• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Li+ migration in solid polymer electrolyte driven by anion-containing polymer-chains

    2023-11-21 03:04:56XingyiZhangMostVninMnivNitouWnjunLiZhaoWanLongfiLiuZhaohuiLuoSohailMuhammaWuQinLiangAnYinghuaNiuWiqiangLv
    Chinese Chemical Letters 2023年11期

    Xingyi Zhang,Most Vnin Mniv Nitou,Wnjun Li,Zhao Wan,Longfi Liu,Zhaohui Luo,Sohail Muhamma,Wu Qin,Liang An,Yinghua Niu,f,?,Wiqiang Lv,?

    a Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China,Huzhou 313001,China

    b School of physics,University of electronic Science and Technology of China,Chengdu 611731,China

    c X-Energy Systems Co.,Ltd.,Jiaxing 314000,China

    d National Engineering Laboratory for Biomass Power Generation Equipment,School of Renewable Energy Engineering,North China Electric Power University,Beijing 102206,China

    e Department of Mechanical Engineering,the Hong Kong Polytechnic University,Hong Kong,China

    f Zhejiang Humo Polishing Grinder Manufacture Co.,Ltd.,Huzhou 313012,China

    Keywords:Solid polymer electrolyte Lithiated perfluorinated sulfonic acid Polyvinylidene fluoride Solid-state battery Anion containing polymer

    ABSTRACT Li-ion batteries with solid polymer electrolytes (SPEs) are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes.However,their performance is limited by the poor Li+ transport in SPEs at room temperature.Anion-containing polymer-chains incorporated SPEs (ASPEs)are therefore developed to enhance Li+ diffusion kinetics.Herein,we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains,such as lithiated perfluorinated sulfonic acid(PFSA),into polyvinylidene fluoride (PVDF) polymer-based SPEs.The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt.The transference number is thus raised from ~0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs.The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159% increase in the ionic conductivity to 0.83×10-3 S/cm at 30 °C in contrast with the pure PVDF-based SPE.In addition,LiFeO4/Li batteries with ASPEs exhibit 55% capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs,and also offer more than 1000 charge/discharge cycles.Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li+ transport behaviors towards developing high-performance SPEs-based batteries.

    Li-ion batteries (LIBs),due to their high power density and energy density have been widely employed in portable electronic devices,grid energy storage,and electric vehicles [1].However,traditional LIBs generally consist of organic liquid electrolytes,which makes LIBs risky in terms of thermal instability,liquid leakage fire,and even explosion.Solid-state LIBs (SSLIBs) can largely solve these safety issues [2,3].The electrolyte of SSLIBs could be divided into ceramic electrolyte and solid polymer electrolytes (SPEs) [4].The electrode/electrolyte interface contact and stability are enormous challenges for ceramic electrolyte-based LIBs [5].SPEs,on the other hand,are flexible and possess the advantage of forming a well-contacted and stable electrode/electrolyte interface [6].The most used solid polymer electrolytes are poly(ethylene oxide) (PEO) and its various derivatives [5,7].One of the main challenges of SPEs is the low Li-ion conductivity (σLi+) and transference number (tLi+) at room temperature [8].For the most used PEO based SPEs,the ionic conductivity is at the order of 10-3S/cm at 60~100 °C,whereas it decreases fast below 60 °C (e.g.,2.1×10-6S/cm at 20 °C) due to the PEO-chain crystalline [8–10].Moreover,the PEO-based SPEs have poor mechanical strength and thermostability [11].Poly(vinylidene fluoride) (PVDF) and its derivatives show excellent electrochemical stability [12] and the strong electron-withdrawing group (–C–F) can contribute to the dissolution and dissociation of alkali metal salts for high carrier concentrations [13].However,PVDF and its derivatives cannot provide an excellent Li-ion conductivity in a dried state due to the restricted polymer-chain motion arising from the high degree of crystallinity of PVDF-based polymers [7,14].Furthermore,the conventional SPEs formed by blending Li salt [15,16] (e.g.,Li[(CF3SO2)2N (LiTFSI),LiClO4,LiCF3SO3)] with polymers are dual-ion conductors [16].Liions and anions move in the opposite direction and accumulate at the electrode/electrolyte interfaces,the interfacial charge accumulation and anion concentration gradient resist Li+migration,resulting in severe cell polarization [17,18].Single-ion conducting polymer electrolytes with anions bounded to the long chain of polymers own very high transference number but typically low ionic conductivity at room temperature [17,19].To increase the low transference number and Li-ion conductivity of SPE,incorporating anion-containing polymer-chains with the characteristic of single-ion conductors into SPEs can form anion-containing polymer blend SPEs (ASPEs).The immobilized anion groups from the anioncontaining polymer can restrict the motion of the dissociative anion from the Li salts.Meanwhile,the charged anion-containing polymer-chains may reduce the close stacking of polymer-chains,facilitating the polymer segmental motion and therefore promoting the Li+migration.

