【摘要】 背景 非酒精性脂肪性肝病發(fā)病率逐年升高但無(wú)特效藥物,臨床和基礎(chǔ)研究顯示降糖藥物胰高血糖素樣肽-1(GLP-1)受體激動(dòng)劑能改善肝臟脂質(zhì)沉積,但具體機(jī)制不明確。目的 探討GLP-1受體激動(dòng)劑改善高果糖誘導(dǎo)的胰島素抵抗大鼠肝臟脂質(zhì)沉積的機(jī)制。方法 2016年1—4月選取Wistar大鼠36只隨機(jī)分為對(duì)照(ND)組和造模組,ND組給予普通飼料、造模組給予高果糖飼料喂養(yǎng),8周后行高胰島素-正葡萄糖鉗夾實(shí)驗(yàn)證實(shí)造模組胰島素抵抗形成,繼續(xù)將造模組大鼠隨機(jī)分為高果糖(HFD)亞組和高果糖+艾塞那肽(HFD+Ex)亞組,HFD+Ex亞組給予艾塞那肽注射液腹部皮下注射4周后,觀察糖脂水平、胰島素抵抗、肝臟脂質(zhì)沉積、β-catenin表達(dá)和核轉(zhuǎn)位以及脂質(zhì)合成通路因子的變化。進(jìn)一步用轉(zhuǎn)染技術(shù)在HepG2細(xì)胞用小干擾RNA抑制β-catenin的表達(dá)觀察細(xì)胞脂質(zhì)沉積和脂質(zhì)合成通路相關(guān)因子的變化,將HepG2細(xì)胞用25 mmol/L果糖和100 nmol/L exendin-4處理,未轉(zhuǎn)染的細(xì)胞用作對(duì)照,全部細(xì)胞分為正常對(duì)照(Con)組、高果糖(HF)組、高果糖+exendin-4(HF+Ex4)組、高果糖+exendin-4+對(duì)照siRNA(HF+Ex4+Si-control)組、高果糖+exendin-4+β-catenin siRNA(HF+Ex4+Si-β-catenin)組。實(shí)驗(yàn)結(jié)束后收集大鼠體質(zhì)量、肝指數(shù)、三酰甘油(TG)、肝臟TG、總膽固醇(TC)、游離脂肪酸(FFA)、丙氨酸氨基轉(zhuǎn)移酶(ALT)、天冬氨酸氨基轉(zhuǎn)移酶(AST)、空腹血糖(FBG)、空腹胰島素(FINS)、葡萄糖曲線下面積(AUCglu)、葡萄糖輸注速率(GIR)、肝臟油紅O染色,并測(cè)定大鼠肝臟及HepG2細(xì)胞固醇調(diào)節(jié)元素結(jié)合蛋白1(SREBP-1)和下游脂質(zhì)合成的關(guān)鍵酶脂肪酸合成酶(FAS)、乙酰輔酶A羧化酶(ACC)、硬脂酰CoA脫飽和酶1(SCD-1)以及β-catenin的蛋白表達(dá)水平。結(jié)果 (1)高果糖喂養(yǎng)8周后造模組大鼠體質(zhì)量、肝指數(shù)、肝臟TG水平均高于ND組,GIR低于ND組(Plt;0.05);藥物干預(yù)4周后HFD亞組大鼠體質(zhì)量、肝指數(shù)、TG、FFA、ALT、FBG、FINS、AUCglu高于ND組,GIR低于ND組(Plt;0.05);HFD+Ex亞組大鼠體質(zhì)量、肝指數(shù)、FFA、ALT、FBG、FINS、AUCglu低于HFD亞組,GIR高于HFD亞組(Plt;0.05)。(2)HFD亞組大鼠肝臟TG水平高于ND組(Plt;0.05),油紅O染色肝細(xì)胞內(nèi)可見(jiàn)大量紅色脂滴聚集;HFD+Ex亞組大鼠肝臟TG水平低于HFD亞組(Plt;0.05),肝細(xì)胞內(nèi)紅色脂滴減少。(3)HFD亞組大鼠肝臟SREBP-1、FAS、SCD-1、ACC蛋白表達(dá)均高于ND組(Plt;0.05);HFD+Ex亞組大鼠肝臟SREBP-1、FAS、SCD-1、ACC蛋白表達(dá)均低于HFD亞組(Plt;0.05)。(4)HFD亞組大鼠肝臟β-catenin的總蛋白及核內(nèi)蛋白表達(dá)低于ND組(Plt;0.05);HFD+Ex亞組大鼠肝臟β-catenin的總蛋白及核內(nèi)蛋白表達(dá)高于HFD亞組(Plt;0.05)。(5)HF+Ex4組、HF+Ex4+Si-control組HepG2細(xì)胞β-catenin總蛋白、核內(nèi)蛋白表達(dá)均高于HF組,TG水平低于HF組(Plt;0.05);HF+Ex4+Si-β-catenin組HepG2細(xì)胞β-catenin總蛋白、核內(nèi)蛋白表達(dá)低于HF+Ex4組,TG水平高于HF+Ex4組(Plt;0.05)。(6)HF+Ex4組、HF+Ex4+Si-control組HepG2細(xì)胞SREBP-1、ACC、FAS、SCD-1蛋白表達(dá)均低于HF組(Plt;0.05);HF+Ex4+Si-β-catenin組HepG2細(xì)胞SREBP-1、ACC、FAS、SCD-1蛋白表達(dá)高于HF+Ex4組(Plt;0.05)。結(jié)論 GLP-1受體激動(dòng)劑可能通過(guò)調(diào)控β-catenin表達(dá)改善胰島素抵抗大鼠肝臟脂質(zhì)沉積,是治療非酒精性脂肪性肝病的潛在新藥,β-catenin可能是藥物治療的重要靶標(biāo)。
【關(guān)鍵詞】 非酒精性脂肪性肝??;胰島素抵抗;果糖;胰高血糖素樣肽-1受體激動(dòng)劑;β-catenin;肝臟脂質(zhì)沉積;大鼠
【中圖分類號(hào)】 R 589 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0062
【引用本文】 高哲,段凱欣,呂秀芹,等. 胰高血糖素樣肽-1受體激動(dòng)劑改善高果糖飲食誘導(dǎo)的胰島素抵抗大鼠肝臟脂質(zhì)沉積機(jī)制研究[J]. 中國(guó)全科醫(yī)學(xué),2023,26(21):2639-2646. DOI:10.12114/j.issn.1007-9572.2023.0062.
