摘要 目的:觀察鹽酸納洛酮通過調(diào)控Toll樣受體4(TRL4)/核轉(zhuǎn)錄因子κB(NF-κB)通路對缺氧缺糖誘導(dǎo)的BV2細胞炎癥反應(yīng)的影響。方法:培養(yǎng)BV2細胞,采用細胞計數(shù)試劑盒(CCK)-8測定不同濃度(0、0.01、0.10、1.00、5.00、10.00、20.00、40.00 μmol/L)鹽酸納洛酮對BV2細胞活性的影響。將BV2細胞分為對照組、缺氧缺糖誘導(dǎo)組、鹽酸納洛酮低濃度組(0.01 μmol/L)、鹽酸納洛酮高濃度組(5.00 μmol/L)、鹽酸納洛酮高濃度+TLR4激活劑組(5.00 μmol/L鹽酸納洛酮+1 mg/L脂多糖)。采用乳酸脫氫酶(LDH)試劑盒檢測鹽酸納洛酮對BV2細胞的毒性;CCK-8法檢測鹽酸納洛酮對BV2細胞增殖率的影響;倒置顯微鏡觀察BV2細胞形態(tài);檢測BV2細胞培養(yǎng)上清液一氧化氮(NO)、腫瘤壞死因子-α(TNF-α)、白細胞介素(IL)-6、IL-1β水平;逆轉(zhuǎn)錄定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)檢測BV2細胞TNF-α mRNA、IL-6 mRNA、IL-1β mRNA水平;蛋白免疫印跡法(Western Blot)檢測BV2細胞TRL4/NF-κB通路相關(guān)蛋白表達。結(jié)果:濃度為0.01~5.00 μmol/L的鹽酸納洛酮對BV2細胞活性無明顯影響。與對照組比較,缺氧缺糖誘導(dǎo)組BV2細胞增殖率及LDH、NO、IL-1β、TNF-α、IL-6、IL-1β mRNA、TNF-α mRNA、IL-6 mRNA、TRL4、細胞核NF-κB p65均升高(P<0.05),細胞質(zhì)NF-κB p65水平降低(P<0.05);與缺氧缺糖誘導(dǎo)組比較,鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組BV2細胞增殖率及LDH、NO、IL-1β、TNF-α、IL-6、 IL-1βmRNA、TNF-α mRNA、IL-6 mRNA、TRL4、細胞核NF-κB p65降低(P<0.05),細胞質(zhì)NF-κB p65水平升高(P<0.05);與鹽酸納洛酮高濃度組比較,鹽酸納洛酮高濃度+TLR4激活劑組BV2細胞增殖率及LDH、NO、IL-1β、TNF-α、IL-6、IL-1β mRNA、TNF-α mRNA、IL-6 mRNA、TRL4、細胞核NF-κB p65升高(P<0.05),細胞質(zhì)NF-κB p65水平降低(P<0.05)。結(jié)論:鹽酸納洛酮可能通過抑制TRL4/NF-κB通路,降低缺氧缺糖誘導(dǎo)的BV2細胞炎癥反應(yīng)。
關(guān)鍵詞 缺氧缺糖;鹽酸納洛酮;Toll樣受體4/核轉(zhuǎn)錄因子κB通路;BV2細胞;炎癥反應(yīng);實驗研究
doi:10.12102/j.issn.1672-1349.2023.16.009
Effect of Naloxone Hydrochloride on the Inflammatory Response of BV2 Cells Induced by Hypoxia and Glucose-deficiency by Regulating TRL4/NF-κB Pathway
LIU Hujun, JIA Fei, ZHANG Chunrui
Yan′an University Affiliated Hospital, Yan′an 716000, Shaanxi, China
Corresponding Author ZHANG Chunrui, E-mail: zhangchunrui99@163.com
Abstract Objective:To investigate the effect of naloxone hydrochloride on the Inflammatory response of BV2 cells induced by hypoxia and glucose-deficiency by regulating Toll-like receptor 4(TRL4)/nuclear transcription factor κB(NF-κB) pathway.Methods:The effects of naloxone hydrochloride at different concentrations(0,0.01,0.10,1.00,5.00,10.00,20.00,40.00 μmol/L) on BV2 