• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D Cd-MOF and its mixed-matrix membranes for luminescence sensing antibiotics in various aqueous systems and visible fingerprint identifying

    2023-11-21 03:04:50KexinJingLiHuiynYnYngHuYngJingLuYunwuLiJinminDouSunWngSuijunLiu
    Chinese Chemical Letters 2023年11期

    Kexin M,Jing Li,Huiyn M,Yn Yng,Hu Yng,Jing Lu,Yunwu Li,?,Jinmin Dou,Sun Wng,?,Suijun Liu

    a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology,School of Chemistry and Chemical Engineering,Liaocheng University,Liaocheng 252000,China

    b School of Chemistry and Chemical Engineering,Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology,Ganzhou 341000,China

    Keywords:MOF luminescence sensor Mixed-matrix membranes Real urban river water Antibiotic nitrofurazone Visible fingerprint identifying

    ABSTRACT The abuse of antibiotics has brought great harm to the human living environment and health,so it is extremely significant to develop an efficient and simple method to detect trace antibiotic residues in various wastewaters.Herein,a new two-dimensional (2D) Cd-based metal-organic framework (Cd-MOF,namely LCU-111) and its mixed matrix membranes (MMMs) is sifted as luminescence sensors for efficient monitoring antibiotic nitrofurazone (NFZ) in various aqueous systems and applied as visible fingerprint identifying.The LCU-111 has good selectivity,sensibility,reproducibility and anti-interference for luminescent quenching NFZ with low detection limits (LODs) of 0.4567,0.3649 and 0.8071 ppm in aqueous solution,HEPES biological buffer,and real urban Tuhai River water,respectively.Interestingly,the luminescent test papers and MMMs allow the NFZ sensing easier and more rapid by naked eyes,only with a low LOD of 0.8117 ppm for MMMs sensor.Notably,by combining multiple experiments with density functional theory (DFT) calculations,the photo-induced electron transfer (PET) quenching mechanism is further elucidated.More importantly,potential practical applications of LCU-111 for latent fingerprint visualization provide lifelike evidences for effective identification of individuals,which can be applied in criminal investigation.

    Among varied antibiotics,nitro-containing nitrofurazone (NFZ)is widely applied to treat bacterial infection of various wounds and mucosa ulcers,or as feed additive in animal husbandry and aquaculture [1,2].Its excessive intake and chronic accumulationviafood chain can induce genetic defects,immunity decline,even cancer [3–5].Due to these reasons,NFZ has been officially banned to use for humans and food related industries all over the world[6].Therefore,it is of practical significance and urgently needed to efficiently detect NFZ in various water bodies and biological systems.Compared to complicated and high-cost technologies,luminescence detection is considered as one of the most attractive method due to its cheapness,simple,convenient,real-time and high efficient virtues [7,8],which has been widely utilized to detect organic contaminants and heavy metal pollutants [9].

    Among numerous luminescent sensors,MOFs with smart structures and multiple sensing sites are notably promising candidates as high-profile luminescent probes [10,11].Advantageously,by handpickedπ-conjugated organic chromophoric modules,MOF luminescent sensors can be mediated and regulated to realize the optimal spectral regions and intensities for targeted detection.So in this study,a rigid N-rich ligand 4,5-di(1H-tetrazol-5-yl)-2H-1,2,3-triazole (H3dttz) bearing largeπ-conjugated feature and multiple N-functional sites (11 N atoms in one molecule) was chosen to constructed layered 2D MOF to fulfill the NFZ detection.As is known,2D MOFs are famous star materials by exposing more accessible surface-active sites and matching improved performance.Herein,a new 2D MOF with the formula {[Cd5(dttz)2Cl4]·8H2O}n(LCU-111) was schemed and fabricated to detect antibiotics in various aqueous systems.To facilitate detection and expand its practical application,a series of MMMs based onLCU-111were further prepared using a coating method [12].The MMMs overcome the rigidity limitations of pure MOF crystals and combine the flexibility with processability of polymers to achieve a wide range of morphological features and practical sensor application devices.Besides,the homogeneous distribution of MOFs in MMMs allows for good permeability,which helps analytes to realize better contact with the MOFs compared to pure MOF sensors,resulting in improved sensing performance [13].

    As expected,LCU-111can detect antibiotic NFZ in pure aqueous solution,simulated HEPES buffer and real river water by luminescent quenching with low LODs of 0.4567,0.3649 and 0.8071 ppm,respectively.More importantly,LCU-111based MMMs can also sensing NFZ with a competitive LOD of 0.8117 ppm.A possible PET quenching mechanism is validated by UV-vis,XPS,PXRD,luminescence decay lifetime assisted with DFT calculations.Interestingly,LCU-111luminescent test papers provide convenience to quickly monitor NFZ by naked eyes.Due to the strong luminescence properties ofLCU-111,a simple and visible luminescent fingerprint imaging further offers authoritative evidences to distinguish personal identity potentially toward advanced practical application [14].