[www.chinagp.net]
GAO Z,DUAN K X,LYU X Q,et al. Mechanism of glucagon-like peptide-1 receptor agonist improving liver lipid deposition in a rat model of insulin resistance induced by high-fructose diet[J]. Chinese General Practice,2023,26(21):2639-2646.
Mechanism of Glucagon-like Peptide-1 Receptor Agonist Improving Liver Lipid Deposition in a Rat Model of Insulin Resistance Induced by High-fructose Diet GAO Zhe1,DUAN Kaixin2,LYU Xiuqin1,MA Huijuan1,ZHANG Zhimei1,SONG Guangyao1*
1.Department of Endocrinology,Hebei General Hospital,Shijiazhuang 050051,China
2.Graduate School of Hebei North University,Zhangjiakou 075000,China
*Corresponding author:SONG Guangyao,Chief physician/Professor;E-mail:sguangyao@163.com
【Abstract】 Background The incidence rate of nonalcoholic fatty liver disease is increasing year by year,but there is still no effective cure. Clinical and basic studies show that a type of hypoglycemic drug,namely glucagon-like peptide-1(GLP-1)receptor agonists can improve liver lipid deposition,but the specific mechanism is unknown. Objective To explore the mechanism of GLP-1 receptor agonists improving liver lipid deposition in a rat model of insulin resistance induced by high-fructose diet. Methods This experiment was carried out from January to April 2016. Thirty-six Wistar rats were randomly divided into a control group(ND)receiving a normal diet and a model group receiving a high-fructose diet. After 8 weeks,a hyperinsulinemic-euglycemic clamp test was performed in the model group to verify the formation of insulin resistance. The rats in the model group were further randomized into a high-fructose(HFD)subgroup and a high fructose with exenatide(HFD+Ex)subgroup. The changes of glucose and lipid levels,insulin resistance,liver lipid deposition,the expression and nuclear translocation of β-catenin and lipid synthesis pathway related factors were observed in HFD+Ex subgroup at four weeks after receiving subcutaneous abdominal injection of exenatide injection. Further changes in cell lipid deposition and lipid synthesis pathway related factors were observed after inhibiting the expression of β-catenin with small interfering RNA(siRNA)by transfection techniques in HepG2 cells. HepG2 cells were treated with 25 mmol/L fructose,100 nmol/L exendin-4,and non-transfected HepG2 cells were used as controls. ALL of the cells were divided into normal control group(Con),high-fructose(HF)group,high fructose with exendin-4(HF+Ex4)group,high fructose with exendin-4 and control siRNA(HF+Ex4+Si-control)group,and high fructose with exendin-4 and β-catenin siRNA(HF+Ex4+Si-β-catenin) group. After the experiment,the rats' weight and liver index,serum concentrations of triglyceride(TG),total cholesterol(TC),free fatty acid(FFA),alanine aminotransferase(ALT),aspartate aminotransferase(AST),fasting blood glucose(FBG),fasting insulin(FINS) and liver TG concentration were measured,and the area under the plasma glucose curve(AUCglu),and glucose infusion rate(GIR)were calculated,and lipid droplets in liver tissues were observed using Oil Red O staining. The protein expression levels of sterol regulatory element binding protein 1(SREBP-1)and the key enzymes for downstream lipid synthesis,fatty acid synthase(FAS),acetyl coenzyme A carboxylase(ACC),stearoyl-CoA desaturase 1(SCD-1)and β-catenin of liver tissues and HepG2 cells were also measured. Results (1)After 8-week high-fructose feeding,the model group had significantly higher weight,liver index and liver TG concentration,and lower GIR than the ND group(Plt;0.05). After 4 weeks of drug intervention,HFD subgroup demonstrated higher weight,liver index,TG,F(xiàn)FA,ALT,F(xiàn)BG,F(xiàn)INS and AUCglu,and lower GIR than the ND group(Plt;0.05). HFD+Ex subgroup showed lower weight,liver index,F(xiàn)FA,ALT,F(xiàn)BG,F(xiàn)INS,and AUCglu,and higher GIR than HFD subgroup(Plt;0.05).(2)Compared with ND group,HFD subgroup demonstrated higher concentration of TG in the liver(Plt;0.05),and a large number of red lipid droplets in liver cells. HFD+Ex subgroup had lower concentration of TG in the liver(Plt;0.05)and reduced red lipid droplets in liver cells compared with HFD subgroup.(3)Compared with ND group,the expression of SREBP-1,F(xiàn)AS,SCD-1 and ACC in liver of rats in HFD subgroup increased(Plt;0.05). Compared with HFD subgroup,the protein expression of SREBP-1,F(xiàn)AS,SCD-1 and ACC in HFD+Ex subgroup decreased(Plt;0.05).(4)Compared with ND group,the expression levels of total protein and nuclear protein of β-catenin in liver of rats in HFD subgroup were significantly decreased(Plt;0.05). Compared with HFD subgroup,the expression levels of total protein and nuclear protein of β-catenin increased in HFD+Ex subgroup(Plt;0.05).(5)Compared the HepG2 cells treated with HF,HF+Ex4 group had higher expression levels of total protein and nuclear protein of β-catenin and lower levels of serum TG,and so did HF+Ex4+Si-control group(Plt;0.05). Compared with HF+Ex4 group,HF+Ex4+Si-β-catenin group had down-regulated expression of total protein and nuclear protein of β-catenin(Plt;0.05). The levels of serum TG of HepG2 cells in HF+Ex4+Si-β-catenin group was higher than that in HF+Ex4 group(Plt;0.05).(6)HF+Ex4 group had lower protein expression levels of SREBP-1,ACC,F(xiàn)AS,and SCD-1 of HepG2 cells than HF group,and so did the HF+Ex4+Si-control group(Plt;0.05). The protein expression levels of SREBP-1,ACC,F(xiàn)AS,and SCD-1 of HepG2 cells in HF+Ex4+Si-β-catenin group were higher than those in HF+Ex4 group(Plt;0.05). Conclusion GLP-1 receptor agonists may regulate β-catenin expression to improve liver lipid deposition in rats with insulin resistance,which are potential new drugs for nonalcoholic fatty liver disease. β-catenin may be an important target for drug treatment.