cell activity were determined by Cell Counting Kit(CCK)-8 method.BV2 cells were divided into the control group,hypoxia and glucose-deficiency induced group,naloxone hydrochloride low-dose group(0.01 μmol/L),naloxone hydrochloride high-dose group(5.00 μmol/L),and naloxone hydrochloride high-dose+TLR4 activator group(5.00 μmol/L naloxone hydrochloride+1 mg/L lipopolysaccharide).Lactate dehydrogenase(LDH) kit was used to detect the toxicity of naloxone hydrochloride on BV2 cells.Cell counting kit(CCK8) assay was used to detect the effect of naloxone hydrochloride on the proliferation rate of BV2 cells.Inverted microscope was used to observe the morphology of BV2 cells.The levels of nitric oxide(NO),tumor necrosis factor α(TNF-α),interleukin(IL)-6,and IL-1β in the supernatant of BV2 cell culture were detected.The levels of TNF-α mRNA,IL-6 mRNA,and IL-1β mRNA in BV2 cells were detected by reverse transcription quantitative polymerase chain reaction(qRT-PCR).The expressions of TRL4/NF-κB pathway-related proteins in BV2 cells were detected by protein immunoblotting(Western Blot).Results:Naloxone hydrochloride at the concentrations from 0.01 to 5.00 μmol/L showed no significant effect on the activity of BV2 cells.Compared with the control group,the proliferation rate of BV2 cells,LDH,NO,IL-1β,TNF-α,IL-6,IL-1β mRNA,TNF-α mRNA,IL-6 mRNA,TRL4,and cytosolic NF-κB p65 were increased in the hypoxia and glucose-deficiency induced group,and level of cytoplasmic NF-κB p65 was decreased(P<0.05).Compared with the hypoxia and glucose-deficiency induced group,the proliferation rate of BV2 cells,LDH,NO,IL-1β,TNF-α,IL-6,IL-1β mRNA,TNF-α mRNA,IL-6 mRNA,TRL4,and cytosolic NF-κB p65 were decreased in the naloxone hydrochloride low-dose group and the naloxone hydrochloride high-dose group,and level of cytoplasmic NF-κB p65 was increased(P<0.05).Compared with the naloxone hydrochloride high-dose group,the proliferation rate of BV2 cells,LDH,NO,IL-1β,TNF-α,IL-6,IL-1β mRNA,TNF-α mRNA,IL-6 mRNA,TRL4,and cytosolic NF-κB p65 were increased in the naloxone hydrochloride high-dose+TLR4 activator group,and level of cytoplasmic NF-κB p65 was decreased(P<0.05).Conclusion:Naloxone hydrochloride alleviated inflammatory response of BV2 cells induced by hypoxia and glucose-deficiency by inhibiting the TRL4/NF-κB pathway.
