摘要:
為揭示南水北調(diào)中線工程水體中溶解性有機質(zhì)(Dissolved Organic Matter,DOM)的組成變化特征,采集南水北調(diào)中線總干渠沿線及丹江口水庫水樣,利用傅里葉變換離子回旋共振質(zhì)譜(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,F(xiàn)T-ICR MS)分析了DOM的分子組成及其空間變化,并探討了總干渠沿線DOM變化成因和環(huán)境意義。結(jié)果表明:丹江口水庫和總干渠均檢出DOM物質(zhì)3 200余種,僅含C、H和O的物質(zhì)(CHOs)為主要組分,約占所有檢出物質(zhì)的61%,含C、H、O和N的物質(zhì)(CHONs)占30.5%~31.5%,含C、H、O和S的物質(zhì)(CHOSs)僅占7.3%~8.4%,結(jié)合O/C和H/C分類,丹江口水庫和總干渠水體DOM主要組分為木質(zhì)素(60%以上)。相較于丹江口水庫,總干渠水體DOM組分發(fā)生了較大變化,蛋白質(zhì)類組分占比由3.70%升至8.65%,表明總干渠中有蛋白質(zhì)生成;稠環(huán)類物質(zhì)占比由9.43%下降至4.77%,單寧酸類的變化趨勢與稠環(huán)類物質(zhì)類似??偢汕植繀^(qū)域藻類增殖過程是引起總干渠中CHONs和CHOSs類DOM組分和占比升高的主要原因。研究成果可為科學(xué)認識南水北調(diào)中線工程水體水質(zhì)變化過程提供科學(xué)依據(jù)。
關(guān) 鍵 詞:
溶解性有機質(zhì); 超高分辨質(zhì)譜; 跨流域調(diào)水; 南水北調(diào)中線工程
中圖法分類號: X522
文獻標(biāo)志碼: A
DOI:10.16232/j.cnki.1001-4179.2023.03.009
0 引 言
溶解性有機質(zhì)(Dissolved Organic Matter,DOM)是水生系統(tǒng)中具有大量芳香族和脂肪族烴類結(jié)構(gòu)的復(fù)雜混合物[1]。DOM作為生物群中碳和能量的重要來源,是驅(qū)動大部分生物地球化學(xué)作用的底物,也是水體水質(zhì)變化的重要環(huán)境因子。在大部分淡水和海洋水環(huán)境中,DOM主要來源于經(jīng)表面徑流與大氣沉降為代表的外源,和自養(yǎng)型藻類與生物等殘體凋零破碎等為代表的內(nèi)源[2-3],DOM來源易受地形等水文條件以及人為活動的影響[4]。DOM可影響污染物的遷移轉(zhuǎn)化,例如其能吸附水體中的疏水性有機污染物或者絡(luò)合重金屬離子[5-6]。開展DOM組成特征研究,是認識水體有機質(zhì)遷移轉(zhuǎn)化過程的重要前提[7]。
南水北調(diào)工程是迄今為止世界上最大的跨流域調(diào)水工程,也是解決中國南北水資源分配不均勻,緩解北方平原地區(qū)水資源緊缺問題的重大戰(zhàn)略性水利工程[8],其水質(zhì)安全受到廣泛關(guān)注[9]。對監(jiān)測數(shù)據(jù)的分析發(fā)現(xiàn),近年來南水北調(diào)中線工程總干渠高錳酸鹽指數(shù)表現(xiàn)出升高趨勢,這引起了管理部門的重視[10]。筆者前期研究已經(jīng)證實,總干渠水體DOM耗氧對高錳酸鹽指數(shù)的貢獻率超過了70%[11],是引起水體高錳酸鹽指數(shù)升高的最主要原因。通過三維熒光激發(fā)-發(fā)射光譜分析發(fā)現(xiàn),干渠內(nèi)存在內(nèi)源性DOM[11],但其分子組成特征和生成機制尚不清楚。
