng)細(xì)菌發(fā)酵產(chǎn)生的主要代謝產(chǎn)物[5],主要有乙酸、丙酸、丁酸、戊酸和己酸(通常以陰離子的形式存在)。乙酸鹽、丙酸鹽和丁酸鹽是最豐富的SCFAs,約占人體總SCFAs的95%,其中乙酸鹽、丙酸鹽和丁酸鹽的比例分別為60∶20∶20[6]。腸道微生物群產(chǎn)生的特定類型的SCFAs主要取決于微生物群亞群的相對(duì)數(shù)量,即微生物群組成。例如,厚壁菌門中的微生物主要產(chǎn)生丁酸鹽,而雙歧桿菌屬主要合成乳酸和乙酸[7]。
SCFAs是腸道微生物群的主要代謝產(chǎn)物,是調(diào)節(jié)人體穩(wěn)態(tài)的重要因子,具有重要的生物學(xué)功能,如提供能量[8]、抗炎作用[9]、免疫調(diào)節(jié)和維持腸道完整性[10]。已有研究證實(shí),SCFAs參與多種疾病如炎癥性腸病、1型和2型糖尿病、代謝綜合征、肥胖癥、結(jié)腸癌和神經(jīng)退行性疾病等病理過(guò)程[11]。在多種神經(jīng)退行性疾病中,SCFAs混合物及其相關(guān)腸道微生物群的濃度發(fā)生了顯著變化。PD患者結(jié)腸中產(chǎn)生SCFAs的細(xì)菌數(shù)量顯著減少[12],而糞便中的SCFAs混合物的濃度和單個(gè)乙酸、丙酸和丁酸的絕對(duì)濃度也顯著下降[13]。AD中SCFAs也有類似的表現(xiàn),AD小鼠的大腦和糞便中丙酸和丁酸含量低于野生型小鼠[14-15]。此外,MS患者的糞便和血液中的乙酸鹽、丙酸鹽和丁酸鹽也顯著減少[16],基于以上證據(jù)表明,SCFAs與神經(jīng)退行性疾病的病理過(guò)程存在一定的關(guān)系,因而揭示SCFAs在神經(jīng)退行性疾病中的作用機(jī)制對(duì)臨床治療神經(jīng)退行性疾病有著一定的參考價(jià)值。
2 SCFAs在神經(jīng)退行性疾病中的相關(guān)機(jī)制
2.1 SCFAs與蛋白質(zhì)異常聚集 雖然每種神經(jīng)退行性疾病均有其不同的臨床表現(xiàn)和選擇性神經(jīng)元丟失,但許多神經(jīng)退行性疾病均有共同的特征,即異常蛋白沉積,蛋白質(zhì)異常沉積包括蛋白質(zhì)不正確的折疊以及蛋白質(zhì)聚集形成的神經(jīng)元內(nèi)包涵體,如在AD中,細(xì)胞外沉積的β淀粉樣蛋白(amyloid β-protein,Aβ)和細(xì)胞內(nèi)過(guò)度磷酸化的tau聚集形成纖維纏結(jié);PD中α突觸核蛋白(α-synuclein,α-syn)的廣泛沉積,進(jìn)而形成的細(xì)胞內(nèi)包涵體(路易小體);ALS中錯(cuò)誤折疊的核轉(zhuǎn)錄因子TAR DNA結(jié)合蛋白43(TDP-43)和超氧化物歧化酶1(superoxide dismutase 1,SOD1)蛋白的異常聚集[17-18]。錯(cuò)誤折疊蛋白質(zhì)的沉積會(huì)進(jìn)一步誘導(dǎo)神經(jīng)元功能的失調(diào)乃至死亡,并且有些異常沉積的蛋白質(zhì)同時(shí)還具有神經(jīng)毒性,進(jìn)一步導(dǎo)致神經(jīng)退行性疾病的發(fā)生。
研究表明,SCFAs可以調(diào)節(jié)蛋白質(zhì)的錯(cuò)誤折疊和積累,從而對(duì)神經(jīng)退行性疾病產(chǎn)生積極影響。HO等[19]研究發(fā)現(xiàn),戊酸鹽可以防止Aβ的聚集。研究者用不同的SCFAs處理單體Aβ肽,發(fā)現(xiàn)在不同濃度下,戊酸可直接抑制Aβ1-40和Aβ1-42二聚體和三聚體的形成(丁酸和丙酸也起相同作用,但效果差于戊酸),且戊酸還可以阻礙單體Aβ1-40和Aβ1-42向Aβ纖維的轉(zhuǎn)化。在AD小鼠模型中,口服丁酸鹽可降低腦內(nèi)Aβ水平并改善認(rèn)知記憶表現(xiàn),研究顯示腦Aβ沉積水平與血液脂多糖(lipopolysaccharide,LPS)、乙酸鹽、戊酸鹽和促炎細(xì)胞因子水平呈正相關(guān)[20],而與丁酸鹽和白介素(IL)-10水平呈負(fù)相關(guān)[21]。QIAO等[22]研究表明,丁酸鈉可以通過(guò)Atg5依賴性和PI3K/Akt/mTOR相關(guān)的自噬途徑使PD模型中α-syn降解。HOU等[23]研究發(fā)現(xiàn),丁酸鈉和高劑量乙酸鈉可減少1-甲基-4-苯基-1、2、3、6-四氫吡啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)誘導(dǎo)的PD小鼠模型中黑質(zhì)致密部α-syn的積累,從而減輕小鼠的運(yùn)動(dòng)功能障礙。綜上所述,SCFAs與神經(jīng)退行性疾病中蛋白質(zhì)的異常聚集關(guān)系密切,通過(guò)補(bǔ)充或者調(diào)節(jié)SCFAs可改善蛋白質(zhì)的異常聚集,發(fā)揮神經(jīng)保護(hù)作用。