Keywords hypoxia and glucose-deficiency; naloxone hydrochloride; Toll-like receptor 4/nuclear transcription factor κB pathway; BV2 cells; inflammatory response; experimental study
小膠質(zhì)細胞是神經(jīng)元的關(guān)鍵組成,其激活是腦創(chuàng)傷、腦卒中、阿爾茨海默病等神經(jīng)退行性疾病的病理基礎(chǔ)。機體受到損傷時,小膠質(zhì)細胞由靜息狀態(tài)轉(zhuǎn)化為激活狀態(tài),釋放多種神經(jīng)毒性因子,引起神經(jīng)炎性,進而導(dǎo)致神經(jīng)元損傷[1-3]。因此,抑制小膠質(zhì)細胞的炎癥是神經(jīng)退行性疾病的防治方向之一,本研究以小鼠小膠質(zhì)細胞BV2為實驗載體進行抗炎藥物的分析。鹽酸納洛酮是臨床常用的阿片類受體拮抗劑,與阿片類受體親和力強,可穿過血腦屏障,阻止嗎啡物質(zhì)與受體結(jié)合,發(fā)揮對β-內(nèi)啡肽的抑制,降低腦組織損傷,發(fā)揮調(diào)節(jié)腦代謝水平的功效。鹽酸納洛酮可在腦出血疾病中發(fā)揮作用[4]。劉明利[5]研究顯示,鹽酸納洛酮可抑制慢性阻塞性肺疾病合并呼吸衰竭病人炎性因子水平。吳娜[6]研究顯示,鹽酸納洛酮可抑制大鼠腦創(chuàng)傷后炎癥反應(yīng),但關(guān)于鹽酸納洛酮在小膠質(zhì)細胞中的應(yīng)用較少。Toll樣受體4(Toll-like receptor 4,TRL4)/核轉(zhuǎn)錄因子κB(nuclear transcription factor κB,NF-κB)是常見的炎癥通路,抑制此通路可減輕阿爾茨海默病大鼠炎癥反應(yīng)[7]。本研究通過TRL4/NF-κB通路觀察鹽酸納洛酮對缺氧缺糖誘導(dǎo)的小膠質(zhì)BV2細胞炎性的影響,為鹽酸納洛酮在神經(jīng)退行性疾病中的應(yīng)用提供實驗依據(jù)。
1 材料與方法
1.1 實驗試劑與儀器
BV2小膠質(zhì)細胞(CL-0493)、MEM完全培養(yǎng)基(CM-0493)購自普諾賽;鹽酸納洛酮[規(guī)格:每支2 mL(2 mg),批準(zhǔn)文號:國藥準(zhǔn)字H20053316]購自成都苑東生物制藥股份有限公司;脂多糖(S11060)購自上海源葉;細胞計數(shù)試劑盒(CCK)-8試劑盒(C0039)、乳酸脫氫酶(LDH)試劑盒(C0016)、總RNA抽提試劑盒(R0016)、cDNA第一鏈合成試劑盒(D7178L)、細胞質(zhì)與細胞核蛋白抽提試劑盒(P0027)均購自上海碧云天;腫瘤壞死因子α(TNF-α)試劑盒(ml002095-J)、白細胞介素(IL)-6試劑盒(ml002293-J)、IL-1β試劑盒(ml063132-J)均購自上海酶聯(lián);TRL4(ab13556)、NF-κB p65(ab239882)、GAPDH(ab181602)抗體、山羊抗兔二抗(ab6721)購自美國Abcam。HF90 CO2培養(yǎng)箱購自上海力康,Elx800酶標(biāo)儀購自美國bio-TEX公司。
1.2 實驗方法
1.2.1 BV2細胞培養(yǎng)
BV2小膠質(zhì)細胞在MEM完全培養(yǎng)基中(包含10%胎牛血清,100 U/mL青鏈霉素)培養(yǎng),并置于CO2培養(yǎng)箱內(nèi),隔天傳代,傳代至對數(shù)生長期時進行后續(xù)研究。
1.2.2 CCK-8法測定鹽酸納洛酮對BV2細胞活性的影響