    In this work,the anion-containing polymer chains,perfluorinated sulfonic acid resin (PFSA,with -group),was incorporated into PVDF-based SPEs to enhance the Li+transport kinetics of SPEs.The perfluorinated backbone provides high chemical and thermal stability while the sulfonic groups are bound to the side chains of the polymer [20].A schematic diagram of a solid-state LIB in Fig.1a includes a PVDF-PFSA ASPE LIB,a current collector,a Li metal anode,a LiFePO4cathode,and a carbon-coated allium foil.The molecule structure of PFSA in Fig.1b shows a perfluoro main chain and a -SO3anion-containing side chain.Figs.1c and d demonstrate the Li+and TFSI-transport behavior during the charge/discharge process in battery with PVDF SPE and PVDF-PFSA ASPE,respectively.In pure PVDF SPEs,both Li+and TFSI-diffuse toward opposite directions,causing charge accumulation at the electrode/SPE interface with large polarization.In ASPE,the motion of TFSI-driven by polymer segment motion is restricted due to the electrostatic repulsion between negatively charged TFSI-and the anion-containing groups.The reduced interfacial polarization brings uniform Li+deposition on Li metal,capable of suppressing Li dendrite growth.The scanning electron microscopy (SEM)images in Figs.1e and f show that the PVDF-based SPE exhibits a worm-like structure with pores on the surface,whereas PVDFPFSA-based ASPE indicates a non-porous flake-like structure,indicating the significant impact of the anion-containing PFSA-chains on polymer-chain stacking.The inserted optical image shows that the SPE turns from semi-transparent to opaque when incorporating anion-containing chains into SPEs,suggesting a reduction in crystallinity.The cross-section test result in Fig.S1 (Supporting information) shows that the thickness of the SPEs is ~50 μm.The Xray diffraction (XRD) patterns in Fig.S2a (Supporting information)shows that the intensities of the peaks associated with PVDF decrease with increasing PFSA content in the PVDF-PFSA ASPEs,indicating the decreased crystallinity of the ASPEs.The Fourier transform infrared (FTIR) spectra in Fig.S2b (Supporting information)show that no new peak appears in the blended PVDF-PFSA ASPEs,demonstrating that no obvious reaction or bonding occurs among PVDF,PFSA and LiTFSI.

    Fig.1.The characterization of the PVDF-PFSA/LiTFSI SPEs.(a) The schematic diagram of a solid-state LIB with the PVDF-PFSA ASPE,current collector,Li metal anode,LiFePO4 cathode,and carbon-coated aluminum foil.(b) The molecular structure of PFSA with the perfluoro main chain and the–SO3 anion-containing side chain.Schematics of Li+ and TFSI+ transport and Li+ deposition during the charge/discharge in batteries with (c) PVDF SPE and (d) PVDF-PFSA ASPE.The SEM image of (e) PVDF SPE and (f) PVDF-PFSA ASPE.Insets are the enlarged SEM images(right top) and optical photos (right bottom) of solid electrolytes.

    The Li+migration characterization of PVDF SPEs and PVDF-PFSA ASPEs is shown in Fig.2.As shown in Fig.2a,at a fixed temperature,the ionic conductivity of the SPEs increases with increasing PFSA contents.The Li-ion conductivity of ASPEs with 40% PFSA is 0.83×10-3S/cm at 30 °C,which is more than 2.5 times that of pure PVDF-based SPEs (0.32×10-3S/cm).Further increasing PFSA content in the SPEs causes abrupt mechanical failure of the ASPEs,as shown in Fig.S3 (Supporting information).The activation energy for Li-ion diffusion can be obtained from the slope of the fitted line over logσ~1/Tdata according to the Arrhenius equation.After incorporating 40% PFSA into the PVDF based electrolytes,the activation energy of Li-ion diffusion reduces from ~0.35 eV to ~0.22 eV.The increased pre-exponential factor affected by the carrier concentration can also promote the ionic conduction SPEs since the lithiated PFSA bring more Li-ions in ASPEs [21].