傅里葉變換離子回旋共振質(zhì)譜(Fourier Transform Ion Cyclotron Resonance Mass Spectrometry,F(xiàn)T-ICR MS)技術(shù)在分辨率和質(zhì)量精度上具有突顯優(yōu)勢,已經(jīng)被多次應(yīng)用于不同介質(zhì)DOM的分子組成研究中,能夠檢出成千上萬個質(zhì)譜峰和分子式[12-16]。該技術(shù)為從分子水平上研究南水北調(diào)中線工程水體DOM的組成和時空演變規(guī)律提供了可行性。本次研究在南水北調(diào)中線水源區(qū)(丹江口水庫)和中線干渠(漳河北到惠南莊段)采集水樣,利用FT-ICR MS分析測定水體的DOM,并揭示DOM的組成和空間變化特征,可為科學(xué)認識南水北調(diào)中線水質(zhì)變化過程提供依據(jù)。
1 材料與方法
1.1 樣品采集
采樣工作于2019年9月和10月完成。在南水北調(diào)水源區(qū)丹江口水庫大壩以上設(shè)置4個采樣點(分別為D1、D2、D3、D4),在總干渠沿線漳河北至惠南莊段設(shè)置6個樣點,分別為漳河北(S1)、北盤石前(S2)、北盤石(S3)、大安舍(S4)、西黑山(S5)和惠南莊(S6)(見圖1)。
1.2 樣品前處理和分析方法
水樣采集:將定深采水器置于斷面水下約20 cm處采集水樣約500 mL(平行采集3次后混合為一個水樣),并立即分裝于500 mL棕色玻璃瓶中,水樣先經(jīng)0.45 μm醋酸纖維濾膜過濾去除顆粒態(tài)有機質(zhì),過濾后的樣品暫存于4oC車載冰箱內(nèi),于1~2 d內(nèi)帶回實驗室進行前處理和分析。DOM分離富集采用固相萃取法[17],其主要流程為:① 活化,向PPL固相萃取柱(Agilent Bond Elut,500 mg,6 mL)加入12 mL甲醇以及鹽酸酸化的去離子水(pH=2.0),對其進行活化;② 上樣,將100 mL水樣在重力作用下通過活化后的PPL固相萃取柱,流速控制在5.0 mL/min;③ 淋洗,采用12 mL鹽酸酸化的去離子水(pH=2.0)淋洗富集完DOM的PPL固相萃取柱,并用柔和N2將其吹干;④ 洗脫,用12 mL甲醇洗脫PPL固相萃取柱得到DOM組分;⑤ 定容,洗脫組分用柔和N2吹干,然后用體積比為1∶1的甲醇水溶液定容至2 mL上機測樣。
采用FT-ICR MS(布魯克,Solarix 15 T)對富集后的DOM樣品進行分析測試,儀器測定參數(shù)為:離子源為電噴霧離子源負離子模式,進樣速度為120 μL/h,毛細管入口電壓為-3 800 V,譜圖采集質(zhì)量范圍為180~1 000 Da,離子累積時間為0.04 s,采樣點數(shù)為4 M32位數(shù)據(jù),譜圖疊加次數(shù)為200。為確保樣品譜圖的質(zhì)量精度,儀器測樣前用10 mmol/L甲酸鈉標(biāo)準(zhǔn)溶液對進行外標(biāo)校正,獲得的譜圖用天然有機質(zhì)的標(biāo)準(zhǔn)分子式進行內(nèi)標(biāo)校正,譜圖經(jīng)校正后質(zhì)量誤差小于0.2×10-6。為避免樣品間出現(xiàn)交叉污染,樣品測試之前用甲醇重復(fù)3次沖洗進樣針和離子源管路。采用Bruker公司的Data Analysis 4.0軟件進行數(shù)據(jù)處理并識別分子,計算出的分子式需滿足其理論分子質(zhì)量(molecular weight,MW)與實際測得分子質(zhì)量的誤差絕對值小于0.5×10-6[18]。除此之外,分子式還需滿足以下條件[19]:① 不飽和等效雙鍵(DBE)≥0的整數(shù),DBE計算公式為DBE=(2C-H+N+P+2)/2;② 滿足偶氮規(guī)則,即含有偶數(shù)個N原子的分子質(zhì)量整數(shù)為偶數(shù);③ 同一質(zhì)譜峰有多個對應(yīng)的分子式,以含N、P和S等雜原子的個數(shù)進行排序,取個數(shù)最小的分子式,如含總原子個數(shù)相同,則取理論實際值偏差最小的分子式;④ 其他條件,O/Clt;1.2、0.333≤H/C≤2.25、N/Clt;0.5和S/Clt;0.2。
