楊臻嶸,周鋼橋
綜 述
CRISPR基因組編輯技術(shù)在傳染病致病機(jī)理研究和防診治中的應(yīng)用
楊臻嶸1,2,周鋼橋1,2
1. 中國(guó)科學(xué)技術(shù)大學(xué)生命科學(xué)學(xué)院,生命科學(xué)與醫(yī)學(xué)部,合肥 230022 2. 軍事科學(xué)院軍事醫(yī)學(xué)研究院輻射醫(yī)學(xué)研究所,醫(yī)學(xué)蛋白質(zhì)組全國(guó)重點(diǎn)實(shí)驗(yàn)室,國(guó)家蛋白質(zhì)科學(xué)中心,北京 100850
CRISPR基因組編輯技術(shù)在基因操作和傳染病研究等方面展現(xiàn)出巨大的應(yīng)用前景,對(duì)于有效控制和治愈傳染病具有重要價(jià)值。通過其構(gòu)建的細(xì)胞、類器官和動(dòng)物疾病模型,為探索傳染病相關(guān)分子機(jī)制提供了極大便利。CRISPR篩選技術(shù)使得高通量鑒定傳染病相關(guān)風(fēng)險(xiǎn)因子成為可能?;贑RISPR的新型分子診斷工具為病原體的檢測(cè)提供了更靈敏和快速的方法。利用CRISPR工具敲入抗性基因或破壞風(fēng)險(xiǎn)基因和病毒基因組,有望實(shí)現(xiàn)預(yù)防或治療傳染病。本綜述討論了CRISPR基因組編輯技術(shù)在疾病模型制備、傳染病風(fēng)險(xiǎn)因子篩選、病原體診斷和傳染病防治中的應(yīng)用,以期為后續(xù)傳染病的研究和防診治提供參考。
傳染病;CRISPR;致病機(jī)理;診斷;防治
傳染病是由病原體引起的能在人與人、人與動(dòng)物或動(dòng)物與動(dòng)物之間傳播的一類疾病。目前我國(guó)將法定報(bào)告的傳染病分為甲、乙、丙三類,另外,還包括按照甲類管理開展應(yīng)急監(jiān)測(cè)報(bào)告的其他傳染病,以及按照乙類、丙類管理的其他傳染病。傳染病的主要傳播途徑包括接觸、空氣、水和食物以及蟲媒傳播等方式。人類活動(dòng)范圍的擴(kuò)大和頻繁的跨境流動(dòng)等,為病原體的傳播和擴(kuò)散提供了有利條件,尤其當(dāng)病原體的傳播速度較快時(shí),傳染病便會(huì)爆發(fā)成為一種流行病。自21世紀(jì)以來(lái),全球已發(fā)生過多次傳染病大流行,如2003年的嚴(yán)重急性呼吸綜合征(severe acute respiratory syndrome,SARS)、2009年的甲型H1N1流感、2012年的中東呼吸綜合征(Middle East respiratory syndrome,MERS)、2014年的埃博拉病毒病(Ebola virus disease,EVD),以及2019年的新型冠狀病毒肺炎(coronavirus disease 2019,COVID-19)。這些傳染病嚴(yán)重危害人類生命健康,并給經(jīng)濟(jì)和社會(huì)造成巨大傷害。
成簇的規(guī)律間隔的短回文重復(fù)序列(clustered regularly interspaced short palindromic repeats,CRISPR)與CRISPR相關(guān)蛋白(CRISPR-associated proteins,Cas)是源自細(xì)菌和古菌中應(yīng)對(duì)外源核酸入侵的免疫防御系統(tǒng)[1],現(xiàn)被開發(fā)為基因組編輯的強(qiáng)大工具,廣泛應(yīng)用于生物、醫(yī)學(xué)及環(huán)境等各個(gè)研究領(lǐng)域。本綜述重點(diǎn)關(guān)注CRISPR基因組編輯技術(shù)在傳染病致病機(jī)理研究、診斷和防治中的應(yīng)用,將以多種典型傳染病為例,系統(tǒng)討論該技術(shù)在疾病模型制備、傳染病風(fēng)險(xiǎn)因子篩選、病原體診斷和傳染病防治中發(fā)揮的作用,以期為后續(xù)傳染病的研究和防診治提供參考。
1.1.1 歸巢核酸內(nèi)切酶
歸巢核酸內(nèi)切酶(homing endonucleases,HEs),又稱巨型核酸酶(meganucleases,MNs),是指由內(nèi)含子或內(nèi)含肽(inteins)編碼的核酸內(nèi)切酶,可識(shí)別并切割14~40 bp的同源等位基因,引起DNA單鏈或雙鏈斷裂,然后利用細(xì)胞的同源定向修復(fù)(homology- directed repair,HDR)機(jī)制(I類內(nèi)含子和內(nèi)含肽),或以內(nèi)含子RNA為模板進(jìn)行反轉(zhuǎn)錄(II類內(nèi)含子),將編碼自身的序列拷貝到靶位點(diǎn)中[2]??梢苿?dòng)內(nèi)含子及其歸巢核酸內(nèi)切酶的發(fā)現(xiàn)可追溯到20世紀(jì)70年代。1978年,有學(xué)者使用電子顯微鏡觀察到了釀酒酵母()線粒體核糖體DNA(ribosomal DNA,rDNA)中的插入序列[3],隨后通過一系列研究,測(cè)序和鑒定了多種歸巢核酸內(nèi)切酶[4]。目前至少發(fā)現(xiàn)了6個(gè)歸巢核酸內(nèi)切酶基因(homing endonuclease genes,HEGs)家族,包括LAGLIDADG、HNH、His-Cys框、GIY-YIG、PD-(D/E)xK和EDxHD[4]。LAGLIDADG家族中,來(lái)自釀酒酵母線粒體的I-I和來(lái)自萊茵衣藻()葉綠體的I-I歸巢核酸內(nèi)切酶及其變體已廣泛應(yīng)用于基因工程,在哺乳動(dòng)物細(xì)胞[5~9]、細(xì)菌[10,11]、植物[12~14]和小鼠[15,16]中實(shí)現(xiàn)了定向基因修飾。
1.1.2 鋅指核酸酶
鋅指核酸酶(zinc-finger nucleases,ZFNs),是指通過將工程化的鋅指(zinc-fingers,ZFs)DNA結(jié)合域與I核酸內(nèi)切酶的非特異性切割結(jié)構(gòu)域融合而生成的一種人工核酸酶[17,18]。其DNA結(jié)合域通常包含3個(gè)連續(xù)的鋅指蛋白模塊,單個(gè)鋅指蛋白可識(shí)別3bp的DNA序列[19]。I的切割結(jié)構(gòu)域需通過二聚化才能發(fā)揮切割DNA的作用[20],因此,常使用一對(duì)ZFNs來(lái)靶向DNA,產(chǎn)生DNA雙鏈斷裂(double- strand breaks,DSBs),進(jìn)而通過非同源末端連接(nonhomologous end-joining,NHEJ)或HDR來(lái)修復(fù)基因組。利用ZFN,研究人員已成功在果蠅[21,22]、線蟲[23]、斑馬魚[24,25]和小鼠[26~29]等物種中實(shí)現(xiàn)了基因誘變或靶基因替換。在人類中,已利用ZFN實(shí)現(xiàn)了單基因疾病的治療,例如,敲除艾滋病患者CD4+T細(xì)胞中的基因可顯著降低血液中的病毒載量[30]。