    TheLCU-111isolates in triclinic crystal system with space groupP-1 and shows a ladder-shaped 2D layered structure (Table S1 in Supporting information).The asymmetric unit ofLCU-111consists of two and a half Cd2+,one dttz3-ligand,two Cl-and four coordinated H2O molecules.Three Cd2+have the same six-coordinated modes with twisted octahedron geometries but different coordinated details (Fig.1a).All bond lengths and angles inLCU-111are consistent with the Cd-MOFs data reported before (Table S2 in Supporting information).Moreover,all dttz3-ligands possess the same eight-coordinated fashion to link five different Cd2+.By chelating and bridging of dttz3-and Cl-,Cd12+and Cd22+linked together to form a 1D wavy chain-like structure (Fig.1b).1D chains connected by Cd32+to generate a ladder-shaped 2D layered structure (Fig.1c).The 3D supramolecular mapping shows internal microporous structure by hydrogen bonding andπ-πstacking interaction,which can allows small guest molecules access (Fig.1d).TheLCU-111provides affluent uncoordinated N atoms and terminal Cl-as bifunctional sites in the pores,which can account for the luminescence specific recognition.

    Fig.1.(a) The coordination mode of dttz3- ligand.(b) The 1D chain structure.(c)The 2D layered structure.(d) The 3D stacking structure of LCU-111.

    The solid state luminescence properties of free H3dttz ligands andLCU-111were investigated at room temperature,respectively.As shown in Fig.2a,at the excitation peak of 389 nm,LCU-111appears the emission peak at 466 nm.By comparison,the free H3dttz ligands show an emission peak at 496 nm under 400 nm excitation(Fig.S1 in Supporting information).TheLCU-111emission peak occurs an obvious blue shiftvs.free H3dttz ligands.The reason is that the H3dttz ligands coordinated to Cd2+(d10) enhance their rigidity and led to easier transition of electrons.So the emission ofLCU-111are caused by n-π?orπ-π?electron transition in the ligands[9,10].Its CIE coordinates (0.1594,0.2243) are located in blue-green light emitting region (Fig.2a).

    Fig.2.(a) Solid-state excitation and emission spectrum (inset: CIE coordinate of LCU-111).(b) Luminescence images of LCU-111 in different antibiotic solutions under 365 nm UV lamp.(c) The luminescence spectra and (d) intensities of LCU-111 in various antibiotic solutions.(e) The luminescence titration curves and (f) corresponding LOD of LCU-111 for NFZ in aqueous solution (inset: S-V plot).

    Fig.3.(a,b) Antibiotics identification map,(c) luminescence titration experiments and (d) calculated LOD of LCU-111 in real urban Tuhai River water (inset: the urban Tuhai River acrossing Liaocheng city,China).(e) Luminescence titration experiments and (f) calculated LOD of LCU-111 in HEPES buffered solution.

    LCU-111was conducted to identify antibiotics residues in various wastewaters by luminescence sensing due to its bifunctional sites.Before practical applications in various aqueous systems,the good solution stability ofLCU-111is checked using PXRD (Fig.S2 in Supporting information).The detailed sensing procedure of antibiotics in aqueous solution is offered in Supporting information.As shown in Fig.2c,the luminescence intensities ofLCU-111are different towards various antibiotics.Specifically,in NFZ solution,theLCU-111displays the lowest luminescence intensity,suggesting the strongest luminescent quenching.As shown in Fig.2d,the luminescence intensity ofLCU-111in blank aqueous solution is 4896 a.u.,while it decreases to 1.5 a.u.in NFZ solution,dropping 3264 folds.In the luminescence images taken under the 365 nm UV lamp,NFZ solution has the darkest color compared to other antibiotics (Fig.2b).This provides convenience to easily identify these antibiotics by naked eyes.The above preliminary tests indicate theLCU-111is an excellent NFZ luminescence quenching sensor in aqueous solution.