【Key words】 Non-alcoholic fatty liver disease;Insulin resistance;Fructose;GLP-1 receptor agonist;β-catenin;Liver lipid deposition;Rats
胰島素抵抗是2型糖尿病(T2DM)和非酒精性脂肪性肝?。∟AFLD)共同的發(fā)病機(jī)制,二者關(guān)系密切[1]。流行病學(xué)調(diào)查顯示,NAFLD患者中約22.5%合并T2DM,28%~70%的T2DM患者合并NAFLD[2]。夏明鋒等[3]建議臨床內(nèi)分泌醫(yī)生在處理T2DM合并NAFLD患者時(shí)應(yīng)優(yōu)先考慮同時(shí)具有血糖和肝臟獲益的降糖藥,在今后降糖藥物的研發(fā)時(shí)應(yīng)考慮糖尿病和NAFLD兩方面的終點(diǎn)改善。
臨床研究發(fā)現(xiàn)降糖新藥胰高血糖素樣肽-1(GLP-1)受體激動(dòng)劑能改善T2DM患者肝臟脂質(zhì)沉積,但具體機(jī)制尚不明確[4-5]。β-catenin早期發(fā)現(xiàn)其主要功能為參與細(xì)胞間黏附,后來(lái)發(fā)現(xiàn)β-catenin還參與了信號(hào)轉(zhuǎn)導(dǎo)、代謝等,與NAFLD、糖尿病、肥胖的發(fā)生、發(fā)展密切相關(guān)[6]。而且β-catenin也是GLP-1在多個(gè)器官發(fā)揮作用的重要參與者[7]。GLP-1通過(guò)β-catenin作用于胰島β細(xì)胞改善糖代謝[8],也可以通過(guò)β-catenin介導(dǎo)脂肪的生成。2010年首次發(fā)現(xiàn)人原代肝細(xì)胞存在GLP-1受體[9],研究表明敲除β-catenin基因的小鼠肝臟三酰甘油(TG)含量增高[10],GLP-1是否可以通過(guò)調(diào)控β-catenin抑制肝臟脂質(zhì)沉積尚待研究。因此,本研究通過(guò)給予高果糖誘導(dǎo)的胰島素抵抗大鼠GLP-1受體激動(dòng)劑干預(yù),觀察胰島素抵抗、肝臟脂質(zhì)沉積、脂質(zhì)從頭合成途徑和β-catenin水平的變化,并通過(guò)轉(zhuǎn)染技術(shù)在細(xì)胞水平下調(diào)β-catenin表達(dá),探討GLP-1受體激動(dòng)劑是否通過(guò)調(diào)控β-catenin表達(dá)抑制脂質(zhì)從頭合成途徑改善肝臟脂質(zhì)沉積,揭示GLP-1與β-catenin在肝臟脂質(zhì)合成中的內(nèi)在關(guān)系,在細(xì)胞及動(dòng)物水平探討GLP-1受體激動(dòng)劑改善高果糖誘導(dǎo)的脂質(zhì)沉積分子機(jī)制,為闡明其作為可能的治療NAFLD的新藥提供理論基礎(chǔ)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物和細(xì)胞 Wistar大鼠購(gòu)于河北醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心(實(shí)驗(yàn)動(dòng)物質(zhì)量合格證:1502010);HepG2細(xì)胞來(lái)源于協(xié)和細(xì)胞庫(kù),于河北省人民醫(yī)院臨床醫(yī)學(xué)研究中心保存。實(shí)驗(yàn)已獲河北省人民醫(yī)院動(dòng)物倫理委員會(huì)批準(zhǔn)(202213)。
1.1.2 實(shí)驗(yàn)主要試劑和儀器 食品級(jí)結(jié)晶果糖(河北華旭藥業(yè)有限公司),果糖(Sigma Chemical,St. Louis,MO,美國(guó)),艾塞那肽注射液(Baxter Pharmaceutical Solutiongs LLC,美國(guó)),exendin-4(E7144,Sigma-Aldrich,St. Louis,MO,美國(guó)),SREBP-1抗體(2438,Santa Cruz Biotechnology Inc,美國(guó)),硬脂酰CoA脫飽和酶1(SCD-1)抗體(11815,Abcam,美國(guó)),乙酰輔酶A羧化酶(ACC)抗體(3662,Cell Signaling Technology Inc,美國(guó)),脂肪酸合成酶(FAS)抗體(9874,Cell Signaling Technology Inc,美國(guó)),β-actin抗體(66009-1-Ig,Cambridge Bioscience,英國(guó)),核纖層蛋白B1(LMNB1)抗體(9272,BBI,美國(guó)),lipofectamine 2000(11668-019,Invitrogen,美國(guó));核蛋白和胞漿蛋白提取試劑盒(P1200,北京普利萊基因技術(shù)有限公司)。石蠟病理切片機(jī)(RM2245,德國(guó)LEIKA公司),低溫離心機(jī)(EBA12R,德國(guó)Hettich公司),熒光倒置顯微鏡(DMI3000B,德國(guó)Leica公司),全自動(dòng)生化分析儀(Beckman X20,美國(guó))。
1.2 動(dòng)物實(shí)驗(yàn)
1.2.1 動(dòng)物飼養(yǎng)與分組 2016年1—4月選取清潔級(jí)6周齡雄性Wistar大鼠36只,體質(zhì)量200 g左右,自由飲水,室溫約25 ℃,相對(duì)濕度40%~70%,12 h/d光照維持,晝夜循環(huán)。所有大鼠進(jìn)行1周適應(yīng)性喂養(yǎng)后采用隨機(jī)數(shù)字表法分為對(duì)照(ND)組14只和造模組22只。ND組給予普通飼料(河北醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心)喂養(yǎng),造模組給予高果糖飼料(普通飼料中加入食品級(jí)結(jié)晶果糖,其中果糖為總熱量的60%)喂養(yǎng)。8周后,兩組隨機(jī)抽取6只大鼠,行高胰島素-正葡萄糖鉗夾實(shí)驗(yàn)并收集大鼠體質(zhì)量、肝指數(shù)〔肝指數(shù)(%)=(肝濕重/體質(zhì)量)×100%〕、肝臟TG、葡萄糖輸注速率(GIR)。繼續(xù)將造模組大鼠隨機(jī)分為高果糖(HFD)亞組8只和高果糖+艾塞那肽(HFD+Ex)亞組8只。HFD+Ex亞組給予艾塞那肽注射液(10 μg/kg)腹部皮下注射,2次/d,干預(yù)4周,其余兩組給予等體積0.9%氯化鈉溶液皮下注射。實(shí)驗(yàn)結(jié)束后收集大鼠體質(zhì)量、肝指數(shù)、肝臟TG、TG、總膽固醇(TC)、游離脂肪酸(FFA)、丙氨酸氨基轉(zhuǎn)移酶(ALT)、天冬氨酸氨基轉(zhuǎn)移酶(AST)、空腹血糖(FBG)、空腹胰島素(FINS)、葡萄糖曲線下面積(AUCglu)、GIR、肝臟油紅O染色,并測(cè)定SREBP-1和下游脂質(zhì)合成的關(guān)鍵酶FAS、ACC、SCD-1以及β-catenin的蛋白表達(dá)水平。因個(gè)別大鼠在飼養(yǎng)過(guò)程中死亡,最后每組大鼠剩余6~8只,每組納入6只大鼠進(jìn)行實(shí)驗(yàn)并分析。