    Fig.2.The characterization of Li+ migration in PFSA/PVDF SPEs.(a) Ionic conductivity measurements with linear fitting.(b) Li-ions transference number of 40% PFSA,20% PFSA,10% PFSA and PVDF SPEs at room temperature.(c) Voltage-time profiles of the Li/Li symmetric cell at various current densities over long cycles and at 30 °C.

    Fig.2b shows that the Li+transference number increases from 0.30 to 0.52 with increasing the ratio of PFSA from 0 to 40%,verifying that the anion-containing chains impede the migration of TFSIanions.Different current densities are applied to symmetrical Li/Li batteries with different types of SPEs (Fig.2c).At 0.025 mA/cm2,the polarization voltage of the Li/Li symmetric cell is ~0.02 V for the ASPE with 40% PFSA,only one third of that for the pure PVDF SPE.As the current density increases from 0.025 mA/cm2to 0.2 mA/cm2,the polarization voltage for the ASPE with 40% PFSA increases from ~0.02 V to 0.05 V,whereas the polarization voltage for the pure PVDF SPE increases from ~0.06 V to more than 0.3 V.The ASPEs with 40% PFSA shows much smaller polarization within~270 h test at different current densities as compared with the pure PVDF SPE,indicating that the anion containing PFSA-chains promotes the Li+transport kinetics with faster and more uniform Li+flux for the suppression of Li metal dendrite growth.The thermogravimetric (TG)/differential scanning calorimetry (DSC) curves in Fig.S4 (Supporting information) and the infrared thermography images (Fig.S5 in Supporting information) of pure PVDF and PVDF blend with 40% PFSA indicate that incorporating PSFA into PVDF based SPEs can enhance the thermal stability.

    Fig.3a shows the long-term cycle performance of LiFePO4/Li metal half cells and the corresponding Coulombic efficiency (CE)of different ratios of PFSA-PVDF ASPEs at 0.5 C and 30 °C.It is noted that the first to third cycles were charged/discharged at 0.1 C.There is a capacity rise during the first 50 cycles for all the cells.This phenomenon can also be observed in other works [22–24].The LiFePO4/Li cells deliver capacities of 80.8 mAh/g for the pure PVDF SPE,96.0 mAh/g for the 10% PFSA ASPE,122.4 mAh/g for the 20% PFSA ASPE and 146.8 mAh/g for the 40% PFSA ASPE at the 50thcycle.From the 50thcycle to the 100thcycle,the capacity retention for the pure PVDF SPE is only 27.8%,whereas the capacity retention is 96% for the 10% PFSA ASPE,93.7% for the 20%PFSA ASPE and nearly 100% for the 40% PFSA ASPE.Before the 200thcycle,the cells with 10%-40% PFSA ASPEs show rather stable capacities,and obvious capacity fading occurs after 300 cycles.The specific capacity for cells with 10%~20% PFSA SPEs is below 30 mAh/g after 700 cycles,whereas the cells with 40% PFSA delivers a discharge capacity of 89 mAh/g at the 1000thcycle with a capacity retention of ~59%,and the CE is close to 100% after 1000 cycles.Fig.3b shows the rate performance of different ratios of PFSA-PVDF ASPEs.The reversible capacities of 164,150,138,124 and 60 mAh/g were obtained at 0.1,0.2,0.5,1 and 2 C for the 40%PFSA.The reversible capacity reaches 151 mAh/g when the current density returns to 0.1 C after being cycled 30 times.In contrast,the pure PVDF SPE delivers a much lower discharge capacity of 11 mAh/g at 2 C.Fig.3c shows the charge/discharge curves during the selected cycles.The specific discharge capacities of 40% PFSA are 153,144,143,127 and 89 mAh/g after the 1st,100th,200th,500thand 1000thcycles,respectively.The voltage hysteresis between the charge and discharge plateaus is small before the 500thcycle.Fig.3d presents the charge/discharge curves at 0.1-2 C of 40% PFSA ASPEs.Flat charge and discharge plateaus is observed before 1 C,but there is a considerable voltage hysteresis between the charge and discharge plateaus at 2 C.

    Fig.3.Electrochemical performance of the LiFePO4/Li cells at 30 °C.(a) Cycling performance and columbic efficiency for cells with 40% PFSA,20% PFSA,10% PFSA,and pure PVDF SPEs (The first cycle is at 0.1 C,the others are at 0.5 C).(b) Rate performance of cells with different SPEs at 0.1,0.2,0.5,1 and 2 C.Charge/discharge voltage profiles of cells with the 40% PFSA ASPE (c) at different cycles and (d) at different C-rates.