1.1.3 轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶
轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶(transcription activator-like effector nucleases,TALENs),是由來(lái)自黃單胞菌屬()的類轉(zhuǎn)錄激活因子效應(yīng)物蛋白(TAL effectors,TALEs)的DNA結(jié)合域與I的切割結(jié)構(gòu)域融合而構(gòu)建得到的一種核酸內(nèi)切酶[31]。工程化TALEN通常包含多個(gè)TALEs模塊,每個(gè)TALE可識(shí)別1個(gè)堿基。與ZFN技術(shù)類似,常使用一對(duì)TALENs來(lái)靶向目標(biāo)基因[32]。TALEN技術(shù)已廣泛應(yīng)用于酵母、動(dòng)植物細(xì)胞的基因組編輯[33],并在治療嬰兒急性B淋巴細(xì)胞白血病(B-cell acute lymphoblastic leukemia,B-ALL)中實(shí)現(xiàn)了對(duì)免疫細(xì)胞的編輯[34]。
1.1.4 CRISPR基因組編輯技術(shù)
CRISPR/Cas系統(tǒng)是細(xì)菌中保護(hù)其免受外源核酸入侵的免疫防御系統(tǒng)[1],其通過CRISPR向?qū)NA(guide RNAs,gRNAs)與外源核酸互補(bǔ)配對(duì),然后由Cas蛋白發(fā)揮切割作用,從而破壞入侵的外源核酸。CRISPR/Cas系統(tǒng)的發(fā)現(xiàn)可追溯到20世紀(jì)80年代。1987年,研究人員首次在大腸桿菌()堿性磷酸酶基因附近發(fā)現(xiàn)了一種規(guī)律間隔的重復(fù)序列[35],隨后又在多種細(xì)菌和古菌基因組中檢測(cè)到類似的序列[36]。2002年,正式將這種成簇的規(guī)律間隔的短回文重復(fù)序列命名為CRISPR[37]。CRISPR通常與CRISPR相關(guān)蛋白基因一起在微生物基因組中被發(fā)現(xiàn)[38]。多項(xiàng)研究分析表明,CRISPR的間隔序列與噬菌體和質(zhì)粒具有同源性[39~41],且由于Cas蛋白具有預(yù)測(cè)的核酸酶和解旋酶結(jié)構(gòu)域,研究人員提出CRISPR/Cas系統(tǒng)可能是一種應(yīng)對(duì)噬菌體和質(zhì)粒入侵的適應(yīng)性免疫防御系統(tǒng)[42]。2007年,嗜熱鏈球菌()感染烈性噬菌體的實(shí)驗(yàn)為CRISPR/Cas介導(dǎo)適應(yīng)性免疫提供了第一個(gè)實(shí)驗(yàn)證據(jù)[1]。
CRISPR/Cas系統(tǒng)依據(jù)發(fā)揮效應(yīng)的Cas蛋白亞基數(shù)量、序列相似性、系統(tǒng)發(fā)育及基因座位點(diǎn)組織特征劃分類型和亞型[43],其可分為兩大類:第一類系統(tǒng)通過多個(gè)Cas蛋白組成的復(fù)合物降解外源核酸,包括I型(如Cas3和Cas8)、III型(如Cas10)和IV型(如Csf1);第二類系統(tǒng)則依靠單個(gè)Cas蛋白發(fā)揮作用,包括II型(如Cas9)、V型(如Cas12a/Cpf1和Cas12b/C2c1)和VI型(如Cas13a/C2c2和Cas13b)。目前,應(yīng)用較多的系統(tǒng)有II型的CRISPR/Cas9、V型的CRISPR/Cas12和VI型的CRISPR/Cas13。前者依靠工程化的單鏈向?qū)NA(single guide RNAs,sgRNAs)靶向雙鏈DNA(double-strand DNAs,dsDNAs)[44],已廣泛應(yīng)用于基因功能和機(jī)制的研究,以及疾病的治療[38,45],后兩者分別靶向切割DNA[46]和RNA[47],但其切割后仍與靶標(biāo)結(jié)合,然后非特異地切割其他單鏈DNA(single-strand DNAs,ssDNAs)或單鏈RNA(single-strand RNAs,ssRNAs)分子[47,48]。這種反式切割(tans cleavage)或稱為附帶切割(collateral cleavage)的特性已被用于開發(fā)各種分子診斷工具[49~53]。
此外,研究人員還將無(wú)切割活性的Cas9(dead Cas9,dCas9)[54]與逆轉(zhuǎn)錄酶(如M-MLV)、胞苷脫氨酶(如APOBEC)、腺嘌呤脫氨酶(如TadA)、轉(zhuǎn)錄激活結(jié)構(gòu)域(如SAM、VP64和VPR)、轉(zhuǎn)錄抑制結(jié)構(gòu)域(如KRAB)或表觀遺傳修飾因子(如p300、LSD1、MQ1和TET1)融合,開發(fā)出單堿基編輯器[55]、轉(zhuǎn)錄激活系統(tǒng)[56]、轉(zhuǎn)錄抑制系統(tǒng)[57]和表觀遺傳編輯系統(tǒng)[58]等,極大地?cái)U(kuò)展了CRISPR/Cas系統(tǒng)的應(yīng)用范圍?;蚪M編輯技術(shù)發(fā)展的時(shí)間線總結(jié)如圖1所示。
歸巢核酸內(nèi)切酶、ZFN和TALEN等基因組編輯工具發(fā)揮作用依賴于蛋白質(zhì)-DNA相互作用,與之相比,CRISPR/Cas系統(tǒng)發(fā)揮作用依賴于RNA-DNA或RNA-RNA相互作用,因此具有諸多優(yōu)勢(shì)。例如,在操作難度和成本方面,天然的歸巢核酸內(nèi)切酶識(shí)別的DNA序列有限,需要改造其DNA結(jié)合域以識(shí)別更多靶位點(diǎn),因此操作困難,成本很高;ZFN中串聯(lián)的每個(gè)ZF識(shí)別3個(gè)核苷酸序列,因此識(shí)別不同靶位點(diǎn)需要串聯(lián)特定的ZFs,操作也十分繁瑣,成本較高;TALEN中雖然每個(gè)TALE僅識(shí)別1個(gè)核苷酸序列,但識(shí)別特定序列同樣需要在蛋白質(zhì)層面進(jìn)行設(shè)計(jì)和改造,操作較繁瑣,成本也較高;而CRISPR/Cas系統(tǒng)僅根據(jù)靶位點(diǎn)序列設(shè)計(jì)相應(yīng)sgRNA即可實(shí)現(xiàn)靶向功能,操作較簡(jiǎn)單,成本較低[59,60]。在多靶點(diǎn)編輯方面,目前只有CRISPR/Cas系統(tǒng)可通過同時(shí)表達(dá)針對(duì)不同靶位點(diǎn)的sgRNA,實(shí)現(xiàn)對(duì)基因組多位點(diǎn)的敲除、激活或抑制[61]。基因組編輯技-術(shù)的比較總結(jié)見表1。
圖1 基因組編輯技術(shù)發(fā)展的時(shí)間線