    In order to investigate the optimal quenching effect ofLCU-111on NFZ,luminescence titration experiments were further carried out.With the continuous addition of NFZ,the luminescence intensity decreases obviously.When adding 210 μL NFZ,the intensity drops to only 4% compared to the value of original blank sample.From Fig.2e,theKsvofLCU-111for NFZ is calculated as 3.96×104L/mol by Stern-Volmer (S-V) equationI0/I=Ksv[M] +1,expressing the luminescent quenching efficiency [7].The LOD ofLCU-111for NFZ is 0.4567 ppm (0.1292 μmol/L) according to equation LOD=3δ/k(Fig.2f),which surpasses most reported MOF-based luminescence sensors (Table S3 in Supporting information) [10].The luminescence photos ofLCU-111in different concentrations of NFZ solutions are shown in Fig.S5 (Supporting information).As the NFZ concentration increases,the luminescence color changes gradually from bright blue-green to darker and darker.To verify the specific recognition ofLCU-111,the anti-interference experiments of NFZ by adding other antibiotics were studied and compared.As shown in Fig.S6 (Supporting information),the strength ofLCU-111remains low in the presence of various antibiotics.This shows that the recognition of NFZ byLCU-111is not affected by other antibiotics and has a good resistance to interference.Fast response is a key factor for the practical application of luminescence sensors.So a time-response experiment was also carried out,where the luminescence intensity decreases rapidly to a lowest point within 30 s after the addition of 210 μL NFZ solution,and it remains constant more than 500 s (Fig.S7 in Supporting information).In addition,LCU-111also has a good cycling stability and can be repeatedly reused after five cycles (Figs.S8 and S9 in Supporting information).

    Overuse of antibiotics is harmful to humans,so the practical application ofLCU-111for the detection of NFZ in real civil wastewater from the urban Tuhai River water (located in Liaocheng city,China) and HEPES simulated biological fluid are chosen to prepare the suspensions.As shown in Figs.3a and b,Figs.S10-S12 (Supporting information),LCU-111can still recognize NFZ in real Tuhai River water samples and HEPES buffer.Compared with other antibiotics,the luminescence quenching effect to NFZ is still obvious.Similarly,luminescence titration experiments show that the luminescence intensity decreases continuously with the increasing of NFZ concentration (Figs.3c and e).TheKsvvalue ofLCU-111for NFZ is 3.38×104and 1.15×104L/mol in real river water and HEPES calculated by S-V equation (Figs.3c and e) [7],respectively.The corresponding LOD ofLCU-111for NFZ is 0.8071 and 0.3649 ppm (Figs.3d and f) [10],respectively,which is also better than most reported MOFs sensors (Table S3).The LOD in HEPES is lowest among these three aqueous systems,manifestingLCU-111is a good candidate as bio-sensor.TheLCU-111still has strong antiinterference capacity for identifying NFZ against other antibiotics in real Tuhai River water (Fig.S10 in Supporting information).LCU-111also has a good cycling stability after five cycles (Fig.S13 in Supporting information) and fast response time (Fig.S14 in Supporting information) in real Tuhai River water.It is worth noting that the real Tuhai River water samples contain lots of complex substances and undulated pH values as a flowing river acrossing the Liaocheng city,however theLCU-111still has stable recognition performance in real river water,suggesting a promising application in practical wastewater detection.

    Due to above excellent sensing capability ofLCU-111toward NFZ in various aqueous systems,the luminescent MMMs were further made by drawdown coating process so as to expand its practical application [12].Four types of MMMs are prepared (Fig.S15a in Supporting information) and the mass ratios ofLCU-111are 0 wt%,2 wt%,4 wt% and 8 wt%,respectively.Taken 8 wt% MMMs as example,the PXRD spectra before and after sensing NFZ are in agreement with the crystalLCU-111,provingLCU-111based MMMs have good crystal structure stability (Figs.S17 and S18 in Supporting information).The selected 0 wt% and 8 wt% MMMs both have good ductility and plasticity (Figs.S15b-e in Supporting information).Images of 2 wt% and 4 wt% MMMs are also taken under natural light and 365 nm UV lamps (Fig.S19 in Supporting information).The SEM of 0 wt% and 8 wt% MMMs both show smooth and trim surfaces (Figs.S15f and g in Supporting information).The difference is that the 8 wt% MMMs displays obvious porous structure.According to previous reports,MMMs have better sensing performance when the MOF content is 8 wt% [12].From Fig.S20 (Supporting information),the luminescence intensity of 8 wt% MMMs is four times higher than that of pure MMMs.Also,the luminescence sensing intensitiesversustime of four MMMs in NFZ solution were monitored,which still show 8 wt% MMMs are stable (Fig.S21 in Supporting information).So subsequent experiments were carried out using 8 wt% MMMs.