    Fig.4 shows the optimized structures and the adsorption energies between different components in the PFSA-PVDF SPE by density functional theory (DFT) calculations.By comparing the adsorption energy between PVDF-polymer chains and PFSA polymerchains (Figs.4a–c),the adsorption energy between PVDF and PFSAchain is larger than the adsorption energies between two PVDFchains and between two PFSA-chains,facilitating the formation of a highly uniform PVDF-PFSA blend.Figs.4d and e show that the interaction between PFSA and the residual plasticizerN-methyl pyrrolidone (NMP) is more significant than that between PVDF and NMP.Due to the strong affiliation of the PVDF-based electrolyte with low content of solvent NMP,NMP cannot be eliminated till 80 °C in vacuum,which is different from the PVDFbased electrolytes with high contents of solvent as gel polymer electrolytes (GPEs).The residual solvent functions as a plasticizer,and can dramatically enhance the ionic conductivity and amorphicity of the polymer matrix [22–24].Fig.4f shows that the adsorption energy between the PVDF chains and the anion TFSI–is as high as 1.06 eV.Considering the strong repulsion between the negatively charged sulfonic group in PFSA and the negatively-charged TFSI–,significantly enhanced immobilization of TFSI–in PFSA-PVDF SPE (as compared with pure PVDF SPE) can be achieved.This is why the addition of PFSA into the PVDF-based SPE can dramatically enlarge the transference number of the SPE.By comparing the interaction between Li+and the polymer-chains (Figs.4g–i),it is found that the interaction energy between the PFSA perfluorinated-chain and Li+is 0.85 eV,which is lower than the interaction of the both PVDF chain and the PFSA sulfonic group with Li+,indicating that the PFSA perfluorinated-chain exhibits reduced immobilization to Li+motion,permitting the Li+conduction in the SPEs.

    Fig.4.DFT calculation optimized structures and the adsorption energies between different components in the PFSA-PVDF SPE: (a) The interaction between two PVDF polymer chains;(b) the interaction between two PFSA polymer-chains;(c) the interaction between the PVDF chain and the PFSA-chain;(d) the interaction between the PVDF chain and the residual plasticizer NMP;(e) the interaction between the PFSA-chain and the residual plasticizer NMP;(f) the interaction between the PVDFchain and TFSI–;(g) the interaction between the PVDF chain and Li+;(h) the interaction between the PVDF sulfonic group and Li+;and (i) the interaction between the PFSA perfluorinated-chain and Li+.The balls with different colors represent different atoms: White balls for hydrogen,grey balls for carbon,cyan balls for florine,red balls for oxygen,yellow balls for sulfur,purple balls for lithium,blue balls for nitrogen.

    In summary,incorporating anion-containing PFSA-chains into PVDF-based SPEs significantly increases the ionic conductivity and transference number of ASPEs.The ionic conductivity number reaches 0.83×10-3S/cm at 30 °C for the ASPE with 40% PFSA,which is about 2.5 times higher than that of pure PVDF-based SPE.The transference number also increases from 0.28 to 0.52 as the content of PFSA varies from 0 to 40% in the SPEs.The reduced crystallinity by the strong intra-chain electrostatic repulsion and the restriction of anion mobility arising from the electrostatic repulsion between the immobile anion groups on the polymer chain and the anions from Li salt contributes to the improvement of Li conduction and transference number.The LiFePO4/Li batteries with the 40% PFSA ASPEs exhibit significantly improved cycling performance (the CE is close to 100% after 1000 cycles) and rate performance (60 mAh/g at 2 C) compared with batteries having pure PVDF-based SPEs (11 mAh/g at 2 C).Our work indicates that incorporating anion-containing polymers into SPEs is a versatile strategy to construct highly Li+conductive SPEs for high-performance LIBs.

    Declaration of competing interest

    No conflict of interest exists in the submission of this manuscript,and the manuscript is approved by all authors for publication.I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously,and not under consideration for publication elsewhere,in whole or in part.All the authors have approved this manuscript.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51972043 and 52102212),the Sichuan-Hong Kong Collaborative Research Fund (No.2021YFH0184),the Foundation of Yangtze Delta Region Institute (Huzhou) of UESTC,China(Nos.U03210010 and U03210028) and Huzhou Science and Technology Special Representative Project (No.2021KT54).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108245.