rDNA:核糖體DNA;HEs:歸巢核酸內(nèi)切酶;ZFNs:鋅指核酸酶;TALENs:轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶;CRISPR/Cas:成簇的規(guī)律間隔的短回文重復(fù)序列/CRISPR相關(guān)蛋白。
表1 基因組編輯技術(shù)的比較
HEs:歸巢核酸內(nèi)切酶;ZFNs:鋅指核酸酶;TALENs:轉(zhuǎn)錄激活因子樣效應(yīng)物核酸酶;CRISPR/Cas:成簇的規(guī)律間隔的短回文重復(fù)序列/CRISPR相關(guān)蛋白。
在細(xì)胞、類器官或動(dòng)物中采用CRISPR/Cas9系統(tǒng)制備特定的疾病模型,可模擬天然的基因突變。例如,Ye等[62]將CRISPR/Cas9與piggyBac轉(zhuǎn)座子技術(shù)[63]結(jié)合,首次在誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSCs)中高效構(gòu)建了CCR5Δ32的純合突變。通過模擬天然突變,證明其在體外分化出的單核和巨噬細(xì)胞中能夠抵抗人類免疫缺陷病毒1型(human immunodeficiency virus type 1,HIV-1)的感染,這為研究和治愈HIV-1感染提供了可靠的細(xì)胞模型。
在病毒學(xué)研究中,常用各種細(xì)胞系作為體外研究模型,但它們與細(xì)胞在體內(nèi)發(fā)生的天然反應(yīng)有一定差異,而類器官模型的建立將能夠更好地模擬機(jī)體的生理狀態(tài),反映病毒感染后體內(nèi)的病理變化。例如,腸道類器官可用來(lái)支持嚴(yán)重急性呼吸綜合征冠狀病毒2(severe acute respiratory syndrome coro-navirus 2,SARS-CoV-2)等病毒的感染,該類器官的一個(gè)主要優(yōu)點(diǎn)就是可以使用CRISPR工具對(duì)其進(jìn)行有效的基因改造,并可與單細(xì)胞組學(xué)等新技術(shù)相結(jié)合[64,65]。
為了生成動(dòng)物模型用于傳染病的致病機(jī)理研究,常把CRISPR sgRNA和Cas9 mRNA共同顯微注射到受精卵中,以修改后代基因組。例如,Sun等[66]利用CRISPR/Cas9敲入技術(shù),將編碼hACE2 cDNA的靶向載體、sgRNA和Cas9 mRNA顯微注射到C57BL/6小鼠受精卵中,獲得了穩(wěn)定表達(dá)hACE2的小鼠品系,用于支持對(duì)SARS-CoV-2的感染,以模擬人類感染后的狀態(tài),并在肺的Clara細(xì)胞和巨噬細(xì)胞中發(fā)現(xiàn)了強(qiáng)烈的病毒復(fù)制。該模型將有助于SARS-CoV-2傳播和發(fā)病機(jī)制的研究,對(duì)測(cè)試抗SARS-CoV-2的疫苗和療法也很有價(jià)值。
CRISPR篩選(CRISPR screening)是一種高通量基因組篩選技術(shù),其通過將sgRNA文庫(kù)轉(zhuǎn)導(dǎo)細(xì)胞,對(duì)大量細(xì)胞的不同基因進(jìn)行敲除、激活或抑制,然后經(jīng)過特定篩選并獲得富集細(xì)胞的全基因組DNA,用于擴(kuò)增sgRNA基因片段,并進(jìn)行高通量測(cè)序,最后對(duì)富集或消耗的sgRNA進(jìn)行生物信息學(xué)分析,從而發(fā)掘與表型相關(guān)的候選基因(圖2)。
CRISPR篩選技術(shù)被廣泛應(yīng)用于傳染病研究,用于發(fā)掘與病原體相關(guān)的宿主因子。例如,Li等[67]通過全基因組CRISPR敲除篩選,結(jié)合MAIC (meta- analysis by information content)算法,發(fā)現(xiàn)宿主因子WDR7、CCDC115和TMEM199對(duì)于甲型流感病毒進(jìn)入和調(diào)節(jié)V型ATP酶組裝至關(guān)重要。同時(shí)發(fā)現(xiàn),mRNA帽甲基轉(zhuǎn)移酶CMTR1對(duì)于病毒搶帽(cap snatching)和調(diào)節(jié)細(xì)胞的自主免疫反應(yīng)是必需的。Hyrina等[68]通過全基因組CRISPR敲除篩選,鑒定到多個(gè)參與調(diào)節(jié)乙型肝炎病毒表面抗原(HBV surface antigen,HBsAg)的宿主因子,例如,發(fā)現(xiàn)ZCCHC14鋅指蛋白可與TENT4A/B一起穩(wěn)定HBsAg的表達(dá),這為治療慢性乙肝提供了新靶點(diǎn)。Mei等[69]使用膜蛋白組(surfaceome)文庫(kù)進(jìn)行CRISPR抑制篩選,發(fā)現(xiàn)分泌型糖蛋白OLFML3可通過SOCS3抑制宿主細(xì)胞I型干擾素信號(hào)通路,從而促進(jìn)鼻病毒(rhino-virus,RV)的感染。近期,在針對(duì)SARS-CoV-2的研究中,多個(gè)團(tuán)隊(duì)在Vero-E6、Huh7、Calu-3和HEK293T等細(xì)胞系中揭示了一系列關(guān)鍵宿主因子及其作用機(jī)制。例如,Wei等[70]通過全基因組CRISPR敲除篩選發(fā)現(xiàn)非組蛋白染色質(zhì)結(jié)合蛋白HMGB1可通過調(diào)節(jié)ACE2的表達(dá)而影響細(xì)胞對(duì)SARS-CoV-2的易感性。Baggen等[71]通過全基因組CRISPR敲除篩選發(fā)現(xiàn)溶酶體膜蛋白TMEM106B能夠促進(jìn)病毒進(jìn)入細(xì)胞。Biering等[72]通過全基因組CRISPR敲除篩選發(fā)現(xiàn)接頭蛋白AP1G1等成分有利于SARS-CoV-2的感染,同時(shí)通過全基因組CRISPR激活篩選發(fā)現(xiàn)膜錨定粘蛋白MUC1、MUC4等能夠限制SARS-CoV-2進(jìn)入細(xì)胞。Zhu等[73]通過全基因組CRISPR激活篩選鑒定出LDLRAD3和CLEC4G等膜蛋白能夠以不依賴于ACE2的方式介導(dǎo)SARS-CoV-2的進(jìn)入和感染。