1.2.2 清醒狀態(tài)下高胰島素-正葡萄糖鉗夾實(shí)驗(yàn) 參考KRAEGEN等[11]建立的高胰島素-正葡萄糖鉗夾技術(shù),評(píng)價(jià)大鼠胰島素敏感性。具體操作步驟:3%戊巴比妥鈉麻醉大鼠,予右側(cè)頸動(dòng)脈、右側(cè)頸靜脈插管術(shù)。應(yīng)激反應(yīng)消失且大鼠體質(zhì)量恢復(fù)后,禁食12 h過(guò)夜行清醒狀態(tài)下高胰島素-正葡萄糖鉗夾實(shí)驗(yàn)。經(jīng)三通管頸靜脈導(dǎo)管兩端分別連接濃度為40 U/L胰島素注射液和30%葡萄糖注射液。測(cè)定基礎(chǔ)血糖值后以4 mU·kg-1·min-1速率滴注胰島素溶液,當(dāng)血糖低于基礎(chǔ)值時(shí),同步以9~14 mg·kg-1·min-1速率滴注30%葡萄糖溶液,根據(jù)血糖調(diào)整GIR,將血糖穩(wěn)定在(5.0±0.5) mmol/L的范圍內(nèi)。GIR=穩(wěn)態(tài)時(shí)GIR×葡萄糖濃度×1 000/體質(zhì)量(kg)/60。
1.2.3 腹腔注射葡萄糖耐量實(shí)驗(yàn)(IPGTT) 大鼠禁食過(guò)夜后取鼠尾靜脈血測(cè)定FBG,給予50%葡萄糖注射液2 g/kg腹腔注射,分別測(cè)給糖后5、10、30、60、120 min血糖,計(jì)算AUCglu。
1.3 細(xì)胞實(shí)驗(yàn)
1.3.1 細(xì)胞培養(yǎng)與分組 HepG2細(xì)胞置于37 ℃、含5% CO2的細(xì)胞培養(yǎng)箱中,采用含10%胎牛血清、1%非必需氨基酸、100 U/mL青霉素和100 μg/mL鏈霉素的最低必需培養(yǎng)基(MEM)培養(yǎng)。細(xì)胞貼壁之后加入含有或不含有25 mmol/L果糖的5%胎牛血清新培養(yǎng)基培養(yǎng)24 h,
隨后用β-catenin小干擾RNA(siRNA)轉(zhuǎn)染細(xì)胞下調(diào)β-catenin表達(dá),HepG2細(xì)胞用25 mmol/L果糖和100 nmol/L exendin-4處理,未轉(zhuǎn)染的細(xì)胞用作對(duì)照。細(xì)胞分為正常對(duì)照(Con)組、高果糖(HF)組、高果糖+exendin-4(HF+Ex4)組、高果糖+exendin-4+對(duì)照siRNA(HF+Ex4+Si-control)組、高果糖+exendin-4+β-catenin siRNA(HF+Ex4+Si-β-catenin)組。測(cè)定HepG2細(xì)胞β-catenin蛋白表達(dá)及TG水平改變,收集HepG2細(xì)胞油紅O染色結(jié)果,并測(cè)定HepG2細(xì)胞SREBP-1和下游脂質(zhì)合成的關(guān)鍵酶FAS、ACC、SCD-1的蛋白表達(dá)水平。
1.3.2 siRNA轉(zhuǎn)染 細(xì)胞濃度達(dá)到70%左右時(shí)分別用適量不含血清及雙抗Opti-MEM培養(yǎng)基稀釋相應(yīng)的siRNA和轉(zhuǎn)染試劑lipofectamine 2000,放入37 ℃孵箱轉(zhuǎn)染6 h后,更換培養(yǎng)基培養(yǎng)48 h后收集細(xì)胞。
1.4 大鼠肝臟及HepG2細(xì)胞相關(guān)指標(biāo)測(cè)定
1.4.1 TG水平測(cè)定 精確稱重肝組織50 mg,加入裂解液1 mL,勻漿裂解后提取脂質(zhì)。HepG2細(xì)胞充分洗滌后用裂解緩沖液裂解10 min室溫2 000 r/min離心5 min后收集上清液。按照TG測(cè)定試劑盒提供的操作方法測(cè)定TG水平。
1.4.2 油紅O染色 肝臟組織冰凍切片8 μm,10%中性甲醛固定10~15 min,然后進(jìn)行水洗。油紅染色10~15 min后用60%異丙醇脫色,水洗后蘇木素淡染核后拍照。培養(yǎng)的細(xì)胞則在4%多聚甲醛中固定30 min,并用1%油紅O染色2 h拍照。
1.4.3 蛋白表達(dá)測(cè)定 提取大鼠肝臟組織或培養(yǎng)細(xì)胞總蛋白及核蛋白,應(yīng)用蛋白質(zhì)印跡方法測(cè)定SREBP-1和下游脂質(zhì)合成的關(guān)鍵酶FAS、ACC、SCD-1以及β-catenin的蛋白表達(dá)水平,內(nèi)參為β-actin和LMNB1。取50 μg蛋白進(jìn)行聚丙烯酰胺凝膠電泳,經(jīng)過(guò)轉(zhuǎn)膜、封閉,加入1∶1 000~1∶2 000稀釋的抗體,4 ℃
搖床過(guò)夜,Tris緩沖鹽液洗膜后加入1∶10 000稀釋的辣根過(guò)氧化物酶標(biāo)記的二抗孵育1 h,經(jīng)化學(xué)發(fā)光、顯影、定影及蛋白表達(dá)半定量進(jìn)行分析。
1.5 統(tǒng)計(jì)學(xué)方法 應(yīng)用統(tǒng)計(jì)學(xué)軟件SPSS 21.0進(jìn)行數(shù)據(jù)處理。計(jì)量資料符合正態(tài)分布的以(x-±s)表示,兩組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用完全隨機(jī)設(shè)計(jì)單因素方差分析,組間兩兩比較用LSD-t檢驗(yàn)。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 胰島素抵抗大鼠造模驗(yàn)證及藥物干預(yù)后糖脂水平 高果糖喂養(yǎng)8周后造模組大鼠體質(zhì)量、肝指數(shù)、肝臟TG水平高于ND組,GIR水平低于ND組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表1。