    免费观看的影片在线观看| 午夜亚洲福利在线播放| 一区二区三区高清视频在线| 夜夜躁狠狠躁天天躁| 桃色一区二区三区在线观看| 久久久久久久精品吃奶| 亚洲18禁久久av| 亚洲国产精品sss在线观看| 伊人久久精品亚洲午夜| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 看十八女毛片水多多多| 十八禁国产超污无遮挡网站| 美女 人体艺术 gogo| 欧美激情在线99| 亚洲av.av天堂| 欧美又色又爽又黄视频| 国内精品一区二区在线观看| 99久久99久久久精品蜜桃| 日日摸夜夜添夜夜添小说| 精品午夜福利视频在线观看一区| 亚洲人成电影免费在线| 精品久久久久久久末码| 制服丝袜大香蕉在线| 久久久久久国产a免费观看| 亚洲成人中文字幕在线播放| 亚洲av成人不卡在线观看播放网| 婷婷精品国产亚洲av| 真人做人爱边吃奶动态| 亚洲天堂国产精品一区在线| .国产精品久久| 国产色爽女视频免费观看| 欧美日韩福利视频一区二区| 51午夜福利影视在线观看| 天堂动漫精品| 亚洲综合色惰| 久久久成人免费电影| 亚洲真实伦在线观看| 又紧又爽又黄一区二区| 欧美激情国产日韩精品一区| 亚洲,欧美,日韩| 午夜精品一区二区三区免费看| 亚洲第一欧美日韩一区二区三区| 国产麻豆成人av免费视频| 亚洲五月婷婷丁香| 99国产精品一区二区蜜桃av| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区视频9| 在线观看av片永久免费下载| 亚洲国产高清在线一区二区三| 国产成+人综合+亚洲专区| 午夜视频国产福利| 国产欧美日韩精品一区二区| 天堂影院成人在线观看| 91麻豆av在线| 国产69精品久久久久777片| 午夜福利视频1000在线观看| 男女视频在线观看网站免费| 国产一区二区三区在线臀色熟女| 国产成年人精品一区二区| 日本 av在线| 91久久精品电影网| 少妇高潮的动态图| 一本综合久久免费| 国产探花在线观看一区二区| 成人欧美大片| 中文字幕av在线有码专区| 黄色丝袜av网址大全| 久99久视频精品免费| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| 乱码一卡2卡4卡精品| 欧洲精品卡2卡3卡4卡5卡区| 老司机午夜福利在线观看视频| 欧美国产日韩亚洲一区| 最近最新中文字幕大全电影3| 久久久国产成人精品二区| 麻豆av噜噜一区二区三区| 三级毛片av免费| 久久久国产成人精品二区| 亚洲一区高清亚洲精品| 国产成人欧美在线观看| 亚洲不卡免费看| 国产探花在线观看一区二区| 中文在线观看免费www的网站| 亚洲国产精品久久男人天堂| 欧美中文日本在线观看视频| 午夜精品久久久久久毛片777| 欧美黑人巨大hd| 一个人免费在线观看电影| 日本a在线网址| 国产精品精品国产色婷婷| 亚洲熟妇熟女久久| 色吧在线观看| 免费av毛片视频| 国产精品久久久久久精品电影| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产欧洲综合997久久,| 欧美精品国产亚洲| 国产不卡一卡二| 色噜噜av男人的天堂激情| 国产不卡一卡二| 亚洲黑人精品在线| 亚洲黑人精品在线| 午夜老司机福利剧场| bbb黄色大片| 最新在线观看一区二区三区| 国产69精品久久久久777片| 精品无人区乱码1区二区| 好男人在线观看高清免费视频| 国产亚洲精品久久久com| 俺也久久电影网| 中亚洲国语对白在线视频| 色播亚洲综合网| 女人十人毛片免费观看3o分钟| 免费大片18禁| 99国产综合亚洲精品| 国产一区二区亚洲精品在线观看| 亚洲av成人av| 国产成年人精品一区二区| 哪里可以看免费的av片| 国产精品自产拍在线观看55亚洲| 国产一区二区三区在线臀色熟女| 男女之事视频高清在线观看| 欧美黑人巨大hd| 毛片一级片免费看久久久久 | 亚洲人成网站高清观看| 亚洲人成网站高清观看| 亚洲三级黄色毛片| 亚洲在线观看片| 人妻丰满熟妇av一区二区三区| 天堂网av新在线| 人妻制服诱惑在线中文字幕| 欧美日韩国产亚洲二区| 麻豆成人av在线观看| 12—13女人毛片做爰片一| 国产真实伦视频高清在线观看 | av黄色大香蕉| 99热精品在线国产| 亚洲国产日韩欧美精品在线观看| 久久久久久久久久成人| 在线观看66精品国产| 99国产极品粉嫩在线观看| www日本黄色视频网| 日韩成人在线观看一区二区三区| 亚洲欧美日韩无卡精品| 97人妻精品一区二区三区麻豆| 91av网一区二区| 男人舔女人下体高潮全视频| 亚洲美女视频黄频| 色综合亚洲欧美另类图片| 他把我摸到了高潮在线观看| 美女高潮喷水抽搐中文字幕| 国产成年人精品一区二区| 欧美精品国产亚洲| 欧美一区二区国产精品久久精品| 亚洲精品粉嫩美女一区| 亚洲无线在线观看| 俄罗斯特黄特色一大片| 制服丝袜大香蕉在线| 俺也久久电影网| 国产真实乱freesex| 中出人妻视频一区二区| 老女人水多毛片| 欧美乱色亚洲激情| 变态另类成人亚洲欧美熟女| 国产亚洲精品久久久久久毛片| 日本五十路高清| 日韩中字成人| 亚洲,欧美精品.