    As shown in Figs.4a and b,8 wt% MMMs also show excellent luminescence sensing toward NFZ as expected.The luminescence intensity in blank aqueous solution is 13 times lower than in aqueous solution.As can be clearly seen from illustration of Fig.4a,MMMs become darken in NFZ solution compared to other antibiotic solutions under UV lamp (Fig.S22 in Supporting information).Moreover,the quenching titration experiment is shown that the luminescence intensity decreases gradually with the addition of NFZ solution (Fig.4c).After the addition of 140 μL NFZ,the luminescence intensity reduces to 8%versusthe original value.The calculatedKsvofLCU-111MMMs for NFZ is as high as 6.23×104L/mol[7],and the corresponding LOD is 0.8117 ppm (Figs.4c and d),also lower than most reported MOFs sensors (Table S3) [10].Competition experiments show thatLCU-111MMMs still have strong antiinterference ability for quenching NFZ in mixture with other antibiotics (Fig.S23 in Supporting information).TheLCU-111MMMs also have fast response time for only 20 s,and then remain stable for more than 300 s (Fig.S24 in Supporting information).These results indicate thatLCU-111MMMs have efficient and stable sensing performance of NFZ in aqueous solution,illustrating its well practical application value.

    Fig.4.(a) The luminescence spectra (inset: MMMs before and after immersion in NFZ) and (b) the luminescence intensities of LCU-111 MMMs in various antibiotic solutions.(c) The luminescence titration experiments and (d) the calculated LOD of LCU-111 MMMs.

    To facilitate the monitoring more simply in real-world application,luminescent test papers ofLCU-111were made to quickly detect NFZ (Fig.5a) and other antibiotics (Fig.S25 in Supporting information).When gradually dropped NFZ solution onto the test papers,their colors are turning ever more deepened under UV light,that is,from light blue to dark blue (Fig.5a).Moreover,fingerprint is one of the most concerned material evidences to identity recognition due to its uniqueness of everyone and unchanged throughout life.So based on the strong luminescence properties ofLCU-111,a simple and visible luminescent fingerprint identification was proposed.Fingerprints were printed on smooth surfaces of different substrates such as plastic,steel,glass and various papers [14].The fingerprints are invisible in sunlight,but vivid fingerprint patterns on a variety of substrates appear under 365 nm UV light(Figs.5b-h).Interestingly,the fingerprint patterns are clearer on steel and glass than on plastic,print paper and invoice paper,respectively,indicating that theLCU-111particles bind more strongly on steel and glass surfaces than on others.Furthermore,threelevel detailed fingerprint features can be clearly observed by naked eyes,such as patterns of whorls and loops (level-one),ridge ending and bifurcation (level-two),and even scars (level-three) (Figs.5b-f).These unique characteristic informations provide authoritative evidences to distinguish personal identity toward advanced practical application ofLCU-111.

    Fig.5.(a) Luminescent test papers of LCU-111 for NFZ under UV lamp.Luminescence fingerprint photographs of LCU-111 on (b) steel,(c) glass,(f) plastic,(g) print paper,and (h) invoice paper.(d,e) The enlarged bifurcation and whorls of the fingerprints on glass.

    The quenching mechanism ofLCU-111for NFZ was further verified by XPS,PXRD,UV-vis,luminescence decay lifetime and DFT calculations.Firstly,the PXRD after 3 days immersed in NFZ solution is the same as original crystalLCU-111,indicating the framework structure ofLCU-111remains intact after sensing (Fig.S2),ruling out the structural collapse led to luminescent quenching.Secondly,the UV-vis absorption spectrum of NFZ-treatedLCU-111does no overlap with the luminescence excitation spectrum(λex=389 nm) of the originalLCU-111(Fig.S26 in Supporting information),suggesting that the competitive energy absorption of the NFZ andLCU-111is not responsible for the luminescence quenching.Thirdly,the XPS show that the binding energies of Cd 3d,O 1s,N 1s and Cl 2p all arise blue-shift from 406.1,532.9,400.6,198.8 eV to 406,532.8,400.3,198.7 eV,respectively,indicating the occurrence of interaction between NFZ and theLCU-111skeleton (Figs.S27 and S29a-d in Supporting information).Lastly,the interaction is further verified by the luminescence decay lifetime results (Fig.S28 in Supporting information),which reducesca.12% for NFZ-treatedLCU-111(3.6515 μs)vs.the original lifetime(4.1278 μs).

    Based on the above series of experiments,the luminescence quenching ofLCU-111toward NFZ may possibly be attributed to the PET mechanism,where electron transfer can cause weak interaction,and further result in luminescence quenching.A typical PET system is composed of a receptor,a spacer,and a fluorophore donor.In a PET luminescent molecular probe,the conversion between the recognition group and fluorophore is accomplished by light-induced electron transfer.Generally,the PET process is triggered by the energy gap of the LUMO between the photo-excitation donor and acceptor [15–18].Since the luminescence ofLCU-111is mainly derived from the H3dttz ligands with rich delocalized electrons,and the NFZ has a strong electronabsorbing group (-NO2),the PET process can occur from H3dttz to the LUMO of NFZ [18].To further verify this conjecture,DFT calculations were performed using the B3LYP/6-31G?motif [15–18].As shown in Fig.S29e (Supporting information),the LUMO energy level of H3dttz (-2.00 eV) is higher than that of NFZ (-3.02 eV),so the PET execute electron transfer from H3dttz to NFZ,and thus induce the best quenching performance.Moreover,in contrast,only the HOMO and LUMO energy of the NFZ among all sensing antibiotics both locate between the HOMO and LUMO energy of H3dttz(Fig.S30 in Supporting information),which further validates more easily recognized of NFZ.Therefore,the luminescence quenching mechanism ofLCU-111toward NFZ can be attributed to the PET mechanism.