2.2 SCFAs與氧化應(yīng)激 氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用失衡的一種狀態(tài),當(dāng)氧氣代謝產(chǎn)生的氧自由基超過(guò)細(xì)胞抗氧化劑的內(nèi)源性清除能力時(shí),即會(huì)發(fā)生氧化應(yīng)激[24]。過(guò)量的氧自由基會(huì)破壞細(xì)胞脂質(zhì)、蛋白質(zhì)和DNA,從而抑制其正常功能。并且,在腦組織中含有大量不飽和脂肪酸和高濃度脂質(zhì),抗氧化能力較弱,因此大腦更容易受到氧自由基的破壞性影響[25]。
既往研究表明,在AD等神經(jīng)退行性疾病中,大腦區(qū)域內(nèi)受到不同程度的氧自由基損傷[26]。氧化應(yīng)激在AD和PD等神經(jīng)退行性疾病的常見(jiàn)病理生理學(xué)中起著核心作用,所以抗氧化療法是治療神經(jīng)退行性疾病的可行方法之一。研究表明SCFAs可以通過(guò)介導(dǎo)氧化還原的多種途徑來(lái)調(diào)節(jié)氧化應(yīng)激。
2.2.1 SCFAs作為Kelch樣ECH相關(guān)蛋白1(Kelch-like ECH-associated protein 1,Keap1)-核因子E2相關(guān)因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)防御途徑的激活劑調(diào)節(jié)細(xì)胞氧化還原的穩(wěn)態(tài) Nrf2是控制200多個(gè)基因的細(xì)胞抗氧化防御的主要調(diào)節(jié)因子[27]。正常生理情況下,Nrf2主要與其抑制劑Keap1結(jié)合,在泛素蛋白酶體途徑作用下迅速降解,以保持在生理狀態(tài)下Nrf2的低轉(zhuǎn)錄活性。然而,在氧化應(yīng)激或在親電性外源物存在的情況下,Keap1的活性降低,Nrf2在細(xì)胞核中積累,并與小Maf蛋白結(jié)合成異質(zhì)二聚體后與抗氧化反應(yīng)元件(antioxidant response element,ARE)結(jié)合,上調(diào)抗氧化酶的轉(zhuǎn)錄活性以抵抗氧化應(yīng)激[28-29]。SCFAs中的丁酸鹽通過(guò)抑制組蛋白去乙酰酶(histone deacetylases,HDAC)來(lái)激活Nrf2,并且丁酸鹽還誘導(dǎo)了與協(xié)同抗氧化作用相關(guān)的Nrf2啟動(dòng)子的表觀遺傳修飾,從而抵擋氧化應(yīng)激[30]。DUMITRESCU等[31]研究確定了AD中氧化應(yīng)激與Aβ產(chǎn)生和聚集之間的相互關(guān)系,氧化應(yīng)激增強(qiáng)Aβ沉積,而Aβ觸發(fā)氧化反應(yīng)。SZCZECHOWIAK等[32]研究表明SCFAs可以激活Nrf2,從而防止Aβ積累。另一項(xiàng)關(guān)于丁酸鹽降低AD患者中β位點(diǎn)淀粉樣前體蛋白裂解酶1(BACE1)的表達(dá)水平和Aβ積累的研究,揭示了細(xì)胞通過(guò)鈉偶聯(lián)單羧酸轉(zhuǎn)運(yùn)蛋白1(sodium-coupled monocarboxylate transporter-1,SMCT1)吸收丁酸鹽后,在Sp1乙?;せ罴?xì)胞周期蛋白依賴性激酶抑制劑1(p21)/Nrf2通路后,通過(guò)抑制NADPH氧化酶2(NADPH Oxidise 2,NOX2)和上調(diào)SOD1來(lái)防止過(guò)多的氧自由基產(chǎn)生,進(jìn)而減輕氧化應(yīng)激[33]。HOYLES等[34]通過(guò)體外血-腦脊液屏障(BBB)模型——hCMEC/D3細(xì)胞,采用丙酸鹽進(jìn)行干預(yù)后發(fā)現(xiàn)丙酸鹽能激活Nrf2,調(diào)節(jié)細(xì)胞氧化還原的穩(wěn)態(tài),減少活性氧(reactive oxygen species,ROS)的釋放,進(jìn)而保護(hù)BBB免受氧化應(yīng)激損傷。以上研究也直接或間接表明SCFAs通過(guò)Nrf2信號(hào)傳導(dǎo)對(duì)神經(jīng)退行性疾病產(chǎn)生積極作用。