在傳染病相關(guān)病原細(xì)菌的研究中,可通過CRISPR篩選鑒定與致病性和耐藥性相關(guān)的基因。例如,Lai等[74]在被福氏志賀氏菌() M90T ΔvirG突變株感染的THP-1細(xì)胞中進(jìn)行了全基因組CRISPR敲除和抑制篩選,發(fā)現(xiàn)抑制TLR1/2信號(hào)通路和丙酮酸分解代謝信號(hào)通路可限制細(xì)胞內(nèi)病原體的生長(zhǎng)和復(fù)制,該項(xiàng)研究揭示了福氏志賀氏菌與天然免疫細(xì)胞的相互作用及其潛在發(fā)病機(jī)制,同時(shí)也為志賀氏菌病的治療提供了見解。Bosch等[75]為了定量化表征結(jié)核分枝桿菌()的基因脆弱性(gene vulnerability)即靶基因受到攻擊時(shí)細(xì)胞生存受影響的程度,在結(jié)核分枝桿菌H37Rv和HN878菌株中進(jìn)行了全基因組CRISPR抑制篩選,并構(gòu)建靶基因敲低與病原菌適應(yīng)度的關(guān)系模型,鑒定出了一批高度脆弱的基因,包括參與蛋白質(zhì)折疊(和)與分泌()、代謝(、、和)、染色體復(fù)制(和)和細(xì)胞分裂()等過程的基因,為相關(guān)藥物開發(fā)提供了新靶點(diǎn),同時(shí)也為其他細(xì)菌性病原體的研究提供了新思路。盡管CRISPR敲除篩選已廣泛應(yīng)用于真核生物,但在細(xì)菌等原核生物中由于基因組編輯效率較低,尚未得到大范圍應(yīng)用[76,77]。而Yan等[78]建立了基于CRISPR切割和NHEJ修復(fù)途徑的基因組編輯方法,能夠高效突變?cè)松锘蚪M,將該系統(tǒng)應(yīng)用于結(jié)核分枝桿菌,首次在細(xì)菌中實(shí)現(xiàn)了高通量CRISPR敲除篩選,同時(shí)又結(jié)合了CRISPR抑制篩選,鑒定出多個(gè)與抗結(jié)核藥物貝達(dá)喹啉(bedaquiline,BDQ)敏感性相關(guān)的基因,包括參與藥物外排的基因以及參與ATP合成的基因、和等[77],該項(xiàng)研究促進(jìn)了對(duì)結(jié)核分枝桿菌的基礎(chǔ)研究,為抗結(jié)核藥物的開發(fā)提供了理論依據(jù)。
圖2 CRISPR篩選流程
圖繪制網(wǎng)址:https://www.biorender.com。
利用CRISPR/Cas系統(tǒng)能夠高度特異性識(shí)別靶標(biāo)核酸分子的特性,研究人員開發(fā)了基于CRISPR的新型分子診斷工具,用于病原體核酸的檢測(cè)(表2)。這類分子診斷工具主要由具有反式切割活性的Cas蛋白(如Cas12和Cas13)、能與靶標(biāo)核酸特異性結(jié)合的gRNA和非靶標(biāo)報(bào)告分子組成。其中,非靶標(biāo)報(bào)告分子通常為兩端分別帶有熒光基團(tuán)(如FAM、TEX、Cy5和HEX)和淬滅基團(tuán)(如BHQ1和BHQ2)的寡核苷酸(ssDNA或ssRNA)。當(dāng)該系統(tǒng)識(shí)別并切割靶標(biāo)核酸后,將反式切割非靶標(biāo)報(bào)告分子的核酸,使得熒光基團(tuán)與淬滅基團(tuán)物理距離變大而發(fā)出熒光,從而指示特定核酸的存在(圖3)。
表2 CRISPR基因組編輯技術(shù)在傳染病診斷、預(yù)防和治療中的應(yīng)用
CRISPR/Cas:成簇的規(guī)律間隔的短回文重復(fù)序列/CRISPR相關(guān)蛋白;ZIKV:寨卡病毒;DENV:登革熱病毒;WNV:西尼羅病毒;YFV:黃熱病病毒;SARS-CoV-2:嚴(yán)重急性呼吸綜合征冠狀病毒2;HPV:人乳頭瘤病毒;HIV-1:人類免疫缺陷病毒1型;HBV:乙型肝炎病毒;cccDNA:共價(jià)閉合環(huán)狀DNA;HSV-1:?jiǎn)渭儼捳畈《?型;LCMV:淋巴細(xì)胞性脈絡(luò)膜腦膜炎病毒;IAV:甲型流感病毒;VSV:水泡性口炎病毒。
圖3 基于CRISPR的診斷工具
crRNA:CRISPR RNA;F:熒光基團(tuán);Q:淬滅基團(tuán);ssDNA:?jiǎn)捂淒NA;ssRNA:?jiǎn)捂淩NA。
例如,2017年,美國(guó)麻省理工學(xué)院和哈佛大學(xué)博德研究所的張鋒團(tuán)隊(duì)開發(fā)了基于CRISPR/Cas13a的核酸檢測(cè)系統(tǒng)SHERLOCK (specific high-sensitivityenzymatic reporter unlocking),該系統(tǒng)結(jié)合了重組聚合酶擴(kuò)增技術(shù)(recombinase polymerase amplification,RPA),能夠在恒溫下對(duì)待測(cè)病原體的核酸大量擴(kuò)增,并獲得對(duì)應(yīng)的ssRNA作為底物,若系統(tǒng)能夠識(shí)別并切割該底物,則接下來(lái)將反式切割非靶標(biāo)報(bào)告分子中的ssRNA,從而將淬滅的FAM熒光信號(hào)釋放出來(lái)[51]。該系統(tǒng)能夠高靈敏度地檢測(cè)寨卡病毒(Zika virus,ZIKV)、登革熱病毒(dengue virus,DENV)以及多種細(xì)菌性病原體,包括大腸桿菌、銅綠假單胞菌()和肺炎克雷伯菌(),且能夠區(qū)分不同毒株或菌株。2018年,該團(tuán)隊(duì)又構(gòu)建了升級(jí)版的SHERLOCK系統(tǒng),即SHERLOCKv2,它結(jié)合了一種對(duì)未提取的診斷樣品加熱來(lái)消除核酸酶(heating unextracted diag-no-stic samples to obliterate nucleases,HUDSON)的技術(shù),能夠檢測(cè)ZIKV、DENV、西尼羅病毒(West Nile virus,WNV)和黃熱病病毒(yellow fever virus,YFV),并可區(qū)分DENV的4種血清型[79]。升級(jí)后的系統(tǒng)能夠檢測(cè)樣品中濃度低至0.9×10–18mol/L的ZIKV顆粒,比原系統(tǒng)能識(shí)別的病毒最少量縮小了約一半。
2020年,SHERLOCK系統(tǒng)首次被實(shí)戰(zhàn)用于SARS-CoV-2檢測(cè),并取得了不錯(cuò)的效果[80]。同年,張鋒團(tuán)隊(duì)對(duì)基于SHERLOCK技術(shù)的SARS-CoV-2檢測(cè)流程在病毒RNA提取、Cas蛋白選用,如使用來(lái)自脂環(huán)酸芽孢桿菌()的AapCas12b,以及體系添加物等方面進(jìn)行了優(yōu)化[81,82],使其檢測(cè)靈敏度能達(dá)到93.1%,特異性可達(dá)98.5%,且能夠在1 h以內(nèi)完成檢測(cè)。
2018年,美國(guó)加州大學(xué)伯克利分校的Jennifer Doudna團(tuán)隊(duì)開發(fā)了基于CRISPR/Cas12a的DNA分子檢測(cè)系統(tǒng)DETECTR(DNA endonuclease targeted CRISPR trans reporter)[48]。類似的,在系統(tǒng)中加入兩端各帶有熒光報(bào)告基團(tuán)和淬滅基團(tuán)的報(bào)告ssDNA,當(dāng)靶標(biāo)dsDNA或ssDNA存在時(shí),Cas12a識(shí)別并切割靶標(biāo)后,將非特異地切割報(bào)告分子的ssDNA,從而釋放FAM熒光信號(hào)。采用這一系統(tǒng),研究人員實(shí)現(xiàn)了對(duì)人乳頭瘤病毒(human papillomavirus,HPV)中兩種高危亞型HPV16和HPV18的檢測(cè)。