| 一级毛片久久久久久久久女| 成人无遮挡网站| 麻豆国产av国片精品| 18禁黄网站禁片午夜丰满| 成人鲁丝片一二三区免费| av黄色大香蕉| 中文字幕免费在线视频6| 蜜桃久久精品国产亚洲av| 久久99热6这里只有精品| 别揉我奶头 嗯啊视频| 高潮久久久久久久久久久不卡| 夜夜躁狠狠躁天天躁| 女人被狂操c到高潮| 欧美极品一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 两人在一起打扑克的视频| 欧洲精品卡2卡3卡4卡5卡区| 国内久久婷婷六月综合欲色啪| 国产亚洲精品综合一区在线观看| 国内精品一区二区在线观看| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av| 嫩草影视91久久| 男女下面进入的视频免费午夜| 精品久久久久久久久av| 欧美日韩乱码在线| 男插女下体视频免费在线播放| 欧美色欧美亚洲另类二区| 欧美一级a爱片免费观看看| 国产精品野战在线观看| 好看av亚洲va欧美ⅴa在| 国产白丝娇喘喷水9色精品| 身体一侧抽搐| 免费在线观看亚洲国产| 欧美xxxx性猛交bbbb| 免费看日本二区| 国产精品久久电影中文字幕| 精品久久久久久久久久免费视频| 可以在线观看毛片的网站| 日日摸夜夜添夜夜添av毛片 | 亚洲一区高清亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 中文字幕久久专区| 9191精品国产免费久久| 激情在线观看视频在线高清| 亚洲 欧美 日韩 在线 免费| 91午夜精品亚洲一区二区三区 | 最好的美女福利视频网| 美女高潮喷水抽搐中文字幕| 一级毛片久久久久久久久女| 一本久久中文字幕| 免费在线观看亚洲国产| 99久久成人亚洲精品观看| 国产精品人妻久久久久久| 亚洲av五月六月丁香网| 成人av一区二区三区在线看| 深夜a级毛片| 亚洲av成人av| 最近视频中文字幕2019在线8| 69人妻影院| 成年人黄色毛片网站| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 免费人成在线观看视频色| 亚洲va日本ⅴa欧美va伊人久久| h日本视频在线播放| 在线观看av片永久免费下载| 欧美bdsm另类| 亚洲av日韩精品久久久久久密| 国产高清有码在线观看视频| 国产美女午夜福利| 亚洲av电影不卡..在线观看| 国产熟女xx| 国内精品一区二区在线观看| 国产男靠女视频免费网站| 久久亚洲精品不卡| eeuss影院久久| 欧美性感艳星| 男女视频在线观看网站免费| 欧美丝袜亚洲另类 | 18禁裸乳无遮挡免费网站照片| 国产日本99.免费观看| a级一级毛片免费在线观看| 不卡一级毛片| 色综合亚洲欧美另类图片| 欧美日韩乱码在线| 精品熟女少妇八av免费久了| 内地一区二区视频在线| 麻豆一二三区av精品| 黄色配什么色好看| 欧美一区二区精品小视频在线| 国产主播在线观看一区二区| 成人特级av手机在线观看| 国产精品久久视频播放| 非洲黑人性xxxx精品又粗又长| 又爽又黄a免费视频| 9191精品国产免费久久| 国产精品久久久久久久电影| 国产真实伦视频高清在线观看 | av在线观看视频网站免费| 国产91精品成人一区二区三区| 在线观看美女被高潮喷水网站 | 国产av麻豆久久久久久久| 老熟妇乱子伦视频在线观看| 三级国产精品欧美在线观看| 日本与韩国留学比较| 一二三四社区在线视频社区8| 欧美zozozo另类| 亚洲美女搞黄在线观看 | 在线免费观看的www视频| 69人妻影院| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 又紧又爽又黄一区二区| 少妇丰满av| 观看美女的网站| 中文字幕精品亚洲无线码一区| 淫妇啪啪啪对白视频| 久久精品国产亚洲av涩爱 | 国产精品久久久久久久电影| 美女大奶头视频| 在线免费观看的www视频| 丝袜美腿在线中文| 免费在线观看成人毛片| av专区在线播放| 亚洲国产高清在线一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 美女xxoo啪啪120秒动态图 | 黄色配什么色好看| 亚洲精品在线观看二区| 哪里可以看免费的av片| 嫁个100分男人电影在线观看| 国产v大片淫在线免费观看| 啦啦啦韩国在线观看视频| 日韩欧美 国产精品| 一二三四社区在线视频社区8| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 欧美在线黄色| 琪琪午夜伦伦电影理论片6080| 好男人在线观看高清免费视频| 日本一本二区三区精品| av在线蜜桃| 