2.2.2 SCFAs介導(dǎo)氧化應(yīng)激 NURRAHMA等[35]的一項(xiàng)研究中,使用益生菌(唾液乳酸桿菌)以及該益生菌的代謝物處理由單側(cè)6-羥基多巴胺(6-hydroxydopamine hydrobromide,6-OHDA)誘導(dǎo)的PD老鼠,發(fā)現(xiàn)補(bǔ)充該益生菌以及其產(chǎn)生的代謝產(chǎn)物對(duì)多巴胺能神經(jīng)元具有神經(jīng)保護(hù)作用,其機(jī)制之一就是通過(guò)增加抗氧化物酶谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)和SOD活性,減少ROS的產(chǎn)生,且主要發(fā)揮作用的代謝產(chǎn)物是SCFAs。在過(guò)氧化氫誘導(dǎo)的小鼠單核巨噬細(xì)胞氧化損傷的體外模型中,丙酸鈉干預(yù)可以上調(diào)細(xì)胞中血紅素氧合酶1(heme oxygenase,HO-1)與錳超氧化物歧化酶(MnSOD)等抗氧化酶的表達(dá),從而減輕細(xì)胞模型的氧化應(yīng)激[36]。AGUILAR等[37]使用丁酸鹽可以降低動(dòng)脈粥樣硬化進(jìn)展過(guò)程中的氧化應(yīng)激,其機(jī)制是SCFAs降低了NADPH氧化酶的活性使ROS的產(chǎn)生減少,從而減少了ROS對(duì)血管內(nèi)皮細(xì)胞的攻擊,減輕了動(dòng)脈粥樣硬化。而在多種神經(jīng)退行性疾病中,腦組織受損的最主要原因是腦血管內(nèi)皮遭受氧化應(yīng)激損傷,造成腦血管功能障礙,因此SCFAs對(duì)神經(jīng)退行性疾病的治療機(jī)制很有可能是通過(guò)介導(dǎo)氧化應(yīng)激酶而發(fā)揮作用。
2.3 SCFAs與線粒體功能障礙 線粒體是存在于真核生物細(xì)胞質(zhì)中雙層膜結(jié)構(gòu)的多任務(wù)細(xì)胞器,是許多代謝途徑的關(guān)鍵樞紐。線粒體內(nèi)膜中的線粒體呼吸鏈?zhǔn)蔷€粒體的主要功能和結(jié)構(gòu)之一,其由復(fù)合物Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ組成,通過(guò)氧化磷酸化途徑產(chǎn)生細(xì)胞功能所需的大部分三磷腺苷(ATP)[38]。與其他系統(tǒng)相比,中樞神經(jīng)系統(tǒng)(CNS)有著更大的能量需求,因此CNS很大程度上取決于線粒體的功能,大量證據(jù)表明,線粒體參與了多種神經(jīng)退行性疾病的發(fā)病機(jī)制。
線粒體的功能障礙會(huì)影響線粒體的生物發(fā)生、線粒體動(dòng)力學(xué)、線粒體自噬,會(huì)使線粒體電子傳遞鏈功能障礙,ROS生成增加,鈣離子濃度失衡,最終導(dǎo)致神經(jīng)細(xì)胞的凋亡或壞死,從而導(dǎo)致神經(jīng)系統(tǒng)的損害,并與多種神經(jīng)退行性疾病直接相關(guān)。因此對(duì)線粒體的功能和內(nèi)環(huán)境穩(wěn)態(tài)的干預(yù),也是神經(jīng)退行性疾病可能的治療靶點(diǎn)。
2.3.1 SCFAs影響線粒體自噬從而影響神經(jīng)退行性疾病的發(fā)生、發(fā)展 線粒體自噬是指衰老、受損傷的線粒體會(huì)被線粒體自噬機(jī)器吞噬,然后被溶酶體清除。線粒體自噬減少將會(huì)使得功能障礙的線粒體增多,ATP產(chǎn)生降低,ROS增多,最終直接或者間接導(dǎo)致神經(jīng)退行性疾病的發(fā)生[39]。TANG等[40]研究表明,丙酸鹽可通過(guò)誘導(dǎo)有缺陷的線粒體自噬降解,抑制促凋亡因子的釋放從而阻礙了凋亡級(jí)聯(lián)的激活。ROSE等[41]使用丁酸鹽對(duì)自閉癥兒童的細(xì)胞模型進(jìn)行干預(yù),研究表明丁酸鹽可以在生理應(yīng)激和/或線粒體功能障礙的情況下增強(qiáng)線粒體功能,從而改善疾病狀態(tài)下的能量代謝,而其中可能機(jī)制是丁酸鹽干預(yù)上調(diào)了參與線粒體自噬的基因(PINK1、LC3、PTEN),促進(jìn)線粒體自噬,從而調(diào)節(jié)了自閉癥細(xì)胞模型的線粒體功能。