在眾多傳染病中,病原體的蟲媒傳播是亟待解決的全球性問題之一,特別是通過蚊子傳播病原體,如按蚊傳播瘧原蟲,伊蚊攜帶登革熱病毒、寨卡病毒和黃熱病病毒等?,F(xiàn)有長(zhǎng)效殺蟲劑的使用可大大減少疾病的流行,但殺蟲劑的過量使用不僅對(duì)生態(tài)環(huán)境造成影響,還可導(dǎo)致耐藥性蚊子種群的出現(xiàn)[83,84]。因此,迫切需要強(qiáng)有力的新策略和工具來(lái)解決蟲媒傳播病原體的問題。
已有研究人員從提高蚊子對(duì)病原體抗性的角度出發(fā),利用CRISPR/Cas9工具將針對(duì)人類惡性瘧原蟲()的單鏈抗體基因和敲入斯氏按蚊()印度品系的胚胎中,獲得了攜帶有抗蟲基因的后代[85](表2)。此外,還有研究人員從抑制蚊子繁殖的角度出發(fā),使用CRISPR/Cas9工具靶向生育相關(guān)的基因,例如對(duì)雌性岡比亞按蚊()的基因和雄性埃及伊蚊()的基因進(jìn)行無(wú)效突變(null mutation),使突變蚊子不能產(chǎn)生后代[86,87](表2)。將這些具有抗蟲基因或“絕育”的蚊子放歸自然,將有望改變蚊子種群的遺傳結(jié)構(gòu),從而減少蚊子傳播疾病的能力。
目前,已有多項(xiàng)研究探索了CRISPR基因組編輯技術(shù)在臨床應(yīng)用中的可行性(表2)。例如,Xu等[88]首次在造血干祖細(xì)胞(hematopoietic stem and pro-genitor cells,HSPCs)中利用CRISPR/Cas9技術(shù)編輯了HIV-1入侵細(xì)胞的受體基因,并移植到罹患HIV-1合并急性淋巴細(xì)胞白血病的患者中,使患者的急性淋巴細(xì)胞白血病完全緩解,且治療19個(gè)月后攜帶突變的供體細(xì)胞在體內(nèi)仍穩(wěn)定存活。Dash等[89]通過雙重基因編輯,在失活基因的同時(shí)切除了整合到基因組上的HIV-1 DNA,使58%受感染的人源化小鼠中前病毒DNA被消除,這為艾滋病的治療提供了一種新策略。
乙型肝炎病毒(hepatitis B virus,HBV)的基因組DNA進(jìn)入到細(xì)胞核后,可在病毒蛋白和宿主蛋白的作用下形成共價(jià)閉合環(huán)狀DNA (covalently closed circular DNA,cccDNA),從而作為病毒RNA復(fù)制的原始模板。只要cccDNA穩(wěn)定存在,就可以使病毒持續(xù)感染,因此,清除肝細(xì)胞中的cccDNA對(duì)于徹底治愈乙肝非要重要。最近,已有多個(gè)團(tuán)隊(duì)利用CRISPR/Cas9系統(tǒng),對(duì)受HBV感染的哺乳動(dòng)物肝細(xì)胞進(jìn)行基因組編輯,靶向切割了HBV的cccDNA,使得HBV的總病毒DNA和cccDNA水平顯著下降,病毒復(fù)制能力顯著降低[90~92]。
采用類似的策略,研究人員成功修飾了受感染細(xì)胞中單純皰疹病毒1型(herpes simplex virus type 1,HSV-1)的基因組,減弱了其毒力,并且未檢測(cè)到脫靶效應(yīng)[93,94]。
此外,張鋒團(tuán)隊(duì)把基于Cas13介導(dǎo)的病毒RNA切割與SHERLOCK快速診斷技術(shù)[51]相結(jié)合,構(gòu)建了集診斷與抗病毒治療于一體的新平臺(tái)CARVER (Cas13-assisted restriction of viral expression and readout)[95]。實(shí)驗(yàn)證明,該系統(tǒng)的Cas13 crRNA能夠有效靶向被感染細(xì)胞中的淋巴細(xì)胞性脈絡(luò)膜腦膜炎病毒(lymphocytic choriomeningitis virus,LCMV)、甲型流感病毒(influenza A virus,IAV)或水泡性口炎病毒(vesicular stomatitis virus,VSV)的基因組,使得病毒RNA水平顯著降低。
自從CRISPR基因組編輯技術(shù)誕生以來(lái),已被廣泛應(yīng)用于各種物種的基因組編輯,通過其構(gòu)建的細(xì)胞、類器官和動(dòng)物疾病模型,為研究人員探索傳染病相關(guān)分子機(jī)制提供了極大便利。CRISPR技術(shù)使得高通量篩選和鑒定傳染病相關(guān)的風(fēng)險(xiǎn)因子成為可能。當(dāng)前,CRISPR技術(shù)在傳染病診斷和防治研究中也愈發(fā)顯示出傳統(tǒng)方法所不及的優(yōu)勢(shì),SHERLOCK、DETECTR等新型分子診斷工具的開發(fā)和應(yīng)用將提供更靈敏、快速的檢測(cè)結(jié)果。通過靶向宿主易感基因或病毒基因組,攜帶病原體的蚊蟲有望得到控制,HIV-1、HBV等病毒感染患者也有望從根本上得到治愈。
在體外或模式生物中進(jìn)行CRISPR基因組編輯的操作技術(shù)已相對(duì)成熟,但要真正應(yīng)用于臨床治療,還有很多問題需要解決。一是如何保證試驗(yàn)的安全性和有效性。在治療HIV-1感染患者的案例中[88],研究人員在基礎(chǔ)研究方面提高了治療方法的安全性,并在中斷抗逆轉(zhuǎn)錄病毒治療后,持續(xù)監(jiān)測(cè)確認(rèn)無(wú)不良免疫反應(yīng)和脫靶現(xiàn)象,但因?yàn)檎w基因組編輯效率較低,所以僅被編輯的細(xì)胞具有抵抗HIV-1的能力,還不能完全清除體內(nèi)的病毒。二是如何在體內(nèi)進(jìn)行CRISPR/Cas系統(tǒng)的有效遞送。病毒載體是進(jìn)行體內(nèi)遞送的主要手段,目前廣泛使用的病毒載體包括慢病毒、腺病毒和腺相關(guān)病毒載體,但仍存在一定的局限性,如缺乏組織特異性、引起不良免疫反應(yīng)和脫靶等問題,而非病毒載體(如脂質(zhì)顆粒、聚合物顆粒和無(wú)機(jī)顆粒等)的使用將有望解決這些問題[96,97]。此外,建立合理的生物倫理審查標(biāo)準(zhǔn)和監(jiān)管機(jī)制,對(duì)于維護(hù)生物倫理、維持生態(tài)平衡具有重要意義。例如,經(jīng)過基因工程修飾的媒介蚊蟲,將其放歸自然后很可能改變種群基因庫(kù),影響種群的進(jìn)化方向,從而改變整個(gè)生態(tài)系統(tǒng),因此,有必要對(duì)基因改造后的突變物種進(jìn)行長(zhǎng)期監(jiān)測(cè)。
總之,CRISPR基因組編輯技術(shù)的應(yīng)用加快了對(duì)傳染病致病機(jī)理的研究,為病原體的診斷提供了新的思路,但在傳染病防治方面仍有很多工作要做,以實(shí)現(xiàn)臨床應(yīng)用的安全有效。
[1] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes., 2007, 315(5819): 1709–1712.