取對數(shù)生長期BV2細胞消化,將細胞濃度調(diào)整至每孔5×103個(96孔板),加入不同濃度(0、0.01、0.10、1.00、5.00、10.00、20.00、40.00 μmol/L)的鹽酸納洛酮,每組設(shè)置6個復(fù)孔,培養(yǎng)48 h后,加入10 μL CCK-8試劑,37 ℃條件下避光培養(yǎng)2 h,棄上清,酶標(biāo)儀檢測吸光度OD值(450 nm處)。細胞活性=各濃度孔OD值/濃度為0時的OD值×100%。
1.2.3 細胞分組
取對數(shù)生長期BV2細胞,消化后,以每孔1×104個的數(shù)量接種于96孔板內(nèi),培養(yǎng)24 h后,將細胞分為對照組、缺氧缺糖誘導(dǎo)組、鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組、鹽酸納洛酮高濃度+TLR4激活劑組。除對照組正常培養(yǎng)外(含糖培養(yǎng)基),其余各組均每孔加入100 μL Earles平衡鹽溶液,置于密封缺氧裝置中,通入95%N2+5%CO2氣體去除裝置內(nèi)空氣,調(diào)小氣流量,處理1 h。取出96孔板,棄去無糖培養(yǎng)基更換為完全培養(yǎng)基,繼續(xù)培養(yǎng)24 h。鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組分別加入0.01 μmol/L、5.00 μmol/L鹽酸納洛酮。鹽酸納洛酮高濃度+TLR4激活劑組加入5.00 μmol/L鹽酸納洛酮與1 mg/L脂多糖[8]。
1.2.4 LDH法檢測各組BV2細胞毒性
收集各組細胞培養(yǎng)上清液,根據(jù)LDH試劑盒說明書檢測BV2細胞毒性,在490 nm處測定每孔OD值。
1.2.5 CCK-8法檢測各組BV2細胞增殖率
取各組對數(shù)生長期BV2細胞于96孔板接種(每孔1×104個),每孔設(shè)置6個復(fù)孔,培養(yǎng)48 h后加入CCK-8試劑,孵育4 h后,測定450 nm處的吸光度。細胞增殖率=OD值試驗孔/OD值對照孔 ×100%。
1.2.6 倒置顯微鏡觀察各組BV2細胞形態(tài)
將BV2細胞懸液以每孔6×105個接種于6孔板中,于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)過夜,待細胞貼壁后,按照1.2.3中的方法進行分組,每組設(shè)置6個復(fù)孔,繼續(xù)培養(yǎng)24 h后,采用倒置顯微鏡觀察細胞形態(tài)并拍照。
1.2.7 酶聯(lián)免疫吸附法(ELISA)檢測各組BV2細胞培養(yǎng)上清液一氧化氮(NO)、TNF-α、IL-6、IL-1β水平
收集各組BV2細胞培養(yǎng)上清液,采用Griess法檢測定NO水平[9],根據(jù)TNF-α、IL-6、IL-1β試劑盒檢測各組細胞培養(yǎng)液TNF-α、IL-6、IL-1β水平。
1.2.8 逆轉(zhuǎn)錄定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)法檢測各組BV2細胞TNF-α mRNA、IL-6 mRNA、IL-1β mRNA水平
提取各組BV2細胞總RNA(RNA提取試劑盒)后,逆轉(zhuǎn)錄為cDNA(cDNA第一鏈合成試劑盒),應(yīng)用qRT-PCR法對TNF-α、IL-6、IL-1β、GAPDH(內(nèi)參對照)擴增,反應(yīng)條件:95 ℃ 30 s、95 ℃ 30 s、62 ℃ 35 s,循環(huán)45次。引物序列見表1。
1.2.9 蛋白免疫印跡法(Western Blot)檢測BV2細胞中TRL4、NF-κB蛋白表達
細胞經(jīng)裂解液裂解后,10 000 r/min離心10 min,取上清(測定TRL4水平),細胞質(zhì)、細胞核蛋白試劑盒提取的胞質(zhì)蛋白和核蛋白,測定NF-κB p65細胞質(zhì)、細胞核水平,凝膠電泳分離蛋白、聚偏二氟乙烯(PVDF)膜轉(zhuǎn)膜,5%脫脂奶粉室溫孵育2 h,加入TLR4、NF-κB p65、Lamin B(細胞核NF-κB p65內(nèi)參)、GAPDH(TRL4、細胞質(zhì)NF-κB p65內(nèi)參)抗體,4 ℃孵育過夜;加入二抗,室溫孵育1 h。3,3′-二氨基聯(lián)苯胺(DAB)顯色,定量分析灰度值。
1.3 統(tǒng)計學(xué)處理
采用SPSS 22.0統(tǒng)計軟件進行數(shù)據(jù)分析,符合正態(tài)分布的定量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,兩組間比較采用獨立樣本t檢驗,多組間比較采用方差分析,組間有差異進一步采用SNK-q法。以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié) 果