亚洲国产欧美人成| 在线免费观看不下载黄p国产 | 特大巨黑吊av在线直播| 亚洲va日本ⅴa欧美va伊人久久| av在线观看视频网站免费| 国产亚洲欧美在线一区二区| 久久九九热精品免费| 国产av一区在线观看免费| 激情在线观看视频在线高清| 日韩中字成人| 69人妻影院| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av| 色吧在线观看| 在线观看午夜福利视频| 亚洲男人的天堂狠狠| 国产精品99久久久久久久久| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 十八禁人妻一区二区| 欧美高清性xxxxhd video| 国产精品乱码一区二三区的特点| 久久人人精品亚洲av| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 国产精品不卡视频一区二区 | 在线观看午夜福利视频| 国产精品久久电影中文字幕| 久久久久国产精品人妻aⅴ院| 日韩成人在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 三级毛片av免费| 成人欧美大片| 国产爱豆传媒在线观看| 国产成年人精品一区二区| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 在线天堂最新版资源| 深夜精品福利| 男人的好看免费观看在线视频| 亚洲第一电影网av| 欧美最新免费一区二区三区 | 久久久精品欧美日韩精品| 国产中年淑女户外野战色| 赤兔流量卡办理| 嫩草影视91久久| 国产精品三级大全| 欧美xxxx性猛交bbbb| 99久久99久久久精品蜜桃| 波多野结衣高清无吗| 国产精品自产拍在线观看55亚洲| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 国产极品精品免费视频能看的| 亚洲无线在线观看| 国产成人欧美在线观看| 99视频精品全部免费 在线| 亚洲综合色惰| 亚洲av免费高清在线观看| 亚洲天堂国产精品一区在线| 熟女电影av网| www.999成人在线观看| 最近在线观看免费完整版| 国产精品电影一区二区三区| 久久热精品热| 国内毛片毛片毛片毛片毛片| 欧美丝袜亚洲另类 | 免费一级毛片在线播放高清视频| 91午夜精品亚洲一区二区三区 | 波多野结衣高清作品| 亚洲人成电影免费在线| 麻豆一二三区av精品| 国产野战对白在线观看| av视频在线观看入口| www.熟女人妻精品国产| 国产视频一区二区在线看| 国产精品爽爽va在线观看网站| 成人鲁丝片一二三区免费| 伦理电影大哥的女人| 在线观看一区二区三区| 18美女黄网站色大片免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 两个人的视频大全免费| 90打野战视频偷拍视频| 国产亚洲欧美98| 特级一级黄色大片| 精品久久久久久久久亚洲 | 我要搜黄色片| 别揉我奶头 嗯啊视频| 欧美区成人在线视频| 亚洲无线在线观看| 色视频www国产| 免费无遮挡裸体视频| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 可以在线观看的亚洲视频| 人人妻人人看人人澡| 丁香欧美五月| 久久性视频一级片| 国产精品人妻久久久久久| 一区福利在线观看| 精品一区二区三区视频在线| 午夜日韩欧美国产| 国产精品一及| 国产视频内射| 久久国产精品影院| 国产av不卡久久| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 在线观看一区二区三区| 国产淫片久久久久久久久 | 亚洲 国产 在线| 日韩欧美在线乱码| av女优亚洲男人天堂| 宅男免费午夜| 国产黄色小视频在线观看| 欧美3d第一页| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 免费在线观看成人毛片| 久久香蕉精品热| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 一区二区三区激情视频| 色综合站精品国产| 欧美极品一区二区三区四区| 亚洲精品在线美女| 国内毛片毛片毛片毛片毛片| 中文字幕人妻熟人妻熟丝袜美| 国产三级中文精品| 欧美在线一区亚洲| 脱女人内裤的视频| 久久久久久久久久黄片| 又爽又黄无遮挡网站| 久久热精品热| 一边摸一边抽搐一进一小说| 亚洲在线观看片| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看 | 深爱激情五月婷婷| 国产高清三级在线| 在线观看一区二区三区| 国产视频内射| 国产精品一区二区性色av| 免费人成视频x8x8入口观看| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 