    In conclusion,a new 2D Cd-MOFLCU-111has been picked as a luminescent quenching sensor for efficient detecting antibiotic NFZ in aqueous solution,HEPES biological buffer,and real urban river water with low LODs of 0.4567,0.3649 and 0.8071 ppm,respectively.The sensor is gifted with good selectivity,sensitivity,stability and anti-interference ability in above various aqueous systems due to more exposed functional sites of 2D material.Moreover,the luminescent test papers ofLCU-111realize quickly,real-time and visual monitor NFZ by naked eyes.Notably,LCU-111based MMMs further provide flexible practical applications for quenching NFZ also with a low LOD of 0.8117 ppm.A reasonable PET quenching mechanism is demonstrated by experiment metrics plus DFT calculations.Latent fingerprint visualization ofLCU-111can support the security sectors to precisely identify criminals.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21771095 and 22061019),the Natural Science Foundation of Shandong Province (Nos.ZR2021MB114 and ZR2021MB073),and the Youth Innovation Team of Shandong Colleges and Universities (No.2019KJC027).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108227.

    日本wwww免费看| 日日撸夜夜添| 国产精品精品国产色婷婷| 亚洲精品国产av成人精品| 亚洲精品第二区| 97在线人人人人妻| 亚洲无线观看免费| 99re6热这里在线精品视频| 你懂的网址亚洲精品在线观看| 久久99蜜桃精品久久| 精品久久久久久久久av| 美女cb高潮喷水在线观看| 国产爽快片一区二区三区| 高清视频免费观看一区二区| 亚洲精品自拍成人| www.色视频.com| 成人特级av手机在线观看| 美女内射精品一级片tv| 亚洲精品日本国产第一区| 国产成人aa在线观看| 国产黄色视频一区二区在线观看| 在线免费十八禁| 在线免费十八禁| 亚洲欧美一区二区三区国产| 亚洲精品成人av观看孕妇| 最近的中文字幕免费完整| 午夜激情福利司机影院| av女优亚洲男人天堂| 国产人妻一区二区三区在| 久久久久精品性色| 亚洲国产色片| 少妇 在线观看| 一级黄片播放器| 亚洲精品456在线播放app| 国产精品伦人一区二区| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 亚洲av.av天堂| 午夜福利视频精品| 国产一级毛片在线| 伦精品一区二区三区| 亚洲精品自拍成人| 一级毛片电影观看| 人妻少妇偷人精品九色| 夜夜爽夜夜爽视频| 你懂的网址亚洲精品在线观看| 亚洲国产av新网站| 高清不卡的av网站| 极品教师在线视频| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 成人国产麻豆网| 色视频在线一区二区三区| 久久精品夜色国产| av视频免费观看在线观看| 日本黄大片高清| 高清日韩中文字幕在线| 国模一区二区三区四区视频| 久久久久久人妻| 免费大片黄手机在线观看| 日本av免费视频播放| 国产亚洲最大av| 国产精品99久久99久久久不卡 | 一二三四中文在线观看免费高清| 欧美 日韩 精品 国产| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 日韩强制内射视频| 一级黄片播放器| 另类亚洲欧美激情| 日韩av不卡免费在线播放| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 成年女人在线观看亚洲视频| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 男人和女人高潮做爰伦理| 观看免费一级毛片| 全区人妻精品视频| 爱豆传媒免费全集在线观看| 亚洲av免费高清在线观看| av在线老鸭窝| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 国产亚洲精品久久久com| 精品亚洲成国产av| av.