2.1 鹽酸納洛酮對BV2細胞活性的影響
0.01~5.00 μmol/L的鹽酸納洛酮濃度對BV2細胞活性無明顯影響。鹽酸納洛酮濃度>5.00 μmol/L時(10、20、40 μmol/L),細胞活性顯著下降,因此鹽酸納洛酮濃度范圍為0.01~5.00 μmol/L,后續(xù)研究選取0.01 μmol/L作為低濃度處理BV2細胞,5.00 μmol/L作為高濃度處理BV2細胞。詳見表2。
2.2 鹽酸納洛酮對缺氧缺糖誘導(dǎo)BV2細胞增殖率的影響
與對照組比較,缺氧缺糖誘導(dǎo)組BV2細胞增殖率升高(P<0.05);與缺氧缺糖誘導(dǎo)組比較,鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組BV2細胞增殖率降低(P<0.05);與鹽酸納洛酮高濃度組比較,鹽酸納洛酮高濃度+TLR4激活劑組BV2細胞增殖率升高(P<0.05)。詳見表3。
2.3 鹽酸納洛酮對缺氧缺糖誘導(dǎo)BV2細胞LDH的影響
與對照組比較,缺氧缺糖誘導(dǎo)組BV2細胞LDH含量升高(P<0.05);與缺氧缺糖誘導(dǎo)組比較,鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組BV2細胞LDH含量降低(P<0.05);與鹽酸納洛酮高濃度組比較,鹽酸納洛酮高濃度+TLR4激活劑組BV2細胞LDH含量升高(P<0.05)。詳見表4。
2.4 鹽酸納洛酮對缺氧缺糖誘導(dǎo)BV2細胞形態(tài)的影響對照組BV2細胞多數(shù)呈圓形或橢圓形;缺氧缺糖誘導(dǎo)組BV2細胞體積增大,呈紡錘體變化;鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組呈紡錘體變化,細胞數(shù)目減少;鹽酸納洛酮高濃度+TLR4激活劑組較鹽酸納洛酮高濃度組呈紡錘體變化,細胞數(shù)目增多。詳見圖1。
2.5 鹽酸納洛酮對缺氧缺糖誘導(dǎo)BV2細胞NO、IL-1β、TNF-α、IL-6含量及其mRNA表達的影響
與對照組比較,缺氧缺糖誘導(dǎo)組BV2細胞NO、IL-1β、TNF-α、IL-6含量及其mRNA均升高(P<0.05);與缺氧缺糖誘導(dǎo)組比較,鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組BV2細胞NO、IL-1β、TNF-α、IL-6含量及其mRNA表達均降低(P<0.05);與鹽酸納洛酮高濃度組比較,鹽酸納洛酮高濃度+TLR4激活劑組BV2細胞NO、IL-1β、TNF-α、IL-6含量及其mRNA升高(P<0.05)。詳見表5。
2.6 鹽酸納洛酮對缺氧缺糖誘導(dǎo)BV2細胞TRL4、NF-κB蛋白的影響
與對照組比較,缺氧缺糖誘導(dǎo)組BV2細胞TRL4、細胞核NF-κB p65水平升高,細胞質(zhì)NF-κB p65水平降低(P<0.05);與缺氧缺糖誘導(dǎo)組比較,鹽酸納洛酮低濃度組、鹽酸納洛酮高濃度組BV2細胞TRL4、細胞核NF-κB p65水平降低,細胞質(zhì)NF-κB p65水平升高(P<0.05);與鹽酸納洛酮高濃度組比較,鹽酸納洛酮高濃度+TLR4激活劑組BV2細胞TRL4、細胞核NF-κB p65水平升高,細胞質(zhì)NF-κB p65水平降低(P<0.05)。詳見表6、圖2。
3 討 論
小膠質(zhì)細胞是中樞神經(jīng)系統(tǒng)的免疫細胞,可抵御外來損傷,當(dāng)受到刺激信號時被激活,發(fā)揮清除刺激的作用,長時間激活釋放炎性因子,加重神經(jīng)炎性,持續(xù)的炎癥反應(yīng)損傷腦組織,加重神經(jīng)疾?。?0-11]。因此,抑制小膠質(zhì)細胞的過度激活是神經(jīng)退行性疾病的治療方案之一,BV2細胞來源于小鼠神經(jīng)細胞系,擁有小膠質(zhì)細胞的形態(tài)與功能,可穩(wěn)定傳代,是體外研究的良好選擇。本研究BV2細胞經(jīng)缺氧缺糖誘導(dǎo)后,細胞形態(tài)發(fā)生明顯變化,細胞多數(shù)呈紡錘體變化,說明BV2細胞被激活,細胞增殖能力、炎性因子水平及LDH釋放增加,證實成功構(gòu)建了BV2炎癥模型。