藥物干預(yù)4周后三組大鼠體質(zhì)量、肝指數(shù)、TG、FFA、ALT、FBG、FINS、AUCglu、GIR比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。其中HFD亞組大鼠體質(zhì)量、肝指數(shù)、TG、FFA、ALT、FBG、FINS、AUCglu高于ND組,GIR低于ND組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HFD+Ex亞組大鼠體質(zhì)量、肝指數(shù)、FFA、ALT、FBG、FINS、AUCglu低于HFD亞組,GIR高于HFD亞組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表2。
2.2 大鼠肝臟脂質(zhì)沉積變化 HFD亞組大鼠肝臟TG水平〔(2.35±0.20)mmol/L〕較ND組〔(0.80±0.13)mmol/L〕升高,肝細(xì)胞內(nèi)可見(jiàn)大量紅色脂滴聚集;給藥后HFD+Ex亞組肝臟TG水平(1.63±0.18) mmol/L較HFD亞組降低,紅色脂滴減少;三組肝臟TG水平比較,差異有統(tǒng)計(jì)學(xué)意義(F=165.124,Plt;0.001),見(jiàn)圖1。
2.3 大鼠肝臟脂質(zhì)從頭合成通路相關(guān)因子表達(dá) 經(jīng)蛋白質(zhì)印跡條帶灰度值分析,三組大鼠肝臟脂質(zhì)從頭合成通路轉(zhuǎn)錄因子SREBP-1以及下游脂質(zhì)合成關(guān)鍵酶FAS、SCD-1、ACC蛋白表達(dá)比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。其中HFD亞組大鼠肝臟SREBP-1、FAS、SCD-1、ACC蛋白表達(dá)均高于ND組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HFD+Ex亞組大鼠肝臟SREBP-1、FAS、SCD-1、ACC蛋白表達(dá)均低于HFD亞組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表3。
2.4 大鼠肝臟β-catenin蛋白表達(dá) 經(jīng)Western Blot蛋白條帶灰度值分析,三組大鼠肝臟β-catenin總蛋白(內(nèi)參β-actin)及核內(nèi)蛋白(內(nèi)參LMNB1)表達(dá)比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。其中HFD亞組大鼠肝臟β-catenin總蛋白及核內(nèi)蛋白表達(dá)低于ND組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);藥物干預(yù)后HFD+Ex亞組大鼠肝臟β-catenin總蛋白及核內(nèi)蛋白表達(dá)高于HFD亞組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表4。
2.5 HepG2細(xì)胞β-catenin蛋白表達(dá)及細(xì)胞脂質(zhì)沉積變化 為了進(jìn)一步研究β-catenin與GLP-1受體激動(dòng)劑exendin-4作用之間的因果關(guān)系,用siRNA敲低β-catenin。結(jié)果顯示,五組HepG2細(xì)胞β-catenin總蛋白(內(nèi)參β-actin)、核內(nèi)蛋白(內(nèi)參LMNB1)表達(dá)、TG水平比較,差異均有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。其中HF組HepG2細(xì)胞β-catenin總蛋白、核內(nèi)蛋白表達(dá)低
于Con組,TG水平高于Con組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HF+Ex4組、HF+Ex4+Si-control組HepG2細(xì)胞β-catenin總蛋白、核內(nèi)蛋白表達(dá)均高于HF組,TG水平低于HF組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HF+Ex4+Si-β-catenin組HepG2細(xì)胞β-catenin總蛋白、核內(nèi)蛋白表達(dá)低于HF+Ex4組,TG水平高于HF+Ex4組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);油紅O染色顯示,HF+Ex4+Si-β-catenin組HepG2細(xì)胞脂滴高于HF+Ex4組,見(jiàn)表5、圖2。
2.6 HepG2細(xì)胞脂質(zhì)從頭合成途徑相關(guān)因子的表達(dá) 經(jīng)Western Blot蛋白條帶灰度值分析,五組HepG2細(xì)胞脂質(zhì)從頭合成通路轉(zhuǎn)錄因子SREBP-1以及下游脂質(zhì)合成關(guān)鍵酶ACC、FAS、SCD-1蛋白表達(dá)比較,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05)。其中HF組HepG2細(xì)胞SREBP-1、ACC、FAS、SCD-1蛋白表達(dá)均高于Con組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HF+Ex4組、HF+Ex4+Si-control組HepG2細(xì)胞SREBP-1、ACC、FAS、SCD-1蛋白表達(dá)均低于HF組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05);HF+Ex4+Si-β-catenin組HepG2細(xì)胞SREBP-1、ACC、FAS、SCD-1蛋白表達(dá)高于HF+Ex4組,差異有統(tǒng)計(jì)學(xué)意義(Plt;0.05),見(jiàn)表6。