2.3.2 SCFAs影響線粒體生物發(fā)生、改善線粒體功能障礙從而影響神經(jīng)退行性疾病的發(fā)生、發(fā)展 ROSE等[41]研究中同樣發(fā)現(xiàn)丁酸鈉的干預(yù)上調(diào)了參與線粒體生物發(fā)生的基因-共激活因子-1α(peroxisome proliferators-activated receptor γ coactivator lalpha,PGC-1α),PGC-1α可以調(diào)控線粒體生成相關(guān)基因的轉(zhuǎn)錄和表達(dá),如核呼吸因子1/2 (nuclear respiratory factor 1/2,NRF1/2),線粒體轉(zhuǎn)錄因子(mitochondrial transcription factor A,TFAM)以及細(xì)胞核編碼線粒體基因,促進(jìn)線粒體的生物發(fā)生,從而改善線粒體功能障礙導(dǎo)致的能量代謝障礙。WANG等[42]研究表明,丁酸鈉處理AD小鼠模型后,會(huì)增加AD小鼠星形膠質(zhì)細(xì)胞中PGC-1α的表達(dá)水平,從而增加線粒體生物發(fā)生以維持星形膠質(zhì)細(xì)胞中的正常線粒體功能,使星形膠質(zhì)細(xì)胞與神經(jīng)元之間的能量交換增強(qiáng),改善AD小鼠的認(rèn)知障礙。LIU等[43]在研究間歇飲食干預(yù)糖尿病后認(rèn)知功能障礙時(shí),發(fā)現(xiàn)補(bǔ)充SCFAs可以增加糖尿病小鼠大腦中的線粒體生物發(fā)生從而改善小鼠的認(rèn)知障礙。DUSCHA等[44]研究發(fā)現(xiàn)給MS患者補(bǔ)充丙酸14 d后,患者調(diào)節(jié)性T(Treg)細(xì)胞顯著且持續(xù)增加,而輔助性T細(xì)胞(Th)1和Th17細(xì)胞顯著減少,且發(fā)現(xiàn)Treg細(xì)胞中線粒體的呼吸功能和形態(tài)恢復(fù)至正常水平。MS是一種針對(duì)白質(zhì)的慢性自身免疫性疾病,通常導(dǎo)致CNS內(nèi)神經(jīng)軸突周圍的髓鞘破壞,其特征是促炎性自身反應(yīng)性T細(xì)胞增加,即Th17和Th1,以及Treg細(xì)胞數(shù)量減少和功能受損。綜上所述,SCFAs可以通過(guò)調(diào)節(jié)線粒體的功能產(chǎn)生積極影響,從而直接或間接影響神經(jīng)退行性疾病。
2.4 SCFAs與免疫炎癥 神經(jīng)炎癥是發(fā)生在CNS中的炎性反應(yīng),同時(shí)也是固有免疫的重要組成部分,在清除病原體以及維持神經(jīng)組織穩(wěn)態(tài)中均發(fā)揮著關(guān)鍵作用。在CNS中,主要發(fā)揮作用的固有免疫細(xì)胞是小膠質(zhì)細(xì)胞。小膠質(zhì)細(xì)胞作為CNS中的巨噬細(xì)胞,在神經(jīng)元發(fā)生發(fā)育、突觸修剪以及大腦穩(wěn)態(tài)的維持中發(fā)揮重要功能[45]。同時(shí)小膠質(zhì)細(xì)胞上存在多種模式識(shí)別受體,能夠識(shí)別CNS微環(huán)境中的病原體相關(guān)分子模式進(jìn)而被誘導(dǎo)活化為M1型,并釋放多種促炎性免疫遞質(zhì)。這些促炎遞質(zhì)不僅能夠直接誘導(dǎo)神經(jīng)元死亡,同時(shí)也能作用于腦內(nèi)其他的固有細(xì)胞使其釋放細(xì)胞因子,促進(jìn)外周免疫細(xì)胞向CNS募集,引發(fā)一系列免疫炎癥級(jí)聯(lián)反應(yīng),從而進(jìn)一步損傷正常的神經(jīng)元,導(dǎo)致神經(jīng)退行性疾病的發(fā)生[46]。因此通過(guò)干預(yù)小膠質(zhì)細(xì)胞介導(dǎo)的神經(jīng)炎癥從而改善神經(jīng)退行性疾病是一條可行的策略。