在线天堂| 久久久久视频综合| 亚洲精品日本国产第一区| 联通29元200g的流量卡| 永久免费av网站大全| xxx大片免费视频| 成年人午夜在线观看视频| 亚洲三级黄色毛片| 久久久久久九九精品二区国产| 少妇的逼好多水| 亚洲国产色片| 人人妻人人看人人澡| 婷婷色麻豆天堂久久| 国产亚洲最大av| 青春草国产在线视频| 色5月婷婷丁香| av播播在线观看一区| 黄色怎么调成土黄色| 免费看日本二区| 国产探花极品一区二区| 成人国产麻豆网| 国产免费一区二区三区四区乱码| 精品亚洲成国产av| 国产免费一级a男人的天堂| 少妇的逼好多水| 最近2019中文字幕mv第一页| 在线播放无遮挡| 一区二区三区精品91| 超碰av人人做人人爽久久| 国产精品久久久久久精品古装| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 少妇猛男粗大的猛烈进出视频| 高清毛片免费看| av天堂中文字幕网| 黑人高潮一二区| 色婷婷久久久亚洲欧美| 99久久精品一区二区三区| 日韩av在线免费看完整版不卡| 成人18禁高潮啪啪吃奶动态图 | 国产精品爽爽va在线观看网站| 久久精品国产亚洲网站| 亚洲在久久综合| 最黄视频免费看| 久久国产亚洲av麻豆专区| 亚洲不卡免费看| 黑丝袜美女国产一区| 各种免费的搞黄视频| 久久久久网色| 97超碰精品成人国产| 亚洲熟女精品中文字幕| 天美传媒精品一区二区| 亚洲精品一区蜜桃| 日本黄大片高清| 免费av中文字幕在线| a级毛色黄片| 九草在线视频观看| 亚洲av.av天堂| 国产淫片久久久久久久久| av视频免费观看在线观看| 日本与韩国留学比较| av国产精品久久久久影院| 亚洲精品乱码久久久v下载方式| 黑丝袜美女国产一区| 亚洲国产欧美在线一区| 日韩一区二区三区影片| 免费大片黄手机在线观看| 久久久久久伊人网av| 五月天丁香电影| 人人妻人人看人人澡| av免费观看日本| 久久午夜福利片| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 校园人妻丝袜中文字幕| 老女人水多毛片| 纵有疾风起免费观看全集完整版| 成人漫画全彩无遮挡| 欧美3d第一页| av天堂中文字幕网| 国国产精品蜜臀av免费| 免费看av在线观看网站| 久久女婷五月综合色啪小说| 2018国产大陆天天弄谢| 韩国高清视频一区二区三区| .国产精品久久| 国产男人的电影天堂91| 三级国产精品片| 看十八女毛片水多多多| 高清av免费在线| 亚洲精品成人av观看孕妇| 人妻制服诱惑在线中文字幕| 各种免费的搞黄视频| 99热6这里只有精品| 十八禁网站网址无遮挡 | 99久久综合免费| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 亚洲高清免费不卡视频| 在线观看免费视频网站a站| 亚洲成人一二三区av| 亚洲色图av天堂| av又黄又爽大尺度在线免费看| 午夜激情福利司机影院| 成人亚洲精品一区在线观看 | 高清毛片免费看| 身体一侧抽搐| 偷拍熟女少妇极品色| 久久久久久人妻| 1000部很黄的大片| 日韩成人av中文字幕在线观看| 99久久人妻综合| 中文天堂在线官网| 超碰av人人做人人爽久久| 亚洲国产精品国产精品| 国产乱人视频| 国产综合精华液| 狂野欧美白嫩少妇大欣赏| 十八禁网站网址无遮挡 | 99久国产av精品国产电影| 国产午夜精品一二区理论片| 久久久成人免费电影| 国产人妻一区二区三区在| 人妻制服诱惑在线中文字幕| 一边亲一边摸免费视频| 国产精品久久久久久精品古装| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 日产精品乱码卡一卡2卡三| 天天躁日日操中文字幕| 久久久精品免费免费高清| 成人国产麻豆网| 水蜜桃什么品种好| 国产精品一区二区在线观看99| 国产亚洲午夜精品一区二区久久| 蜜桃久久精品国产亚洲av| 边亲边吃奶的免费视频| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 日韩伦理黄色片| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 色婷婷av一区二区三区视频| 亚洲经典国产精华液单| av又黄又爽大尺度在线免费看| 免费看av在线观看网站| 1000部很黄的大片| 男男h啪啪无遮挡| 久久这里有精品视频免费| 亚洲成人中文字幕在线播放| a 毛片基地| 三级经典国产精品| 激情 狠狠 欧美| 精品人妻一区二区三区麻豆| 国产精品无大码| 亚洲精品国产av成人精品| 久久久久久久久久成人| 久久久国产一区二区| 18禁动态无遮挡网站| 国产免费一级a男人的天堂| 啦啦啦视频在线资源免费观看| 男女无遮挡免费网站观看| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 一个人看的www免费观看视频| 丰满乱子伦码专区| 精品亚洲成a人片在线观看 | 亚洲欧美日韩另类电影网站 | 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 国产老妇伦熟女老妇高清| 亚洲色图av天堂| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区| 国产在视频线精品| 黄色配什么色好看| 狂野欧美激情性xxxx在线观看| av在线app专区| 国产午夜精品久久久久久一区二区三区| 热99国产精品久久久久久7| 国产在线视频一区二区| 国产视频首页在线观看| 国产成人精品一,二区| 国产一区二区在线观看日韩| 麻豆精品久久久久久蜜桃| 