3 討論
隨著生活方式的改變,NAFLD的發(fā)病率逐年升高,全球患病率約為25%[12]。流行病學(xué)研究表明,果糖的過(guò)量攝入和NAFLD的發(fā)病相關(guān)[13]。在本團(tuán)隊(duì)前期研究中發(fā)現(xiàn)肝臟內(nèi)源性TG生成過(guò)多是高果糖飲食導(dǎo)致肝臟脂質(zhì)沉積的主要機(jī)制[14-15]。本研究結(jié)果顯示,高果糖可以引起大鼠肝臟脂質(zhì)沉積,GLP-1受體激動(dòng)劑可能通過(guò)調(diào)控β-catenin抑制肝臟脂質(zhì)從頭合成途徑從而改善高果糖飲食誘導(dǎo)的胰島素抵抗大鼠肝臟脂質(zhì)沉積。
本研究選取降糖藥物GLP-1受體激動(dòng)劑艾塞那肽經(jīng)4周用藥維持了體內(nèi)血糖穩(wěn)態(tài),與既往研究結(jié)果一致[16]。人們?cè)谥委熖悄虿r(shí)發(fā)現(xiàn)GLP-1受體激動(dòng)劑在
降糖、減重、降低胰島素抵抗、改善體脂分布等方面均有較好效果[17-18],其對(duì)糖尿病合并NAFLD的治療效果引起人們關(guān)注。臨床試驗(yàn)表明GLP-1受體激動(dòng)劑改善了NAFLD患者肝臟組織學(xué)和酶學(xué)表現(xiàn)[19]。動(dòng)物實(shí)驗(yàn)研究顯示GLP-1受體激動(dòng)劑能減輕高脂誘導(dǎo)的肥胖小鼠的肝臟脂質(zhì)沉積[20],還可以降低高脂喂養(yǎng)小鼠的體質(zhì)量、肝酶和肝脂水平[21]。本研究結(jié)果顯示,艾塞那肽干預(yù)減輕了高果糖導(dǎo)致的肝臟脂質(zhì)沉積,并且降低了肝酶,同時(shí)發(fā)現(xiàn)藥物干預(yù)4周后大鼠體質(zhì)量、肝指數(shù)明顯降低,這些可能是肝臟組織學(xué)變化的重要原因[22],而體質(zhì)量下降可能與給藥后體內(nèi)脂肪組織的減少有關(guān)[23]。另外本研究發(fā)現(xiàn)艾塞那肽注射后大鼠血清FFA、TG、IPGTT、GIR下降,提示胰島素抵抗及糖脂代謝的改善。胰島素抵抗和脂代謝異常是NAFLD發(fā)病基礎(chǔ)。在胰島素抵抗時(shí)胰島素抑制胰島素敏感酯酶活性的作用下降,F(xiàn)FA水平升高,肝臟合成TG的底物增多,導(dǎo)致肝臟脂質(zhì)沉積。貫穿NAFLD發(fā)病始終的核心病理基礎(chǔ)為肝細(xì)胞內(nèi)脂質(zhì)的異常沉積。既往研究中大鼠大量攝入果糖后,肝臟為保持能量平衡,可通過(guò)脂質(zhì)從頭合成途徑將過(guò)多的果糖轉(zhuǎn)化為脂質(zhì)儲(chǔ)存在肝臟,高果糖攝入引起肝臟脂質(zhì)沉積的一個(gè)主要機(jī)制為果糖過(guò)量攝入后內(nèi)源性脂質(zhì)合成增加[14,24]。本研究結(jié)果顯示,大鼠高果糖飲食后出現(xiàn)肝臟脂質(zhì)沉積,并發(fā)現(xiàn)高果糖環(huán)境下大鼠肝臟脂質(zhì)合成的轉(zhuǎn)錄因子SREBP-1及下游關(guān)鍵酶SCD-1、FAS、ACC的表達(dá)增加。
GLP-1受體激動(dòng)劑對(duì)NAFLD的治療作用除了減重、改善胰島素抵抗獲益外,研究發(fā)現(xiàn)GLP-1受體敲除小鼠給予GLP-1受體激動(dòng)劑后肝臟脂代謝沒(méi)有明顯改善,表明GLP-1可能直接作用于肝臟GLP-1受體發(fā)揮作用,但其作用機(jī)制尚不明確[21]。在動(dòng)物實(shí)驗(yàn)中,GLP-1受體激活可以改善高脂誘導(dǎo)的NAFLD小鼠肝臟脂質(zhì)沉積[25],GLP-1受體激動(dòng)劑可能通過(guò)下調(diào)SREBP-1c、脂肪酸合成酶、二酯酰甘油基轉(zhuǎn)移酶基因表達(dá)改善肝臟脂質(zhì)合成[26],另外給予利拉魯肽后NAFLD小鼠肝臟ACC和FAS表達(dá)下降[27]。本研究發(fā)現(xiàn)GLP-1受體激動(dòng)劑能通過(guò)下調(diào)肝臟轉(zhuǎn)錄因子SREBP-1的表達(dá),從而抑制脂質(zhì)合成途徑的關(guān)鍵酶ACC、SCD-1、FAS的表達(dá)抑制高果糖飲食誘導(dǎo)的胰島素抵抗大鼠肝臟脂質(zhì)沉積,提示GLP-1受體激動(dòng)劑對(duì)NAFLD的治療作用不僅僅通過(guò)減重和改善胰島素抵抗獲益,可能通過(guò)與肝細(xì)胞的直接作用下調(diào)脂質(zhì)從頭合成通路調(diào)控肝臟脂質(zhì)合成。但GLP-1受體激動(dòng)劑與細(xì)胞膜的GLP-1受體結(jié)合后通過(guò)什么途徑調(diào)節(jié)位于內(nèi)質(zhì)網(wǎng)上SREBP-1,目前未可知。有研究報(bào)道β-catenin可以調(diào)控SREBP-1c的表達(dá)改善骨骼肌細(xì)胞中脂質(zhì)沉積[28],leptin可以激活β-catenin通路降低肝臟SREBP-1表達(dá)[29],以上研究均說(shuō)明β-catenin可能與SREBP-1存在密切關(guān)系。
β-catenin早期作為黏附因子被發(fā)現(xiàn),后來(lái)發(fā)現(xiàn)β-catenin參與調(diào)控細(xì)胞黏附、信號(hào)轉(zhuǎn)導(dǎo)、代謝、增殖等多項(xiàng)生物進(jìn)程,而且與糖尿病、NAFLD、肥胖的發(fā)生、發(fā)展密切相關(guān)。研究顯示肥胖大鼠體內(nèi)β-catenin表達(dá)減低,下調(diào)β-catenin表達(dá)加重了脂肪酸誘導(dǎo)的肝臟脂質(zhì)沉積[30],小鼠敲除肝臟β-catenin基因可以發(fā)生肝臟脂質(zhì)沉積[11],表明β-catenin參與了肝臟的脂質(zhì)代謝。本研究結(jié)果顯示,高果糖飲食導(dǎo)致大鼠肝臟脂質(zhì)沉積、β-catenin總蛋白及核內(nèi)蛋白表達(dá)降低,艾塞那肽干預(yù)后β-catenin表達(dá)增加、肝臟脂質(zhì)沉積改善,提示GLP-1受體激動(dòng)劑可能促進(jìn)了β-catenin表達(dá)和核轉(zhuǎn)位改善了肝臟脂質(zhì)沉積。