SCFAs可以通過(guò)抑制小膠質(zhì)細(xì)胞的過(guò)度激活、恢復(fù)小膠質(zhì)細(xì)胞的功能、誘導(dǎo)小膠質(zhì)細(xì)胞的表型轉(zhuǎn)化,從而抑制炎癥。HOU等[23]在MPTP誘導(dǎo)的PD小鼠模型評(píng)估3種主要SCFAs(乙酸鈉、丙酸鈉和丁酸鈉)的作用時(shí)發(fā)現(xiàn),丁酸鈉可以減輕中腦黑質(zhì)致密部小膠質(zhì)細(xì)胞的過(guò)度激活,從而抑制PD小鼠的神經(jīng)炎癥,發(fā)揮神經(jīng)保護(hù)作用。MATT等[47]研究發(fā)現(xiàn),在LPS誘導(dǎo)的老年小鼠神經(jīng)炎癥模型中,使用丁酸鹽可以減輕小膠質(zhì)細(xì)胞釋放促炎細(xì)胞因子IL-1β和腫瘤壞死因子(TNF),從而減輕神經(jīng)炎癥。ERNY等[48]研究表明,使用混合的SCFAs(乙酸鹽、丙酸鹽與丁酸鹽)可以逆轉(zhuǎn)有缺陷的小膠質(zhì)細(xì)胞,使其樹(shù)突長(zhǎng)度、分段數(shù)、細(xì)胞體積恢復(fù)正常,進(jìn)而影響免疫調(diào)節(jié)和CNS功能。SADLER等[49]研究表明,補(bǔ)充混合SCFAs(乙酸鹽、丙酸鹽和丁酸鹽)可以通過(guò)將促炎性小膠質(zhì)細(xì)胞M1型轉(zhuǎn)化為抗炎的M2型,改善卒中后晚期的皮質(zhì)重組和突觸可塑性,從而改善運(yùn)動(dòng)障礙。LIU等[50]發(fā)現(xiàn)在AD小鼠模型中,乙酸鹽可以通過(guò)抑制小膠質(zhì)細(xì)胞向M1型轉(zhuǎn)化來(lái)減少神經(jīng)炎癥,進(jìn)而顯著降低AD小鼠的認(rèn)知障礙。
然而SCFAs對(duì)小膠質(zhì)細(xì)胞的生物學(xué)效應(yīng)似乎很大程度上取決于特定的疾病狀況。COLOMBO等[51]研究表明,給小鼠補(bǔ)充SCFAs會(huì)使小膠質(zhì)細(xì)胞轉(zhuǎn)錄組譜發(fā)生顯著改變,小膠質(zhì)細(xì)胞炎癥功能相關(guān)基因與載脂蛋白E(apolipoprotein E,ApoE)顯著上調(diào)。ApoE與Aβ原纖維共聚集有助于斑塊播種和斑塊核心穩(wěn)定,從而進(jìn)一步促進(jìn)Aβ斑塊負(fù)荷的沉積。ERNY等[52]研究發(fā)現(xiàn),乙酸鹽在神經(jīng)退行性變期間調(diào)節(jié)小膠質(zhì)細(xì)胞吞噬功能,從而影響疾病進(jìn)展。在無(wú)菌小鼠模型中,小膠質(zhì)細(xì)胞大多處于未成熟狀態(tài),并且小膠質(zhì)細(xì)胞線粒體ROS產(chǎn)生增加,造成呼吸電子鏈功能障礙,而加入乙酸鹽之后可以逆轉(zhuǎn)這一現(xiàn)象。同樣的在AD無(wú)菌小鼠模型中線粒體ROS增加,通過(guò)補(bǔ)充乙酸鹽也能使其降低。但是與無(wú)菌小鼠相比,補(bǔ)充乙酸鹽后小膠質(zhì)細(xì)胞對(duì)Aβ斑塊的吞噬作用卻降低,進(jìn)而Aβ斑塊負(fù)荷的沉積也增加[52]。SCFAs對(duì)小膠質(zhì)細(xì)胞轉(zhuǎn)錄和功能調(diào)控的詳細(xì)機(jī)制尚不清楚,并且SCFAs在不同疾病條件下對(duì)小膠質(zhì)細(xì)胞不同的影響詳細(xì)原因目前仍然未知,需要進(jìn)一步探索個(gè)性化治療方法的潛在用途。
3 小結(jié)與展望
現(xiàn)階段,臨床上沒(méi)有直接減緩或預(yù)防神經(jīng)退行性疾病的治療策略,而隨著腸-腦軸的研究深入,越來(lái)越多的證據(jù)表明腸道微生物群的代謝產(chǎn)物SCFAs在神經(jīng)退行性疾病中發(fā)揮著重要作用。例如SCFAs可以通過(guò)影響異常蛋白質(zhì)的沉積,減少細(xì)胞的氧化應(yīng)激,減輕線粒體的功能障礙,影響小膠質(zhì)細(xì)胞介導(dǎo)的免疫炎癥等多種途徑從而對(duì)多種神經(jīng)退行性疾病產(chǎn)生積極影響。因此通過(guò)改變飲食習(xí)慣增加膳食纖維的攝入含量、補(bǔ)充益生菌與外源性SCFAs等方法從而改變體內(nèi)SCFAs水平,可能會(huì)成為神經(jīng)退行性疾病安全有效的防治新靶點(diǎn)。