鹽酸納洛酮是一種阿片類受體拮抗劑,具有抗炎鎮(zhèn)痛的作用。刺激顱腦局部可釋放β-內(nèi)啡肽,β-內(nèi)啡肽是一種內(nèi)源性阿片肽,β-內(nèi)啡肽與阿片受體結(jié)合可影響腦損傷周圍血流速度,促進腦組織缺血、缺氧及炎癥反應(yīng)[12-13]。鹽酸納洛酮作為阿片類受體拮抗劑,可阻礙β-內(nèi)啡肽與阿片受體,進而發(fā)揮降低腦損傷的作用。Wang等[14]研究顯示,納洛酮通過抑制NF-κB和神經(jīng)元凋亡途徑減輕大鼠缺血性腦損傷。Li等[15]研究顯示,納洛酮與葛根素聯(lián)合使用治療創(chuàng)傷性腦梗死的療效較好。羅煒等[16]研究顯示,鹽酸納洛酮可緩解大鼠神經(jīng)病理性疼痛。
本研究中,0.01~5.00 μmol/L的鹽酸納洛酮對BV2細胞活性均無顯著影響;炎癥BV2細胞模型經(jīng)鹽酸納洛酮處理后,細胞增殖能力及NO、IL-1β、LDH等水平下降,qRT-PCR法證實了IL-1β mRNA水平降低。NO與IL-1β是神經(jīng)細胞的主要毒性物質(zhì),可加重神經(jīng)損傷。抑制內(nèi)源性NO可促進神經(jīng)突觸重塑[17],介導(dǎo)神經(jīng)毒性,參與大鼠脊髓損傷[18]。IL-1β可調(diào)節(jié)小膠質(zhì)細胞的極化[19]。本研究結(jié)果顯示,鹽酸納洛酮可拮抗炎性BV2細胞炎癥反應(yīng),抑制炎性BV2細胞的激活,提示腦缺血缺氧后小膠質(zhì)細胞持續(xù)激活,可能通過釋放NO與IL-1β,加重腦組織損傷,鹽酸納洛酮可發(fā)揮神經(jīng)保護作用,可能原因為鹽酸納洛酮作用于小膠質(zhì)細胞,降低免疫細胞的趨化,緩解神經(jīng)炎癥。
TRL4/NF-κB是經(jīng)典炎癥通路,TRL4增加可促進NF-κB/NF-κB抑制蛋白α(IκBα)解離,解離得到NF-κB,且由細胞質(zhì)轉(zhuǎn)入細胞核,NF-κB活化進一步調(diào)節(jié)促炎因子TNF-α、IL-6表達,促炎因子進一步激活TLR4引發(fā)級聯(lián)反應(yīng)。本研究中缺氧缺糖誘導(dǎo)后BV2細胞TRL4、細胞核NF-κB p65水平升高,提示缺氧缺糖環(huán)境可激活小膠質(zhì)細胞的炎癥通路,促進腦部炎癥損傷,經(jīng)鹽酸納洛酮處理后,TRL4、細胞核NF-κB p65水平下降,提示鹽酸納洛酮可能通過抑制TRL4/NF-κB發(fā)揮對炎性BV2細胞的抗炎作用。為驗證此過程,本研究進行了回復(fù)實驗,結(jié)果顯示,TRL4激活劑脂多糖可拮抗鹽酸納洛酮的細胞保護作用,且細胞核NF-κB水平升高,進一步提示鹽酸納洛酮可能通過抑制TRL4/NF-κB降低缺氧缺糖誘導(dǎo)的BV2細胞的炎癥反應(yīng)。
綜上所述,缺氧缺糖可誘導(dǎo)BV2細胞激活,促進炎癥反應(yīng),鹽酸納洛酮對BV2細胞激活、炎癥反應(yīng)均有調(diào)節(jié)作用,此過程可能是通過抑制TRL4/NF-κB通路實現(xiàn)的。今后將進行鹽酸納洛酮的療效及安全性的進一步研究。
參考文獻:
[1]曾杰,趙亞林,鄧博文,等.JAK2/STAT3信號通路在大腦缺血缺氧后小膠質(zhì)細胞活化中的作用[J].中國骨傷,2020,33(2):190-194.
[2]ZHANG X,SHU Q,LIU Z H,et al.Recombinant osteopontin provides protection for cerebral infarction by inhibiting the NLRP3 inflammasome in microglia[J].Brain Research,2021,1751(8):147170.
[3]HE J L,XUAN X J,JIANG M H,et al.Long non-coding RNA SNHG1 relieves microglia activation by downregulating miR-329-3p expression in an in vitro model of cerebral infarction[J].Experimental and Therapeutic Medicine,2021,22(4):1148-1156.
[4]BARIEV E A,KRASNYUK I I,ANUROVA M N,et al.Study of the acute toxicity of a new dosage form of naloxone hydrochloride for intranasal administration[J].Drug Research,2020,70(1):23-25.
[5]劉明利.鹽酸納洛酮對COPD合并呼吸衰竭患者炎性因子及肺功能的影響[J].航空航天醫(yī)學(xué)雜志,2020,31(6):717-718.