[2] Stoddard BL. Homing endonuclease structure and function., 2005, 38(1): 49–95.
[3] Bos JL, Heyting C, Borst P, Arnberg AC, Van Bruggen EF. An insert in the single gene for the large ribosomal RNA in yeast mitochondrial DNA., 1978, 275(5678): 336–338.
[4] Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering., 2014, 5(1): 7.
[5] Sargent RG, Brenneman MA, Wilson JH. Repair of site-specific double-strand breaks in a mammalian chro-mosome by homologous and illegitimate recombi-nation., 1997, 17(1): 267–277.
[6] Cohen-Tannoudji M, Robine S, Choulika A, Pinto D, El Marjou F, Babinet C, Louvard D, Jaisser F. I-I-induced gene replacement at a natural locus in embryonic stem cells., 1998, 18(3): 1444–1448.
[7] Cabaniols JP, Paques F. Robust cell line development using meganucleases., 2008, 435: 31–45.
[8] Cabaniols JP, Ouvry C, Lamamy V, Fery I, Craplet ML, Moulharat N, Guenin SP, Bedut S, Nosjean O, Ferry G, Devavry S, Jacqmarcq C, Lebuhotel C, Mathis L, Delenda C, Boutin JA, Duchateau P, Cogé F, Paques F. Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays., 2010, 15(8): 956–967.
[9] Redondo P, Prieto J, Mu?oz IG, Alibés A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C, Duchateau P, Paques F, Blanco FJ, Montoya G. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases., 2008, 456(7218): 107–111.
[10] Seligman LM, Stephens KM, Savage JH, Monnat RJ. Genetic analysis of theI-I mobile intron homing system in., 1997, 147(4): 1653–1664.
[11] Pósfai G, Kolisnychenko V, Bereczki Z, Blattner FR. Markerless gene replacement instimulated by a double-strand break in the chromosome., 1999, 27(22): 4409–4415.
[12] Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination., 1996, 93(10): 5055–5060.
[13] Antunes MS, Smith JJ, Jantz D, Medford JI. Targeted DNA excision inby a re-engineered homing endonuclease., 2012, 12: 86.
[14] Djukanovic V, Smith J, Lowe K, Yang MZ, Gao HR, Jones S, Nicholson MG, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-I homing endonuclease., 2013, 76(5): 888–899.
[15] Rouet P, Smih F, Jasin M. Introduction of double- strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease., 1994, 14(12): 8096–8106.
[16] Gouble A, Smith J, Bruneau S, Perez C, Guyot V, Cabaniols JP, Leduc S, Fiette L, Avé P, Micheau B, Duchateau P, Paques F. Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break., 2006, 8(5): 616–622.
[17] Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions toI cleavage domain., 1996, 93(3): 1156–1160.
[18] Cathomen T, Keith Joung J. Zinc-finger nucleases: the next generation emerges., 2008, 16(7): 1200– 1207.
[19] Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 ?., 1991, 252(5007): 809–817.
[20] Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I.I dimerization is required for DNA cleavage., 1998, 95(18): 10570–10575.
[21] Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis inusing zinc-finger nucleases., 2002, 161(3): 1169–1175.
[22] Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases., 2003, 300(5620): 764.
[23] Morton J, Davis MW, Jorgensen EM, Carroll D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks insomatic cells., 2006, 103(44): 16370–16375.
[24] Meng XD, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases., 2008, 26(6): 695–701.
[25] Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases., 2008, 26(6): 702–708.
[26] Connelly JP, Barker JC, Pruett-Miller S, Porteus MH. Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease., 2010, 18(6): 1103–1110.
[27] Meyer M, de Angelis MH, Wurst W, Kühn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases., 2010, 107(34): 15022–15026.
[28] Carbery ID, Ji D, Harrington A, Brown V, Weinstein EJ, Liaw L, Cui XX. Targeted genome modification in mice using zinc-finger nucleases., 2010, 186(2): 451–459.
[29] Cui XX, Ji D, Fisher DA, Wu YM, Briner DM, Weinstein EJ. Targeted integration in rat and mouse embryos with zinc-finger nucleases., 2011, 29(1): 64–67.
[30] Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH. Gene editing ofin autologous CD4 T cells of persons infected with HIV., 2014, 370(10): 901–910.
[31] Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases., 2010, 186(2): 757–761.
[32] Bak RO, Gomez-Ospina N, Porteus MH. Gene editing on center stage., 2018, 34(8): 600–611.
[33] Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing., 2013, 14(1): 49–55.
[34] Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells., 2017, 9(374): eaaj2013.
[35] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in, and identification of the gene product., 1987, 169(12): 5429–5433.
[36] Mojica FJ, Díez-Villase?or C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria., 2000, 36(1): 244–246.
[37] Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes., 2002, 43(6): 1565–1575.
[38] Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning., 2023, 379(6629): eadd8643.
[39] Mojica FJM, Díez-Villase?or C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements., 2005, 60(2): 174–182.
[40] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements inacquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies., 2005, 151(Pt 3): 653–663.
[41] Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin., 2005, 151(Pt 8): 2551–2561.
[42] Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action., 2006, 1: 7.
[43] Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S, Mojica FJM, Scott D, Shah SA, Siksnys V, Terns MP, Venclovas ?, White MF, Yakunin AF, Yan W, Zhang F, Garrett RA, Backofen R, van der Oost J, Barrangou R, Koonin EV. Evolutio-nary classification of CRISPR-Cas systems: a burst of class 2 and derived variants., 2020, 18(2): 67–83.
[44] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity., 2012, 337(6096): 816–821.
[45] Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9., 2014, 346(6213): 1258096.
[46] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system., 2015, 163(3): 759–771.