但是在目前研究中,SCFAs在神經(jīng)退行性疾病的發(fā)病機(jī)制中也存在爭(zhēng)議。例如,觀察到在PD小鼠模型中灌胃丁酸鈉(200 mg/kg,3周)可緩解PD癥狀[53],而灌胃丁酸鈉(165 mg/kg,1周)會(huì)使炎癥加劇MPTP誘導(dǎo)的PD癥狀;在AD患者中,顯示腦淀粉樣蛋白沉積水平與乙酸鹽、戊酸鹽水平呈正相關(guān),而與丁酸鹽呈負(fù)相關(guān)[21]。以上的差異也說(shuō)明了SCFAs在神經(jīng)退行性疾病的防治中是一把雙刃劍,而如何選取合適的劑量、比例以及種類,在不同神經(jīng)退行性疾病中形成個(gè)性化的治療方案從而使SCFAs在其中發(fā)揮最優(yōu)作用仍然需要探索。并且目前大多相關(guān)研究均為動(dòng)物實(shí)驗(yàn),臨床研究較少,因而對(duì)SCFAs的臨床探索仍然需要進(jìn)一步完善。為了更好地研究SCFAs在神經(jīng)退行性疾病中的長(zhǎng)期益處,以及在臨床試驗(yàn)中的安全性與有效性,應(yīng)嘗試將重點(diǎn)放在改變飲食習(xí)慣,補(bǔ)充產(chǎn)生SCFAs的益生菌等干預(yù)措施上,從而評(píng)估體內(nèi)SCFAs水平的改變對(duì)神經(jīng)退行性疾病的影響,為臨床轉(zhuǎn)換提供可靠的基礎(chǔ)。
作者貢獻(xiàn):朱莉進(jìn)行文章的構(gòu)思,負(fù)責(zé)撰寫(xiě)論文;幸佳佳、魏娟芳負(fù)責(zé)文獻(xiàn)/資料收集、整理;王文春進(jìn)行論文修訂;張安仁負(fù)責(zé)文章質(zhì)量控制及審校,對(duì)文章整體負(fù)責(zé)。
本文無(wú)利益沖突。
參考文獻(xiàn)
CUMMINGS J. Disease modification and Neuroprotection in neurodegenerative disorders[J]. Transl Neurodegener,2017,6:25. DOI:10.1186/s40035-017-0096-2.
HEEMELS M T. Neurodegenerative diseases[J]. Nature,2016,539(7628):179. DOI:10.1038/539179a.
DAWSON T M,GOLDE T E,LAGIER-TOURENNE C. Animal models of neurodegenerative diseases[J]. Nat Neurosci,2018,
21(10):1370-1379. DOI:10.1038/s41593-018-0236-8.
BD N,R K D,SK M. Gut microbial molecules in behavioural and neurodegenerative conditions[J]. Nat Rev Neurosci,2020,
21(12):717-731. DOI:10.1038/s41583-020-00381-0.
MILLER T L,WOLIN M J. Pathways of acetate,propionate,and butyrate formation by the human fecal microbial flora[J]. Appl Environ Microbiol,1996,62(5):1589-1592. DOI:10.1128/aem.62.5.1589-1592.1996.
CUMMINGS J H,POMARE E W,BRANCH W J,et al. Short chain fatty acids in human large intestine,portal,hepatic and venous blood[J]. Gut,1987,28(10):1221-1227. DOI:10.1136/gut.28.10.1221.
TAGLIABUE A,ELLI M. The role of gut microbiota in human obesity:recent findings and future perspectives[J]. Nutr Metab Cardiovasc Dis,2013,23(3):160-168. DOI:10.1016/j.numecd.2012.09.002.
DONOHOE D R,GARGE N,ZHANG X X,et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon[J]. Cell Metab,2011,13(5):517-526. DOI:10.1016/j.cmet.2011.02.018.
BRAHE L K,ASTRUP A,LARSEN L H. Is butyrate the link between diet,intestinal microbiota and obesity-related metabolic diseases?[J]. Obes Rev,2013,14(12):950-959. DOI:10.1111/obr.12068.