DOM相對峰強加權(quán)的平均元素個數(shù)、質(zhì)量數(shù)和分子質(zhì)量(wO、wH和wMW)計算公式為[20]
wO=(nO×nM)/nM
wH=(nH×nM)/nM
wMW=(nMW×nM)/nM
式中:w表示強度加權(quán)計算,wO,wH和wMW分別為O個數(shù),H個數(shù),分子質(zhì)量的加權(quán)平均值;n表示分子式,nO,nH和nMW分別表示每個分子式含有的O、H數(shù)量和分子質(zhì)量,nM表示每個分子式的相對峰強。每個分子式的飽和度根據(jù)修正的芳香指數(shù)(the modified aromaticity index,AI_mod)推斷,其計算方法為[21]
AI_mod=(1+C-0.5O-S-0.5H)/(C-0.5O-S-N-P)
結(jié)合AI_mod和H/C比,可將DOM組分劃分為5類:稠環(huán)類物質(zhì)(AI_mod≥0.67)、多酚類物質(zhì)(0.5lt;AI_modlt;0.67)、高度不飽和類和酚類物質(zhì)(AI_mod≤0.5,H/C≤1.5)、不飽和脂類物質(zhì)(1.5lt;H/Clt;2.0)、飽和脂類物質(zhì)(H/C≥2.0)。
2 結(jié)果與討論
2.1 丹江口水庫和總干渠檢出物質(zhì)數(shù)量
丹江口水庫4個點(D1~D4)共檢出溶解有機物質(zhì)3 269~3 496種,且其所含物質(zhì)數(shù)量沿水流方向逐漸增加,表明該段沿流域方向有新的組分的輸入或生成。從漳河北到惠南莊6個點(S1~S6)共檢出3 232~3 398種DOM組分(見圖2),其種類亦呈現(xiàn)沿水流方向增加的趨勢。
圖2 丹江口水庫(D1-D4)和總干渠(S1-S6)水體中DOM檢出物質(zhì)數(shù)量
Fig.2 The amount of DOM detected substances in Danjiangkou Reservoir(D1~D4)and main canal(S1~S6)
丹江口水庫水體DOM在元素組成上類似,以僅含C、H和O(CHOs)的物質(zhì)為主,其比例為60.8%~61.2%;含C、H、O和N(CHONs)的DOM組分占比30.5%~31.5%;含C、H、O和S(CHOSs)的DOM組分占比7.3%~8.4%。丹江口水庫D2~D3采樣點CHOSs檢出數(shù)量和占比增加,可能存在外源含硫物質(zhì)的輸入或內(nèi)源含硫物質(zhì)的生成??偢汕鳂狱cDOM組分較丹江口水庫均發(fā)生了顯著變化,CHOs、CHONs和CHOSs組分分別占比52.5%~53.9%,35.9%~37.2%和10.2%~11.6%,干渠較丹江口水庫CHOs的組分占比下降,CHONs和CHOSs組分占比增高,且沿干渠水流方向呈現(xiàn)出緩慢上升的趨勢(見圖2),推測這可能與蛋白質(zhì)降解導(dǎo)致含氮硫物質(zhì)釋放有關(guān)[22]。與其他大型流域中所檢出的指定分子式相比,干渠中所檢出的較低,但是物質(zhì)構(gòu)成比例大致相同[23]。對比全球其他河流水體,DOM元素組成較為相似,均以CHOs、CHONs及CHOSs為主,但其來源存在較為明顯的差別[24],與水停留時間、降水量和人類活動強度等因素有關(guān)[25]。
2.2 丹江口水庫與總干渠物質(zhì)種類和成分差異