[47] Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector., 2016, 353(6299): aaf5573.
[48] Chen JS, Ma EB, Harrington LB, Da Costa M, Tian XR, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity., 2018, 360(6387): 436–439.
[49] Broughton JP, Deng XD, Yu GX, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY. CRISPR-Cas12-based detection of SARS-CoV-2., 2020, 38(7): 870–874.
[50] Nguyen LT, Smith BM, Jain PK. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection., 2020, 11(1): 4906.
[51] Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2., 2017, 356(6336): 438–442.
[52] Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6., 2018, 360(6387): 439–444.
[53] Iwasaki RS, Batey RT. SPRINT: a Cas13a-based platform for detection of small molecules., 2020, 48(17): e101.
[54] Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria., 2012, 109(39): E2579–E2586.
[55] Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells., 2018, 19(12): 770–788.
[56] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gooten-berg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR- Cas9 complex., 2015, 517(7536): 583–588.
[57] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. CRISPR- mediated modular RNA-guided regulation of transcription in eukaryotes., 2013, 154(2): 442–451.
[58] Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers., 2015, 33(5): 510–517.
[59] Zhang HX, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9., 2019, 27(4): 735–746.
[60] Ren YX, Xiao RD, Lou XM, Fang XD. Research advance and application in the gene therapy of gene editing technologies., 2019, 41(1): 18–27.任云曉, 肖茹丹, 婁曉敏, 方向東. 基因編輯技術(shù)及其在基因治療中的應(yīng)用. 遺傳, 2019, 41(1): 18–27.
[61] McCarty NS, Graham AE, Studena L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation., 2020, 11(1): 1281.
[62] Ye L, Wang JM, Beyer AI, Teque F, Cradick TJ, Qi ZX, Chang JC, Bao G, Muench MO, Yu JW, Levy JA, Kan YW. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection., 2014, 111(26): 9591–9596.
[63] Yusa K, Zhou LQ, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian appli-cations., 2011, 108(4): 1531–1536.
[64] Zhou J, Li C, Liu XJ, Chiu MC, Zhao XY, Wang D, Wei YX, Lee A, Zhang AJ, Chu H, Cai JP, Yip CCY, Chan IHY, Wong KKY, Tsang OTY, Chan KH, Chan JFW, To KKW, Chen HL, Yuen KY. Infection of bat and human intestinal organoids by SARS-CoV-2., 2020, 26(7): 1077– 1083.
[65] Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis., 2022, 20(5): 270–284.
[66] Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, Liu SS, Zhang NN, Li XF, Xiong R, Guo Y, Deng YQ, Huang WJ, Liu Q, Liu QM, Shen YL, Zhou Y, Yang X, Zhao TY, Fan CF, Zhou YS, Qin CF, Wang YC. A mouse model of SARS-CoV-2 infection and pathogenesis., 2020, 28(1): 124–133.e4.
[67] Li B, Clohisey SM, Chia BS, Wang B, Cui A, Eisenhaure T, Schweitzer LD, Hoover P, Parkinson NJ, Nachshon A, Smith N, Regan T, Farr D, Gutmann MU, Bukhari SI, Law A, Sangesland M, Gat-Viks I, Digard P, Vasudevan S, Lingwood D, Dockrell DH, Doench JG, Baillie JK, Hacohen N. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection., 2020, 11(1): 164.
[68] Hyrina A, Jones C, Chen D, Clarkson S, Cochran N, Feucht P, Hoffman G, Lindeman A, Russ C, Sigoillot F, Tsang T, Uehara K, Xie LL, Ganem D, Holdorf M. A genome-wide CRISPR screen identifies ZCCHC14 as a host factor required for hepatitis B surface antigen production., 2019, 29(10): 2970–2978.e6.
[69] Mei H, Zha Z, Wang W, Xie YS, Huang YG, Li WP, Wei D, Zhang XX, Qu JM, Liu J. Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist., 2021, 22(1): 297.
[70] Wei J, Alfajaro MM, DeWeirdt PC, Hanna RE, Lu-Culligan WJ, Cai WL, Strine MS, Zhang SM, Graziano VR, Schmitz CO, Chen JS, Mankowski MC, Filler RB, Ravindra NG, Gasque V, de Miguel FJ, Patil A, Chen HC, Oguntuyo KY, Abriola L, Surovtseva YV, Orchard RC, Lee B, Lindenbach BD, Politi K, van Dijk D, Kadoch C, Simon MD, Yan Q, Doench JG, Wilen CB. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection., 2021, 184(1): 76–91.e13.
[71] Baggen J, Persoons L, Vanstreels E, Jansen S, Van Looveren D, Boeckx B, Geudens V, De Man J, Jochmans D, Wauters J, Wauters E, Vanaudenaerde BM, Lambrechts D, Neyts J, Dallmeier K, Thibaut HJ, Jacquemyn M, Maes P, Daelemans D. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2., 2021, 53(4): 435–444.
[72] Biering SB, Sarnik SA, Wang E, Zengel JR, Leist SR, Sch?fer A, Sathyan V, Hawkins P, Okuda K, Tau C, Jangid AR, Duffy CV, Wei J, Gilmore RC, Alfajaro MM, Strine MS, Nguyenla X, Van Dis E, Catamura C, Yamashiro LH, Belk JA, Begeman A, Stark JC, Shon DJ, Fox DM, Ezzatpour S, Huang E, Olegario N, Rustagi A, Volmer AS, Livraghi-Butrico A, Wehri E, Behringer RR, Cheon DJ, Schaletzky J, Aguilar HC, Puschnik AS, Button B, Pinsky BA, Blish CA, Baric RS, O’Neal WK, Bertozzi CR, Wilen CB, Boucher RC, Carette JE, Stanley SA, Harris E, Konermann S, Hsu PD. Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection., 2022, 54(8): 1078–1089.
[73] Zhu SY, Liu Y, Zhou Z, Zhang ZY, Xiao X, Liu ZH, Chen A, Dong XJ, Tian F, Chen SH, Xu YY, Wang CH, Li QH, Niu XR, Pan Q, Du S, Xiao JY, Wang JW, Wei WS. Genome-wide CRISPR activation screen identifies candidate receptors for SARS-CoV-2 entry., 2022, 65(4): 701–717.
[74] Lai Y, Cui L, Babunovic GH, Fortune SM, Doench JG, Lu TK. High-throughput CRISPR screens to dissect macrophage-interactions., 2021, 12(6): e0215821.
[75] Bosch B, DeJesus MA, Poulton NC, Zhang WZ, Engelhart CA, Zaveri A, Lavalette S, Ruecker N, Trujillo C, Wallach JB, Li SQ, Ehrt S, Chait BT, Schnappinger D, Rock JM. Genome-wide gene expression tuning reveals diverse vulnerabilities of.., 2021, 184(17): 4579–4592.e24.
[76] Rousset F, Bikard D. CRISPR screens in the era of microbiomes., 2020, 57: 70–77.
[77] Yan MY, Zheng DD, Li SS, Ding XY, Wang CL, Guo XP, Zhan LJ, Jin Q, Yang J, Sun YC. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in., 2022, 8(47): eadd5907.