BURGER-VAN PAASSEN N,VINCENT A,PUIMAN P J,et al. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids:implications for epithelial protection[J]. Biochem J,2009,420(2):211-219. DOI:10.1042/BJ20082222.
LU J,ZHENG J,WANG B H,et al. The human microbiota in health and disease[J]. Engineering,2017,3(1):71-82. DOI:10.1016/J.ENG.2017.01.008.
PEREZ-PARDO P,DODIYA H B,ENGEN P A,et al. Role of TLR4 in the gut-brain axis in Parkinson's disease:a translational study from men to mice[J]. Gut,2019,68(5):829-843. DOI:10.1136/gutjnl-2018-316844.
UNGER M M,SPIEGEL J,DILLMANN K U,et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls[J]. Parkinsonism Relat Disord,2016,32:66-72. DOI:10.1016/j.parkreldis.2016.08.019.
ZHANG L,WANG Y,XIAYU X,et al. Altered gut microbiota in a mouse model of Alzheimer's disease[J]. J Alzheimers Dis,2017,60(4):1241-1257. DOI:10.3233/jad-170020.
ZHENG J,ZHENG S J,CAI W J,et al. Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids[J]. Anal Chim Acta,2019,1070:51-59. DOI:10.1016/j.aca.2019.04.021.
ZENG Q,GONG J L,LIU X Y,et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis[J]. Neurochem Int,2019,129:104468. DOI:10.1016/j.neuint.2019.104468.
DUGGER B N,DICKSON D W. Pathology of neurodegenerative diseases[J]. Cold Spring Harb Perspect Biol,2017,9(7):a028035. DOI:10.1101/cshperspect.a028035.
HUSSAIN R,ZUBAIR H,PURSELL S,et al. Neurodegenerative diseases:regenerative mechanisms and novel therapeutic approaches[J]. Brain Sci,2018,8(9):177. DOI:10.3390/brainsci8090177.
HO L,ONO K,TSUJI M,et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother,2018,18(1):83-90. DOI:10.1080/14737175.2018.1400909.
FERNANDO W M A D B,MARTINS I J,MORICI M,et al. Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer's disease transgenic mouse model at an early disease stage[J]. J Alzheimers Dis,2020,
74(1):91-99. DOI:10.3233/JAD-190120.
MARIZZONI M,CATTANEO A,MIRABELLI P,et al. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease[J]. J Alzheimers Dis,2020,78(2):683-697. DOI:10.3233/JAD-200306.
QIAO C M,SUN M F,JIA X B,et al. Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway[J]. Exp Cell Res,2020,
387(1):111772. DOI:10.1016/j.yexcr.2019.111772.
HOU Y C,LI X Q,LIU C,et al. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson's disease[J]. Exp Gerontol,2021,150:111376. DOI:10.1016/j.exger.2021.111376.
BAGHERI F,KHORI V,ALIZADEH A M,et al. Reactive oxygen species-mediated cardiac-reperfusion injury:mechanisms and therapies[J]. Life Sci,2016,165:43-55. DOI:10.1016/j.lfs.2016.09.013.
ADIBHATLA R M,HATCHER J F. Lipid oxidation and peroxidation in CNS health and disease:from molecular mechanisms to therapeutic opportunities[J]. Antioxid Redox Signal,2010,12(1):125-169. DOI:10.1089/ars.2009.2668.
BHAT A H,DAR K B,ANEES S,et al. Oxidative stress,mitochondrial dysfunction and neurodegenerative diseases;a mechanistic insight[J]. Biomed Pharmacother,2015,74:101-110. DOI:10.1016/j.biopha.2015.07.025.
YAMAMOTO M,KENSLER T W,MOTOHASHI H. The KEAP1-NRF2 system:a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev,2018,98(3):1169-1203. DOI:10.1152/physrev.00023.2017.
MANN G E,F(xiàn)ORMAN H J. Introduction to special issue on 'Nrf2 regulated redox signaling and metabolism in physiology and medicine[J]. Free Radic Biol Med,2015,88(Pt B):91-92. DOI:10.1016/j.freeradbiomed.2015.08.002.
TEBAY L E,ROBERTSON H,DURANT S T,et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors,nutrient cues,and energy status and the pathways through which it attenuates degenerative disease[J]. Free Radic Biol Med,2015,88(Pt B):108-146. DOI:10.1016/j.freeradbiomed.2015.06.021.
WU J D,JIANG Z P,ZHANG H N,et al. Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2[J]. Free Radic Biol Med,2018,124:454-465. DOI:10.1016/j.freeradbiomed.2018.06.034.
DUMITRESCU L,POPESCU-OLARU I,COZMA L,et al. Oxidative stress and the microbiota-gut-brain axis[J]. Oxid Med Cell Longev,2018,2018:2406594. DOI:10.1155/2018/2406594.