丹江口水庫和總干渠DOM主要分布于O/C比為0.2~0.9和H/C比為0.25~1.75之間的區(qū)域(見圖3和圖4)。結(jié)合H/C比和AI_mod指數(shù)分類,DOM組分主要為木質(zhì)素物質(zhì)[21,26-27]、酚類及多酚類物質(zhì),其主要特征是具有苯環(huán)結(jié)構(gòu)并富含酚羥基和羧基,這表明水庫和總干渠DOM的主要構(gòu)成物(即環(huán)境本底背景)結(jié)構(gòu)具有相似性。進一步分析發(fā)現(xiàn),木質(zhì)素占比存在明顯的空間變化特征。丹江口水庫水體木質(zhì)素所占比為61.8%~64.5%,而總干渠中木質(zhì)素所占比為64.6%~65.6%。無論是在丹江口水庫還是總干渠水體,木質(zhì)素占比均沿水流方向呈上升的趨勢,說明DOM的穩(wěn)定性沿水流方向整體增加。
DOM組分的變化蘊含著水體水質(zhì)變化的信息。丹江口水庫水體中低分子量的DOM組分緩慢向高分子的芳香族化合物轉(zhuǎn)移(見圖3),這可能是因為水生生物對分子量低的DOM利用率較高所致[28]。在總干渠水體中,O/C比為0.8~1.2和H/C比為1.5~2.0之間的區(qū)域有纖維素物質(zhì)生成(見圖4),這可能來源于水體流動過程中藻類腐解和微生物生命代謝過程的釋放[29]。微生物對水生植物或動物凋零組織的降解所產(chǎn)成的非生物物質(zhì),進一步提高了水體中DOM的異質(zhì)性[30]。此外,光化學(xué)作用已被證實是影響微生物代謝的重要因素[31-33]。水體由深水水庫進入總干渠,其真光層面積增加,由于芳香類DOM組分有較高的光敏感性[31],容易發(fā)生光化學(xué)轉(zhuǎn)化或者導(dǎo)致易降解組分的降解生成為更加穩(wěn)定的組分[34]。
2.3 總干渠DOM組分變化的環(huán)境意義
南水北調(diào)中線總干渠不同于自然河流,是一個相對封閉的水環(huán)境系統(tǒng),基本沒有外源性DOM輸入,這為探討DOM組分轉(zhuǎn)化提供了較為理想的環(huán)境。除木質(zhì)素外,水庫水體DOM稠環(huán)類物質(zhì)、單寧酸類物質(zhì)和蛋白類組分占比也較高(見圖3)。對比丹江口水庫和總干渠的DOM組分占比,丹江口水庫的稠環(huán)類和單寧酸類組分占比明顯高于總干渠,稠環(huán)類物質(zhì)占比平均值分別為9.43%和4.77%,單寧酸類物質(zhì)占比平均值分別為13.95%和11.77%。而蛋白質(zhì)類組分呈現(xiàn)相反的特征,在總干渠中蛋白質(zhì)占比為8.65%,明顯高于丹江口水庫(3.70%)。考慮到總干渠沒有外源DOM輸入,這種變化過程可歸結(jié)為干渠內(nèi)源DOM的生成以及微生物的分解與礦化作用。微生物會將稠環(huán)類和單寧酸類組分分解成更小的分子,這些小分子作為碳源和氮源又被生物或微生物繼續(xù)消耗,降解為其他小分子組分[35]??偢汕wDOM的相對強度加權(quán)分子量為414.92 Da,相較于丹江口水庫(439.28 Da)明顯降低,也證實了高分子量的DOM組分在總干渠中降解[36],轉(zhuǎn)化為小分子的DOM組分。
DOM組分變化還引起了總干渠中DOM組分不飽和度下降??偢汕﨑OM組分的相對強度加權(quán)H個數(shù)為22.33,相較于丹江口水庫(23.40)呈下降趨勢。這
主要是因為總干渠中新生成的含N、S以及脂質(zhì)類DOM組分的不飽和度較低所致。而總干渠和水庫水體DOM組分相對強度加權(quán)O個數(shù)分別為10.72和9.79,這表明總干渠中氧含量高的物質(zhì)發(fā)生了明顯的降解[37]。結(jié)合圖5和圖6,總干渠水體DOM組分中CHOs、CHONs和CHOSs的H/C比相較于水庫水體有明顯升高。推測這是微生物利用碳氮生成蛋白質(zhì)類組分所致[38]。
3 結(jié) 論
本次研究利用FT-ICR MS分析技術(shù),從DOM元素和分子組成特征入手,研究了南水北調(diào)中線工程中,丹江口水庫到總干渠水體中DOM的變化過程,主要結(jié)論如下:
(1) 丹江口水庫和中線總干渠中DOM的元素組成類似,CHOs為主要組分,在所有檢出物質(zhì)中占比60.8%~61.2%,CHONs占比30.5%~31.5%,而CHOSs僅占7.3%~8.4%,其物質(zhì)組成以木質(zhì)素為主(60%以上)。
(2) 總干渠水體中DOM分子組成較丹江口水庫發(fā)生了顯著變化,蛋白質(zhì)類物質(zhì)占比由3.70%(水庫)升至8.65%,稠環(huán)類物質(zhì)占比由9.43%下降至4.77%,單寧酸類物質(zhì)類似。這表明總干渠水體中微生物利用有機質(zhì)和氮生成了蛋白質(zhì)類物質(zhì)生成,而氧含量高的物質(zhì)發(fā)生了明顯的降解。這一過程的生物學(xué)機制還需要進一步研究。
參考文獻:
[1] LEENHEER J A,CROUE J P.Characterizing aquatic dissolved organic matter[J].Environmental Science amp; Technology,2003,37(1):18A-26A.
[2] JAFFE R,MCKNIGHT D,MAIE N,et al.Spatial and temporal variations in DOM composition in ecosystems:the importance of long-term monitoring of optical properties[J].Journal of Geophysical Research-Biogeosciences,2008,113(G4):1-15.
[3] FINDLAY,STUART,SINSABAUGH,et al.Aquatic ecosystems:interactivity of dissolved organic matter[J].Journal of the North American Benthological Society,2003,293(1):125-126.
[4] LARSON J H,F(xiàn)ROST P C,XENOPOULOS M A,et al.Relationships between land cover and dissolved organic matter change along the river to lake transition[J].Ecosystems,2014,17(8):1413-1425.
[5] 袁冬海,崔駿,洪志強,等.白洋淀沉水植物腐解溶解性有機質(zhì)與重金屬的相互作用[J].環(huán)境工程學(xué)報,2016,10(5):2184-2192.
[6] MAHALINGAM,RAVICHANDRAN.Interactions between mercury and dissolved organic matter-a review[J].Chemosphere,2004,55(3):319-331.
[7] 周石磊,陳召瑩,張?zhí)鹉?,?白洋淀典型淀區(qū)沉積物間隙水溶解性有機質(zhì)的光譜時空演變特征[J].環(huán)境科學(xué),2021,42(8):13:3730-3742.
[8] 中國工程院“21世紀(jì)中國可持續(xù)發(fā)展水資源戰(zhàn)略研究”項目組.中國可持續(xù)發(fā)展水資源戰(zhàn)略研究綜合報告[J].中國工程科學(xué),2000,2(8):1-17.
[9] NONG X Z,SHAO D G,ZHONG H,et al.Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index(WQI)method[J].Water Research,2020,178:115781.
[10] 尹煒,王超,辛小康.南水北調(diào)中線總干渠水質(zhì)管理問題與思考[J].人民長江.2020,51(3):17-24.