[78] Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-assisted nonhomologous end-joining strategy for efficient genome editing in., 2020, 11(1): e02364–19.
[79] Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, Garcia KF, Barnes KG, Chak B, Mondini A, Nogueira ML, Isern S, Michael SF, Lorenzana I, Yozwiak NL, MacInnis BL, Bosch I, Gehrke L, Zhang F, Sabeti PC. Field-deployable viral diagnostics using CRISPR-Cas13., 2018, 360(6387): 444–448.
[80] An JH, Liao XJ, Xiao TY, Qian S, Yuan J, Ye HC, Qi FR, Shen CG, Wang LF, Liu Y, Cheng XY, Li N, Cai QX, Wang F, Chen J, Li GJ, Cai QE, Liu YX, Wang YF, Zhang F, Fu Y, He Q, Tan XH, Liu L, Zhang Z. Clinical characteristics of recovered COVID-19 patients with re-detectable positive RNA test., 2020, 8(17): 1084.
[81] Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MLW, Kim NG, Yu X, Li J, Walker BD, Greninger AL, Jerome KR, Gootenberg JS, Abudayyeh OO, Zhang F. Point-of-care testing for COVID-19 using SHERLOCK diagnostics., 2020, doi: 10.1101/2020.05.04. 20091231.
[82] Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, Ioannidi EI, Krajeski RN, Bruneau R, Huang MLW, Yu XG, Li JZ, Walker BD, Hung DT, Greninger AL, Jerome KR, Gootenberg JS, Abudayyeh OO, Zhang F. Detection of SARS-CoV-2 with SHERLOCK one-pot testing., 2020, 383(15): 1492–1494.
[83] Ranson H, Lissenden N. Insecticide resistance in Africanmosquitoes: a worsening situation that needs urgent action to maintain malaria control., 2016, 32(3): 187–196.
[84] Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, Raghavendra K, Pinto J, Corbel V, David JP, Weetman D. Contemporary status of insecticide resistance in the majorvectors of arboviruses infecting humans., 2017, 11(7): e0005625.
[85] Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito., 2015, 112(49): E6736–E6743.
[86] Kyrou K, Hammond AM, Galizi R, Kranjc N, Burt A, Beaghton AK, Nolan T, Crisanti A. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in cagedmosquitoes., 2018, 36(11): 1062–1066.
[87] Chen JY, Luo JJ, Wang YJ, Gurav AS, Li M, Akbari OS, Montell C. Suppression of female fertility inwith a CRISPR-targeted male-sterile mutation., 2021, 118(22): e2105075118.
[88] Xu L, Wang J, Liu YL, Xie LF, Su B, Mou DL, Wang LT, Liu TT, Wang XB, Zhang B, Zhao L, Hu LD, Ning HM, Zhang YF, Deng K, Liu LF, Lu XF, Zhang T, Xu J, Li C, Wu H, Deng HK, Chen H. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia., 2019, 381(13): 1240–1247.
[89] Dash PK, Chen C, Kaminski R, Su H, Mancuso P, Sillman B, Zhang C, Liao SR, Sravanam S, Liu H, Waight E, Guo LL, Mathews S, Sariyer R, Mosley RL, Poluektova LY, Caocci M, Amini S, Gorantla S, Burdo TH, Edagwa B, Gendelman HE, Khalili K. CRISPR editing of CCR5 and HIV-1 facilitates viral elimination in antiretroviral drug-suppressed virus-infected humanized mice., 2023, 120(19): e2217887120.
[90] Kennedy EM, Bassit LC, Mueller H, Kornepati AVR, Bogerd HP, Nie T, Chatterjee P, Javanbakht H, Schinazi RF, Cullen BR. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease., 2015, 476: 196–205.
[91] Ramanan V, Shlomai A, Cox DBT, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus., 2015, 5: 10833.
[92] Li H, Sheng CY, Wang S, Yang L, Liang Y, Huang Y, Liu HB, Li P, Yang CJ, Yang XX, Jia LL, Xie J, Wang LG, Hao RZ, Du XY, Xu DP, Zhou JJ, Li MZ, Sun YS, Tong YG, Li Q, Qiu SF, Song HB. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9., 2017, 7: 91.
[93] Russell TA, Stefanovic T, Tscharke DC. Engineering herpes simplex viruses by infection-transfection methods including recombination site targeting by CRISPR/Cas9 nucleases., 2015, 213: 18–25.
[94] Lin CL, Li HH, Hao MR, Xiong D, Luo Y, Huang CH, Yuan Q, Zhang J, Xia NS. Increasing the efficiency of CRISPR/Cas9-mediated precise genome editing of HSV-1 virus in human cells., 2016, 6: 34531.
[95] Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, Yozwiak NL, Zhang F, Sabeti PC. Programmable inhibition and detection of RNA viruses using Cas13., 2019, 76(5): 826–837.e11.
[96] Wilbie D, Walther J, Mastrobattista E. Delivery aspects of CRISPR/Cas for in vivo genome editing., 2019, 52(6): 1555–1564.
[97] Niu XR, Yin SM, Chen X, Shao TT, Li DL. Gene editing technology and its recent progress in disease therapy., 2019, 41(7): 582–598.牛煦然, 尹樹明, 陳曦, 邵婷婷, 李大力. 基因編輯技術(shù)及其在疾病治療中的研究進(jìn)展. 遺傳, 2019, 41(7): 582–598.
The application of CRISPR genome editing technologies in the pathogenesis studies, diagnosis, prevention and treatment of infectious diseases
Zhenrong Yang1,2, Gangqiao Zhou1,2
The CRISPR genome editing technology shows great application prospects in gene manipulation and infectious disease research, and is of great value for effective control and cure of infectious diseases. It has been utilized to generate specific disease models in cells, organoids and animals, which provide great convenience for research into the molecular mechanisms associated with infectious diseases. CRISPR screening technology enables high-throughput identification of risk factors. New molecular diagnostic tools based on CRISPR offer a more sensitive and faster method for detecting pathogens. The use of CRISPR tools to introduce resistance genes or to specifically destroy risk genes and virus genomes is intended to help prevent or treat infectious diseases. This review discusses the application of CRISPR genome editing technologies in the construction of disease models, screening of risk factors, pathogen diagnosis, and prevention and treatment of infectious diseases, thereby providing a reference for follow-up research in pathogenesis, diagnosis, prevention and treatment of infectious diseases.
infectious diseases; CRISPR; pathogenesis; diagnosis; prevention and treatment
2023-07-31;
2023-10-06;
2023-10-24
廣州實(shí)驗(yàn)室應(yīng)急攻關(guān)項(xiàng)目(編號(hào):EKPG21-19)資助[Supported by the Emergency Key Program of Guangzhou Laboratory (No. EKPG21-19)]
楊臻嶸,博士研究生,專業(yè)方向:細(xì)胞生物學(xué)。E-mail: yangzr@mail.ustc.edu.cn
周鋼橋,博士,研究員,研究方向:醫(yī)學(xué)遺傳學(xué)與基因組學(xué)。E-mail: zhougq114@126.com
10.16288/j.yczz.23-206
(責(zé)任編委: 謝建平)