SZCZECHOWIAK K,DINIZ B S,LESZEK J. Diet and Alzheimer's dementia - Nutritional approach to modulate inflammation[J]. Pharmacol Biochem Behav,2019,184:172743. DOI:10.1016/j.pbb.2019.172743.
GENG X,YANG B,LI R T,et al. Effects of docosahexaenoic acid and its peroxidation product on amyloid-β peptide-stimulated microglia[J]. Mol Neurobiol,2020,57(2):1085-1098. DOI:10.1007/s12035-019-01805-4.
HOYLES L,SNELLING T,UMLAI U K,et al. Microbiome-host systems interactions:protective effects of propionate upon the blood-brain barrier[J]. Microbiome,2018,6(1):55. DOI:10.1186/s40168-018-0439-y.
NURRAHMA B A,TSAO S P,WU C H,et al. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism[J]. Front Aging Neurosci,2021,13:668775. DOI:10.3389/fnagi.2021.668775.
FILIPPONE A,LANZA M,CAMPOLO M,et al. The anti-inflammatory and antioxidant effects of sodium propionate[J]. Int J Mol Sci,2020,21(8):3026. DOI:10.3390/ijms21083026.
AGUILAR E C,SANTOS L C,LEONEL A J,et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells[J]. J Nutr Biochem,2016,34:99-105. DOI:10.1016/j.jnutbio.2016.05.002.
LI H R,UITTENBOGAARD M,HAO L,et al. Clinical insights into mitochondrial neurodevelopmental and neurodegenerative disorders:their biosignatures from mass spectrometry-based metabolomics[J]. Metabolites,2021,11(4):233. DOI:10.3390/metabo11040233.
施蘊(yùn)渝,張亮. 線粒體與神經(jīng)退行性疾?。跩]. 生物學(xué)雜志,2022,39(2):1-10.
TANG Y,CHEN Y,JIANG H,et al. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death[J]. Cell Death Differ,2011,18(4):602-618. DOI:10.1038/cdd.2010.117.
ROSE S,BENNURI S C,DAVIS J E,et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism[J]. Transl Psychiatry,2018,8:42. DOI:10.1038/s41398-017-0089-z.
WANG C,ZHENG D P,WENG F L,et al. Sodium butyrate ameliorates the cognitive impairment of Alzheimer's disease by regulating the metabolism of astrocytes[J]. Psychopharmacology,2022,239(1):215-227. DOI:10.1007/s00213-021-06025-0.
LIU Z G,DAI X S,ZHANG H B,et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment[J]. Nat Commun,2020,11(1):855. DOI:10.1038/s41467-020-14676-4.
DUSCHA A,GISEVIUS B,HIRSCHBERG S,et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism[J]. Cell,2020,180(6):1067-1080.e16. DOI:10.1016/j.cell.2020.02.035.
LAGO-BALDAIA I,F(xiàn)ERNANDES V M,ACKERMAN S D. More than mortar:Glia as architects of nervous system development and disease[J]. Front Cell Dev Biol,2020,8:611269. DOI:10.3389/fcell.2020.611269.
VILLA A,VEGETO E,POLETTI A,et al. Estrogens,neuroinflammation,and neurodegeneration[J]. Endocr Rev,2016,37(4):372-402. DOI:10.1210/er.2016-1007.
MATT S M,ALLEN J M,LAWSON M A,et al. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice[J]. Front Immunol,2018,9:1832. DOI:10.3389/fimmu.2018.01832.
ERNY D,HRABE DE ANGELIS A L,JAITIN D,et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci,2015,18(7):965-977. DOI:10.1038/nn.4030.
SADLER R,CRAMER J V,HEINDL S,et al. Short-chain fatty acids improve poststroke recovery via immunological mechanisms[J]. J Neurosci,2020,40(5):1162-1173. DOI:10.1523/jneurosci.1359-19.2019.
LIU J M,LI H J,GONG T Y,et al. Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer's disease via upregulating GPR41 and inhibiting ERK/JNK/NF-κB[J]. J Agric Food Chem,2020,68(27):7152-7161. DOI:10.1021/acs.jafc.0c02807.
COLOMBO A V,SADLER R K,LLOVERA G,et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition[J]. eLife,2021,10:e59826. DOI:10.7554/eLife.59826.
ERNY D,DOKALIS N,MEZ? C,et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease[J]. Cell Metab,2021,33(11):2260-2276.e7. DOI:10.1016/j.cmet.2021.10.010.
LIU J M,WANG F Y,LIU S Z,et al. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1[J]. J Neurol Sci,2017,381:176-181. DOI:10.1016/j.jns.2017.08.3235.
(收稿日期:2022-09-15;修回日期:2022-12-26)
(本文編輯:毛亞敏)