天堂中文最新版在线下载| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 亚洲美女视频黄频| 免费看av在线观看网站| 亚洲精品自拍成人| 五月天丁香电影| 国产精品一区二区在线观看99| 18禁在线播放成人免费| 男人添女人高潮全过程视频| 久久久成人免费电影| 国产69精品久久久久777片| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 在线精品无人区一区二区三 | 精品酒店卫生间| 成人18禁高潮啪啪吃奶动态图 | av女优亚洲男人天堂| av福利片在线观看| 91在线精品国自产拍蜜月| 成人午夜精彩视频在线观看| 国产男人的电影天堂91| 国产 一区 欧美 日韩| 国产精品麻豆人妻色哟哟久久| 1000部很黄的大片| 日本一二三区视频观看| 亚洲av二区三区四区| 18禁在线播放成人免费| 国产在线男女| 国产欧美另类精品又又久久亚洲欧美| 欧美高清性xxxxhd video| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 黄色怎么调成土黄色| 小蜜桃在线观看免费完整版高清| 又粗又硬又长又爽又黄的视频| 欧美成人午夜免费资源| 精华霜和精华液先用哪个| 久久精品国产亚洲网站| 在线观看av片永久免费下载| 国产精品久久久久成人av| 一个人看的www免费观看视频| 国产综合精华液| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| av一本久久久久| 青春草视频在线免费观看| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂 | 丰满乱子伦码专区| 中文字幕制服av| 纵有疾风起免费观看全集完整版| av不卡在线播放| 人人妻人人澡人人爽人人夜夜| 综合色丁香网| 中国美白少妇内射xxxbb| 国产男女内射视频| 国产色婷婷99| av又黄又爽大尺度在线免费看| 久久精品国产鲁丝片午夜精品| 国产 一区精品| 免费黄色在线免费观看| 国产高潮美女av| 亚洲精品国产av成人精品| 一个人看的www免费观看视频| av国产精品久久久久影院| 亚洲性久久影院| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 国产亚洲欧美精品永久| 99热这里只有是精品50| av免费在线看不卡| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 18禁动态无遮挡网站| 国产 一区精品| 久久99热6这里只有精品| 午夜日本视频在线| 亚洲欧美一区二区三区国产| 亚洲精品aⅴ在线观看| 国产精品熟女久久久久浪| 日本免费在线观看一区| 亚洲va在线va天堂va国产| 人人妻人人澡人人爽人人夜夜| 高清不卡的av网站| 黄色一级大片看看| 女人十人毛片免费观看3o分钟| 国产探花极品一区二区| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 亚洲精品国产成人久久av| 99久久精品一区二区三区| 高清av免费在线| 国产色婷婷99| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 久久久国产一区二区| 日本欧美视频一区| 一级片'在线观看视频| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆| 丰满人妻一区二区三区视频av| 久久久久久久久久久丰满| 男女下面进入的视频免费午夜| 亚洲精品国产av蜜桃| 亚洲天堂av无毛| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影| 一区在线观看完整版| 国产精品伦人一区二区| 看非洲黑人一级黄片| 久久久久久久国产电影| 亚洲av成人精品一二三区| 成年av动漫网址| 男女下面进入的视频免费午夜| 国产爽快片一区二区三区| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 国产久久久一区二区三区| 最新中文字幕久久久久| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 80岁老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 人妻一区二区av| 青青草视频在线视频观看| 在线精品无人区一区二区三 | 夜夜看夜夜爽夜夜摸| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 亚洲av免费高清在线观看| 我的老师免费观看完整版| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 91精品国产九色| 最新中文字幕久久久久| 国产大屁股一区二区在线视频| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 国产男人的电影天堂91| 亚洲人成网站在线观看播放| 视频中文字幕在线观看| 亚洲经典国产精华液单| av不卡在线播放| 亚洲av欧美aⅴ国产| 黄色视频在线播放观看不卡| 久久久午夜欧美精品| a级毛色黄片| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 99热这里只有是精品50| av一本久久久久| 久久av网站| 久久99热这里只频精品6学生| 久久久久国产网址| 