99久久无色码亚洲精品果冻| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 麻豆国产av国片精品| 天天一区二区日本电影三级| 深夜精品福利| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 精品无人区乱码1区二区| 色哟哟哟哟哟哟| 一区二区三区四区激情视频 | 97碰自拍视频| 国产精品女同一区二区软件 | 欧美日韩亚洲国产一区二区在线观看| 在线观看av片永久免费下载| 国产黄色小视频在线观看| 亚洲三级黄色毛片| 中文字幕人成人乱码亚洲影| 国产淫片久久久久久久久 | 亚洲精品一区av在线观看| 午夜福利视频1000在线观看| 久久久久国产精品人妻aⅴ院| 亚洲av成人av| 亚洲不卡免费看| 精品人妻1区二区| 真人一进一出gif抽搐免费| 搞女人的毛片| 国产成年人精品一区二区| 极品教师在线视频| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6 | 男女视频在线观看网站免费| 波多野结衣巨乳人妻| 久久这里只有精品中国| 一进一出抽搐动态| 国产白丝娇喘喷水9色精品| 久久久久久大精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产男靠女视频免费网站| 男插女下体视频免费在线播放| 亚洲中文日韩欧美视频| 免费av毛片视频| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 少妇的逼水好多| 亚洲激情在线av| 成熟少妇高潮喷水视频| 久久热精品热| 国产成人影院久久av| 日韩精品中文字幕看吧| 嫩草影院精品99| 99热这里只有是精品50| 亚洲片人在线观看| 色综合欧美亚洲国产小说| 精品人妻视频免费看| 国产日本99.免费观看| 久久久久久九九精品二区国产| 在线观看午夜福利视频| 黄色一级大片看看| 极品教师在线免费播放| 真人做人爱边吃奶动态| 欧美精品国产亚洲| 乱码一卡2卡4卡精品| 久久这里只有精品中国| 精品久久久久久成人av| 午夜影院日韩av| 日韩 亚洲 欧美在线| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 伊人久久精品亚洲午夜| 精品久久国产蜜桃| 尤物成人国产欧美一区二区三区| 国产精品av视频在线免费观看| 色综合欧美亚洲国产小说| av在线观看视频网站免费| 美女 人体艺术 gogo| 1000部很黄的大片| 给我免费播放毛片高清在线观看| 在线a可以看的网站| 老鸭窝网址在线观看| 日韩国内少妇激情av| 美女xxoo啪啪120秒动态图 | 国产精品久久久久久精品电影| 国产精品伦人一区二区| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 国产av在哪里看| 三级毛片av免费| 国产乱人视频| 午夜精品久久久久久毛片777| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站 | 午夜福利高清视频| 国产淫片久久久久久久久 | 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 亚洲五月天丁香| 亚洲一区二区三区色噜噜| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 国产野战对白在线观看| 成年免费大片在线观看| 久久欧美精品欧美久久欧美| 51国产日韩欧美| 中文字幕av成人在线电影| 久99久视频精品免费| 午夜福利高清视频| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 真人一进一出gif抽搐免费| 精品人妻偷拍中文字幕| 两人在一起打扑克的视频| 久久国产乱子伦精品免费另类| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 日韩欧美精品免费久久 | 久久久精品欧美日韩精品| 中文资源天堂在线| 久久久久久国产a免费观看| 欧美一级a爱片免费观看看| 天堂动漫精品| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 尤物成人国产欧美一区二区三区| 男女做爰动态图高潮gif福利片| 日韩欧美在线二视频| 亚洲综合色惰| 亚洲在线观看片| 综合色av麻豆| 好看av亚洲va欧美ⅴa在| 嫩草影院精品99| 亚洲av二区三区四区| 午夜精品久久久久久毛片777| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 国产精品三级大全| 欧美激情久久久久久爽电影| 久久性视频一级片| 婷婷精品国产亚洲av在线| 精品日产1卡2卡| 88av欧美| 午夜免费男女啪啪视频观看 |