[11] 范傲翔,王智鵬,王超,等.南水北調(diào)中線總干渠水體耗氧特征及成因[J].環(huán)境科學(xué)學(xué)報,2020,40(3):871-879.
[12] HAN H X,F(xiàn)ENG Y J,CHEN J,et al.Acidification impacts on the molecular composition of dissolved organic matter revealed by FT-ICR MS[J].Science of The Total Environment,2022,805:150284.
[13] REEMTSMAT.Determination of molecular formulas of natural organic matter molecules by(ultra-)high-resolution mass spectrometry status and needs[J].Journal of Chromatography A,2009,1216(18):3687-3701.
[14] WILLIAM B,TFAILY M M,BOITEAU R M,et al.Soil organic matter characterization by fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS):a critical review of sample preparation,analysis,and data interpretation[J].Environmental Science amp; Technology,2021,55(14):9637-9656
[15] ZHANG H,ZHANG Y,SHI Q,et al.Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry[J].Environmental Science amp; Technology,2012,46(8):4396-4402.
[16] LUSK M G,TOOR G S.Biodegradability and molecular composition of dissolved organic nitrogen in urban stormwater runoff and outflow water from a stormwater retention pond[J].Environmental Science amp; Technology,2016,50(7):3391-3398.
[17] 鄭國航,邢明飛,郝智能,等.固相萃取法分離富集環(huán)境水體中溶解性有機質(zhì)的研究進展[J].環(huán)境化學(xué),2021,40(8):2288-2298.
[18] KUJAWINSKI E B,LONGNECKER K,BLOUGH N V,et al.Identification of possible source markers in marine dissolved organic matter using ultrahigh resolution mass spectrometry[J].Geochimica Et Cosmochimica Acta,2009,73(15):4384-4399.
[19] WANG J,HAO Z,F(xiàn) SHI,et al.Characterization of brominated disinfection byproducts formed during the chlorination of aquaculture seawater[J].Environmental Science amp; Technology,2018,52(10):5662-5670.
[20] 楊紅霞,陳俊良,高津旭,等.利用傅立葉變換離子回旋共振質(zhì)譜測定不同季節(jié)水源水中天然有機質(zhì)分子結(jié)構(gòu)[J].生態(tài)學(xué)雜志,2017,36(4):1053-1059.
[21] KOCH B P,DITTMAR T.From mass to structure:an aromaticity index for high-resolution mass data of natural organic matter[J].Rapid Communications in Mass Spectrometry,2006,20(5):926-932.
[22] VALLE J,GONSIOR M,HARIR M,et al.Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry(FT-ICR MS)[J].Water Research,2018,129:252-263.
[23] WAGNER S,RIEDEL T,NIGGEMANN J,et al.Linking the molecular signature of heteroatomic dissolved organic matter to watershed characteristics in world rivers[J].Environmental Science amp; Technology,2015,49(23):13798-13806.
[24] LIU S S,HE Z Q,TANG Z,et al.Linking the molecular composition of autochthonous dissolved organic matter to source identification for freshwater lake ecosystems by combination of optical spectroscopy and FT-ICR MS analysis[J].Science of The Total Environment,2020,703:134764.
[25] KELLERMAN A M,DITTMAR T,KOTHAWALA D N,et al.Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J].Nature Communications,2014,5:3804.
[26] ANTL-TEMKIV T,KAI F,THORSTEN D,et al.Hailstones:a window into the microbial and chemical inventory of a storm cloud[J].Plos One,2013,8(1):e53550.
[27] KIM S,KRAMER R W,HATCHER P G.Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter,the van Krevelen diagram[J].Analytical Chemistry,2003,75(20):5336-5344.
[28] COVERT J S,MORAN M A.Molecular characterization of estuarine bacterial communities that use high-and low-molecular weight fractions of dissolved organic carbon[J].Aquatic Microbial Ecology,2001,25(2):127-139.