肝外組織研究發(fā)現(xiàn)β-catenin參與了GLP-1的功能發(fā)揮[7]。GLP-1通過(guò)作用于脂肪、胰腺調(diào)控β-catenin表達(dá),調(diào)節(jié)脂肪生成和糖代謝,該路徑可能是GLP-1與GLP-1受體結(jié)合后激活環(huán)磷酸腺苷/蛋白激酶A,β-catenin的Ser675位點(diǎn)經(jīng)磷酸化后進(jìn)入細(xì)胞核發(fā)揮功能[8]。隨著肝臟GLP-1受體的發(fā)現(xiàn)[9],推測(cè)GLP-1受體激動(dòng)劑可能通過(guò)同樣方式結(jié)合GLP-1受體誘導(dǎo)β-catenin磷酸化后入核發(fā)揮功能改善肝臟脂質(zhì)沉積。研究發(fā)現(xiàn)exendin-4可改善棕櫚酸誘導(dǎo)的HepG2細(xì)胞脂肪變性,抑制β-catenin表達(dá)后脂肪轉(zhuǎn)錄因子表達(dá)增加[31]。高脂喂養(yǎng)小鼠給予GLP-1(28-36)干預(yù)后改善了血糖、體質(zhì)量,同時(shí)β-catenin表達(dá)升高[32]。這些研究均提示β-catenin是GLP-1受體激動(dòng)劑抑制肝臟脂質(zhì)沉積的關(guān)鍵分子。本研究在細(xì)胞水平用siRNA抑制HepG2細(xì)胞β-catenin表達(dá),油紅O染色顯示脂滴在HF+Ex4+Si-β-catenin組HepG2細(xì)胞中增加以及其TG水平較HF+Ex4組增加,提示β-catenin表達(dá)的下調(diào)逆轉(zhuǎn)了HepG2細(xì)胞中exendin-4抑制的脂質(zhì)沉積,同時(shí)SREBP-1表達(dá)在β-catenin缺陷型HepG2細(xì)胞中明顯上調(diào),下游關(guān)鍵酶ACC、FAS和SCD-1的蛋白表達(dá)水平也顯著上調(diào),提示HepG2細(xì)胞脂質(zhì)合成通路相關(guān)因子的表達(dá)亦增高。
綜上,GLP-1受體激動(dòng)劑可能通過(guò)β-catenin調(diào)控大鼠肝臟SREBP-1表達(dá)從而調(diào)控脂質(zhì)合成途徑下游關(guān)鍵酶ACC、FAS、SCD-1的表達(dá)改善高果糖誘導(dǎo)的胰島素抵抗大鼠肝臟脂質(zhì)沉積,GLP-1受體激動(dòng)劑是治療NAFLD的潛在新藥,β-catenin可能是藥物治療的重要靶標(biāo)。然而本研究尚有不足之處,部分指標(biāo)影響機(jī)制相對(duì)復(fù)雜,關(guān)于GLP-1與β-catenin的相互作用仍有待于靶向敲除大鼠肝臟β-catenin基因在動(dòng)物水平進(jìn)一步研究。
作者貢獻(xiàn):高哲負(fù)責(zé)實(shí)驗(yàn)設(shè)計(jì)、文章構(gòu)思與實(shí)驗(yàn)實(shí)施,并對(duì)文章負(fù)責(zé);段凱欣負(fù)責(zé)數(shù)據(jù)統(tǒng)計(jì)、繪制圖表;呂秀芹負(fù)責(zé)論文檢索與數(shù)據(jù)管理;馬慧娟、張志梅負(fù)責(zé)動(dòng)物實(shí)驗(yàn)與細(xì)胞實(shí)驗(yàn)以及實(shí)驗(yàn)相關(guān)指標(biāo)檢測(cè);宋光耀負(fù)責(zé)控制實(shí)驗(yàn)質(zhì)量、論文修訂與審校。
本文無(wú)利益沖突。
參考文獻(xiàn)
[1]MORRISON A E,ZACCARDI F,KHUNTI K,et al. Causality between non-alcoholic fatty liver disease and risk of cardiovascular disease and type 2 diabetes:a meta-analysis with bias analysis[J]. Liver Int,2019,39(3):557-567. DOI:10.1111/liv.13994.
[2]丁曉東,范建高. 重視非酒精性脂肪性肝病合并2型糖尿病的防治[J]. 中華糖尿病雜志,2016,8(9):513-515. DOI:10.3760/cma.j.issn.1674-5809.2016.09.001.
[3]夏明鋒,卞華,高鑫. 從非酒精性脂肪肝到代謝相關(guān)性脂肪肝命名變化的思考[J]. 中華糖尿病雜志,2020,12(7):445-450. DOI:10.3760/cma.j.cn115791-20200324-00175.
[4]SONG T T,JIA Y J,LI Z L,et al. Effects of liraglutide on nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus:a systematic review and meta-analysis[J]. Diabetes Ther,2021,12(6):1735-1749. DOI:10.1007/s13300-021-01072-4.
[5]NEWSOME P N,BUCHHOLTZ K,CUSI K,et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis[J]. N Engl J Med,2021,384(12):1113-1124. DOI:10.1056/NEJMoa2028395.
[6]PEDONE E,MARUCCI L. Role of β-catenin activation levels and fluctuations in controlling cell fate[J]. Genes(Basel),2019,10(2):176. DOI:10.3390/genes10020176.
[7]CHIANG Y T,IP W,JIN T R. The role of the Wnt signaling pathway in incretin hormone production and function[J]. Front Physiol,2012,3:273. DOI:10.3389/fphys.2012.00273.