亚洲va在线va天堂va国产| 身体一侧抽搐| 日韩一区二区三区影片| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 高清av免费在线| 亚洲精华国产精华液的使用体验| 久久青草综合色| 精品酒店卫生间| 插阴视频在线观看视频| 欧美精品一区二区大全| 热re99久久精品国产66热6| 日韩中字成人| 国产亚洲av片在线观看秒播厂| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区| 国产男女内射视频| 欧美人与善性xxx| 美女福利国产在线 | 99九九线精品视频在线观看视频| 国产一区二区三区综合在线观看 | 中文天堂在线官网| 欧美3d第一页| 色婷婷av一区二区三区视频| 国产淫语在线视频| 一级二级三级毛片免费看| 国产在线视频一区二区| 亚洲综合精品二区| 中文字幕av成人在线电影| 美女高潮的动态| 最黄视频免费看| 老师上课跳d突然被开到最大视频| 国产亚洲欧美精品永久| 最近中文字幕2019免费版| 久久国内精品自在自线图片| 男女啪啪激烈高潮av片| 蜜桃亚洲精品一区二区三区| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 免费观看性生交大片5| 国产精品一区二区在线观看99| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 午夜精品国产一区二区电影| xxx大片免费视频| 国产成人午夜福利电影在线观看| 久久 成人 亚洲| 午夜福利在线观看免费完整高清在| 最近2019中文字幕mv第一页| 美女主播在线视频| 成人美女网站在线观看视频| 成人18禁高潮啪啪吃奶动态图 | 成年av动漫网址| 国产精品人妻久久久影院| 亚洲精华国产精华液的使用体验| 男男h啪啪无遮挡| 我的老师免费观看完整版| 天堂俺去俺来也www色官网| 一区二区av电影网| av专区在线播放| 国产黄片视频在线免费观看| av福利片在线观看| 亚洲精品日本国产第一区| 一区二区三区精品91| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 色5月婷婷丁香| 国产精品久久久久久av不卡| 亚洲av欧美aⅴ国产| 91精品国产九色| 免费不卡的大黄色大毛片视频在线观看| 久热这里只有精品99| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 久久久久久久久大av| a级一级毛片免费在线观看| 天美传媒精品一区二区| 免费观看在线日韩| 妹子高潮喷水视频| 一本色道久久久久久精品综合| 国产成人午夜福利电影在线观看| 国产精品久久久久久av不卡| 国产永久视频网站| 国产精品蜜桃在线观看| 国产成人精品婷婷| 精品少妇黑人巨大在线播放| 亚洲欧美清纯卡通| 国产黄频视频在线观看| 精品亚洲成国产av| 欧美性感艳星| 你懂的网址亚洲精品在线观看| 人妻系列 视频| 一区二区av电影网| 另类亚洲欧美激情| 一区二区三区免费毛片| 亚洲精品自拍成人| 伊人久久国产一区二区| 国产高清国产精品国产三级 | a 毛片基地| 欧美bdsm另类| 99久久精品一区二区三区| 91精品国产国语对白视频| 国产免费一级a男人的天堂| 嘟嘟电影网在线观看| 亚洲自偷自拍三级| 国产在线视频一区二区| 精品一区二区三区视频在线| 日韩伦理黄色片| 秋霞伦理黄片| 久久韩国三级中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av蜜桃| 色哟哟·www| 五月开心婷婷网| 亚洲国产精品成人久久小说| 五月伊人婷婷丁香| 精品一品国产午夜福利视频| 一二三四中文在线观看免费高清| 22中文网久久字幕| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级 | 亚洲精品成人av观看孕妇| www.色视频.com| 欧美老熟妇乱子伦牲交| 免费观看的影片在线观看| 欧美精品一区二区免费开放| 精品久久久噜噜| 国产黄片视频在线免费观看| 中文天堂在线官网| 丝瓜视频免费看黄片| 激情 狠狠 欧美| 人体艺术视频欧美日本| 麻豆精品久久久久久蜜桃| 国产精品国产三级国产av玫瑰| 欧美人与善性xxx| 女性被躁到高潮视频| av免费观看日本| 秋霞伦理黄片| av国产久精品久网站免费入址| 亚洲激情五月婷婷啪啪| 乱码一卡2卡4卡精品| 免费大片18禁| 纵有疾风起免费观看全集完整版| 欧美成人午夜免费资源| 舔av片在线| 性高湖久久久久久久久免费观看| 婷婷色综合www| 久久精品人妻少妇| 国产精品久久久久久精品古装| h日本视频在线播放| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 亚洲色图av天堂| 美女cb高潮喷水在线观看| 国产成人freesex在线| 国产成人免费无遮挡视频| 亚洲av成人精品一区久久| 夫妻午夜视频| 亚洲国产精品999| 视频中文字幕在线观看| 亚洲av中文字字幕乱码综合| 国产综合精华液| 成人亚洲精品一区在线观看 | 国产精品一区www在线观看| 久久久亚洲精品成人影院| 少妇熟女欧美另类| 在线观看免费日韩欧美大片 | 国产高清三级在线| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 精品一品国产午夜福利视频| 亚洲av电影在线观看一区二区三区| 久久av网站| 能在线免费看毛片的网站| 成人毛片60女人毛片免费|