[29] 馮偉瑩,朱元榮,吳豐昌,等.太湖水體溶解性有機質(zhì)熒光特征及其來源解析[J].環(huán)境科學(xué)學(xué)報,2016,36(2):475-482
[30] CARTIER E E,YE W,ANN M M.Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment[J].Fems Microbiology Ecology,2000,34(2):103-111.
[31] KUJAWINSKI E B,DEL V R,BLOUGH N V,et al.Probing molecular-level transformations of dissolved organic matter:insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Marine Chemistry,2004,92(1-4):23-37.
[32] BRINKMANN T,HORSCH P,SARTORIUS D,et al.Photoformation of low-molecular-weight organic acids from brown water dissolved organic matter[J].Environmental Science amp; Technology,2003,37(18):4190-4198.
[33] MILLER W L,MORAN M A.Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment[J].Limnology amp; Oceanography,1997,42(6):1317-1324.
[34] NEBBIOSO A,PICCOLO A.Molecular characterization of dissolved organic matter(DOM):a critical review[J].Analytical and Bioanalytical Chemistry,2012,405(1):109-124.
[35] NAGATA T.Organic Matter-Bacteria Interactions in Seawater[M].New Jersey:Wiley-Blackwell,2008:207-232.
[36] WOZNIAK A S,BAUER J E,SLEIGHTER R L,et al.Technical note:molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J].Atmospheric Chemistry amp; Physics,2008,8(17):5099-5111.
[37] LV J,ZHANG S Z,WANG S S,et al.Molecular-scale investigation with ESI-FT-ICR MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides[J].Environmental Science amp; Technology,2016,50(5):2328-2336.
[38] CARPENTER S R,STANLEY E H,VANDER ZANDEN M J.State of the world′s freshwater ecosystems:physical,chemical,and biological changes[J].Annual Review of Environment amp; Resources,2011,36(1):75-99.
(編輯:劉 媛)
Molecular composition characteristics of dissolved organic matter in water of Middle Route of South-to-North Water Diversion Project
DU Cheng1,2,WANG Chao3,HAO Zhineng2,4,YUE Qiansheng1,ZHANG Hong2,4
(1.College of Chemistry amp; Environmental Engineering,Yangtze University,Jingzhou 434000,China; 2.State Key Laboratory of Environmental Aquatic Chemistry,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing 100085,China; 3.Changjiang Water Resources Protection Institute,Wuhan 430051,China; 4.University of Chinese Academy of Sciences,Beijing 100049,China)
Abstract:
In order to reveal the composition variation characteristics of dissolved organic matter(DOM) in the water of the Middle Route of South-to-North Water Diversion Project,we collected water samples in the main channel of the Middle Route of South-to-North Water Diversion Project and Danjiangkou Reservoir,and analyzed the molecular composition and spatial variation of DOM by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry(FT-ICR MS).The causes and environmental significance of DOM changes along the main canal were explored.The results showed that more than 3 200 kinds of DOM substances were detected in the Danjiangkou Reservoir and the main canal.Substances only containing C,H,and O(CHOs) were the main components,accounting for 61% of all detected substances;substances containing C,H,O,and N(CHONs) accounted for 30.5%~31.5%;while substances containing C,H,O,and S(CHOSs) only accounted for 7.3%~8.4%.Based on the O/C and H/C classification,the main component of DOM in both the Danjiangkou Reservoir and the main canal was lignin(over 60%).Compared with the Danjiangkou Reservoir,the composition of DOM in the water of the main canal has undergone significant changes,with the proportion of protein-like substances increasing from 3.70% to 8.65%,indicating the generation of protein in the main canal;the proportion of condensed ring-like substances decreased from 9.43% to 4.77%,and the trend of tannic acid-like substances was similar to that of condensed ring-like substances.The main reason for the increase in the proportion of CHONs and CHOSs-like DOM components in the main canal was the local algae proliferation process.The research results can provide a basis for the scientific understanding of the water quality changes of the Middle Route of the South-to-North Water Diversion Project.
Key words:
dissolved organic matter;ultra-high resolution mass spectrometry;inter-basin water transfer;Middle Route of South-to-North Water Diversion Project