[6]吳娜.鹽酸納洛酮對大鼠腦創(chuàng)傷后炎癥反應(yīng)影響的實驗研究[D].重慶:重慶醫(yī)科大學(xué),2007.
[7]何川,黃重生,陳虹茹,等.預(yù)針刺對AD樣大鼠學(xué)習(xí)記憶能力及TLR4/NF-κB信號通路的影響[J].實用醫(yī)學(xué)雜志,2020,36(18):2510-2514.
[8]侯道榮,劉振,崔斯童,等.丹參酮Ⅱ-A通過調(diào)控TLR4/IκBα/NFκB信號通路抑制LPS誘導(dǎo)的細胞炎癥[J].中國藥理學(xué)通報,2021,37(2):210-214.
[9]宋俊科,張雯,張雪,等.丹酚酸D通過抑制NF-κB的激活減輕LPS誘導(dǎo)的BV2細胞炎癥反應(yīng)[J].中國新藥雜志,2018,27(23):2798-2804.
[10]VON SAUCKEN V E,JAY T R,LANDRETH G E.The effect of amyloid on microglia-neuron interactions before plaque onset occurs independently of TREM2 in a mouse model of Alzheimer′s disease[J].Neurobiology of Disease,2020,145(1):105072-105081.
[11]CSERP C,PSFAI B,DNES .Shaping neuronal fate:functional heterogeneity of direct microglia-neuron interactions[J].Neuron,2021,109(2):222-240.
[12]胡展華,肖劍輝,石藝哲,等.鹽酸納洛酮在急診中的應(yīng)用效果分析[J].醫(yī)藥前沿,2021,11(11):39-40.
[13]任濤.醒腦靜注射液聯(lián)合納洛酮治療38例重癥腦梗塞伴昏迷患者的臨床研究[J].首都食品與醫(yī)藥,2020,27(3):84.
[14]WANG X,SUN Z J,WU J L,et al.Naloxone attenuates ischemic brain injury in rats through suppressing the NIK/IKKα/NF-κB and neuronal apoptotic pathways[J].Acta Pharmacologica Sinica,2019,40(2):170-179.
[15]LI L B,NIE S L,DONG Z M,et al.Clinical efficacy and CT perfusion of puerarin combined with naloxone in the treatment of traumatic cerebral infarction[J].Pakistan Journal of Pharmaceutical Sciences,2020,33(1):423-428.
[16]羅煒,張雙銀,廖明霞,等.鹽酸納洛酮對神經(jīng)病理性疼痛大鼠模型脊髓背角CD11b/c、GFAP表達的影響[J].實用疼痛學(xué)雜志,2018,14(1):14-19.
[17]房樹華,陳昕晟,曹莉,等.內(nèi)源性NO介導(dǎo)的Stargazin亞硝基化修飾在腦缺血再灌注后突觸可塑性中的作用及機制[J].昆明醫(yī)科大學(xué)學(xué)報,2021,42(8):47-53.
[18]梁嘉顯,郭沛森,經(jīng)楚煖,等.孕期雙酚A染毒對子代大鼠海馬中誘導(dǎo)型一氧化氮合酶表達及活性的影響[J].環(huán)境與職業(yè)醫(yī)學(xué),2020,37(4):327-333.
[19]WANG T,SUN Q,YANG J H,et al.Reactive astrocytes induced by 2-chloroethanol modulate microglia polarization through IL-1β,TNF-α,and iNOS upregulation[J].Food and Chemical Toxicology,2021,157(10):112550-112562.
(收稿日期:2022-05-06)
(本文編輯薛妮)
基金項目 延安市科學(xué)技術(shù)局資助項目(No.2018CGZH-15)
作者單位 1.延安大學(xué)附屬醫(yī)院(陜西延安" 716000);2.漢中市人民醫(yī)院(陜西漢中" 723000)
通訊作者 張春瑞,E-mail:zhangchunrui99@163.com
引用信息 劉虎軍,賈菲,張春瑞.鹽酸納洛酮調(diào)控TRL4/NF-κB通路對缺氧缺糖誘導(dǎo)的BV2細胞炎癥反應(yīng)的影響[J].中西醫(yī)結(jié)合心腦血管病雜志,2023,21(16):2962-2967.