[8]XIONG X Q,SHAO W J,JIN T R. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells:the involvement of the Wnt signaling pathway effector β-catenin[J]. Islets,2012,4(6):359-365. DOI:10.4161/isl.23345.
[9]GUPTA N A,MELLS J,DUNHAM R M,et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway[J]. Hepatology,2010,51(5):1584-1592. DOI:10.1002/hep.23569.
[10]BEHARI J,YEH T H,KRAULAND L,et al. Liver-specific beta-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis[J]. Am J Pathol,2010,176(2):744-753. DOI:10.2353/ajpath.2010.090667.
[11]KRAEGEN E W,JAMES D E,BENNETT S P,et al. In vivo insulin sensitivity in the rat determined by euglycemic clamp[J]. Am J Physiol,1983,245(1):E1-7. DOI:10.1152/ajpendo.1983.245.1.e1.
[12]MUNDI M S,VELAPATI S,PATEL J,et al. Evolution of NAFLD and its management[J]. Nutr Clin Pract,2020,35(1):72-84. DOI:10.1002/ncp.10449.
[13]DISTEFANO J K. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis[J]. Cell Mol Life Sci,2020,77(11):2079-2090. DOI:10.1007/s00018-019-03390-0.
[14]YU X,REN L P,WANG C,et al. Role of X-box binding protein-1 in fructose-induced De novo lipogenesis in HepG2 cells[J]. Chin Med J(Engl),2018,131(19):2310-2319. DOI:10.4103/0366-6999.241799.
[15]SHI L J,SHI L,SONG G Y,et al. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1(Srebf1) and activation of peroxisome proliferator activated receptor alpha(Pparα)[J]. Eur J Pharmacol,2013,714(1/2/3):89-95. DOI:10.1016/j.ejphar.2013.06.013.
[16]XU F,LI Z,ZHENG X B,et al. SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis[J]. Diabetes,2014,63(11):3637-3646. DOI:10.2337/db14-0263.
[17]KALOGIROU M,SINAKOS E. Treating nonalcoholic steatohepatitis with antidiabetic drugs:will GLP-1 agonists end the struggle?[J]. World J Hepatol,2018,10(11):790-794. DOI:10.4254/wjh.v10.i11.790.
[18]DUAN K X,YAN X L,GAO Z,et al. Effect of glucagon-like peptide-1 receptor agonists on fat distribution in patients with type 2 diabetes:a systematic review and meta-analysis[J]. J Diabetes Investig,2022,13(7):1149-1160. DOI:10.1111/jdi.13775.
[19]SOFOGIANNI A,F(xiàn)ILIPPIDIS A,CHRYSAVGIS L,et al. Glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease:an update[J]. World J Hepatol,2020,12(8):493-505. DOI:10.4254/wjh.v12.i8.493.
[20]SAMSON S L,SATHYANARAYANA P,JOGI M,et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial[J]. Diabetologia,2011,54(12):3093-3100. DOI:10.1007/s00125-011-2317-z.
[21]TREVASKIS J L,GRIFFIN P S,WITTMER C,et al. Glucagon-like peptide-1 receptor agonism improves metabolic,biochemical,and histopathological indices of nonalcoholic steatohepatitis in mice[J]. Am J Physiol Gastrointest Liver Physiol,2012,302(8):G762-772. DOI:10.1152/ajpgi.00476.2011.
[22]LIU Y,WEI R,HONG T P. Potential roles of glucagon-like peptide-1-based therapies in treating non-alcoholic fatty liver disease[J]. World J Gastroenterol,2014,20(27):9090-9097. DOI:10.3748/wjg.v20.i27.9090.
[23]JENDLE J,NAUCK M A,MATTHEWS D R,et al. Weight loss with liraglutide,a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin,is primarily as a result of a reduction in fat tissue[J]. Diabetes Obes Metab,2009,11(12):1163-1172. DOI:10.1111/j.1463-1326.2009.01158.x.
[24]TER HORST K W,SERLIE M J. Fructose consumption,lipogenesis,and non-alcoholic fatty liver disease[J]. Nutrients,2017,9(9):981. DOI:10.3390/nu9090981.
[25]BIFARI F,MANFRINI R,DEI CAS M,et al. Multiple target tissue effects of GLP-1 analogues on non-alcoholic fatty liver disease(NAFLD)and non-alcoholic steatohepatitis (NASH)[J]. Pharmacol Res,2018,137:219-229. DOI:10.1016/j.phrs.2018.09.025.
[26]PARLEVLIET E T,WANG Y N,GEERLING J J,et al. GLP-1"receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice[J]. PLoS One,2012,7(11):e49152. DOI:10.1371/journal.pone.0049152.
[27]ZHANG L L,YANG M L,REN H,et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK[J]. Liver Int,2013,33(5):794-804. DOI:10.1111/liv.12120.
[28]ABIOLA M,F(xiàn)AVIER M,CHRISTODOULOU-VAFEIADOU E,et al. Activation of Wnt/beta-catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in skeletal muscle cells[J]. PLoS One,2009,4(12):e8509. DOI:10.1371/journal.pone.0008509.
[29]ZHAI X G,YAN K F,F(xiàn)AN J Y,et al. The β-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis[J]. Br J Pharmacol,2013,169(1):197-212. DOI:10.1111/bph.12114.
[30]ZHOU D,LEZMI S,WANG H,et al. Fat accumulation in the liver of obese rats is alleviated by soy protein isolate through β-catenin signaling[J]. Obesity(Silver Spring),2014,22(1):151-158. DOI:10.1002/oby.20421.
[31]KHALIFA O,AL-AKL N S,ERRAFII K,et al. Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/-catenin signaling pathway[J]. Sci Rep,2022,12(1):2226. DOI:10.1038/s41598-022-06143-5.
[32]IP W,SHAO W J,CHIANG Y T,et al. GLP-1-derived nonapeptide GLP-1(28-36)amide represses hepatic gluconeogenic gene expression and improves pyruvate tolerance in high-fat diet-fed mice[J]. Am J Physiol Endocrinol Metab,2013,305(11):E1348-1358. DOI:10.1152/ajpendo.00376.2013.
(收稿日期:2023-02-05;修回日期:2023-03-23)
(本文編輯:康艷輝)