• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectroscopic identification of water splitting by neutral group 3 metals

    2023-11-21 03:04:54ShuaiJiangHuijunZhengWenhuiYanTiantongWangChongWangYaZhaoHuaXieGangLiXiuchengZhengHongjunFanLingJiang
    Chinese Chemical Letters 2023年11期

    Shuai Jiang,Huijun Zheng,Wenhui Yan,Tiantong Wang,Chong Wang,Ya Zhao,Hua Xie,Gang Li,?,Xiucheng Zheng,Hongjun Fan,?,Ling Jiang,?

    a College of Chemistry,Zhengzhou University,Zhengzhou 450001,China

    b State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China

    c University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:Water splitting Cluster Group 3 metals Infrared spectroscopy Quantum chemical calculations

    ABSTRACT Spectroscopic study of water splitting by neutral metal clusters is crucial to understanding the microscopic mechanism of catalytic processes but has been proven to be a challenging experimental target due to the difficulty in size selection.Here,we report a size-specific infrared spectroscopic study of the reactions between neutral group 3 metals and water molecules based on threshold photoionization using a vacuum ultraviolet laser.Quantum chemical calculations were carried out to identify the structures and to assign the experimental spectra.All the M2O4H4 (M=Sc,Y,La) products are found to have the intriguing M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2 structures,indicating that the H–OH bond breaking,the M–O/M–H/M–OH bond formation,and hydrogen production proceed efficiently in the reactions between laser-vaporized metals and water molecules.The joint experimental and theoretical results on the atomic scale demonstrate that the water splitting by neutral group 3 metals is both thermodynamically exothermic and kinetically facile in the gas phase.These findings have important implications for unravelling the structure-reactivity relationship of catalysts with isolated metal atoms/clusters dispersed on supports.

    Water splitting is regarded as one of the most promising technologies for renewable sources,transport,and storage of hydrogen energy [1–3].The process of water splitting involves the breaking/formation of chemical bonds and hydrogen production.The investigation of the reactions between metals and water molecules helps to uncover the microscopic mechanisms of catalytic processes with isolated metal atoms/clusters dispersed on supports[4–7].Over the past several decades,extensive efforts were devoted to the spectroscopic studies of ionic metals with water molecules,which allow easy size selection and detection [8–11].In general,the water molecules are weakly coordinated to the metal ions,forming the solvation structures in the form of M+(H2O)n[12].The HMOH+(H2O)ninsertion complexes were observed for some metal atoms [13–17].For instance,infrared multiple photon dissociation spectroscopy showed that Mn+(H2O)n(n=4-8) undergoes an insertion reaction forming HMnOH+(H2O)n-1[17].

    For the reactions between neutral metal atoms and water molecules,the HMOH intermediates were observed for early transition metal atoms and could either photochemically isomerize to H2MO or decompose to metal monoxides and H2[18–23].The late transition metal and lanthanide metal atoms react with H2O to produce the solvated M(H2O) complexes,which are rearranged to the insertion complexes under UV irradiation [24–28].For the actinide metal atoms,the thorium and uranium atoms are able to insert into the O–H bond of water to form the H2ThO and H2UO molecules [29,30].Along with significant advances in theoretical calculations,these studies provided great insights into the reaction mechanisms of metal atoms with water.Thus far,spectroscopic studies on the reactions of neutral metal clusters with water are rather challenging experimentally,because the absence of a charge makes for difficult size selection and detection.Here we report an infrared-vacuum ultraviolet (IR-VUV) spectroscopic study on the reactions of neutral group 3 metals with water molecules.IR-VUV spectroscopy in conjunction with quantum chemical calculations confirm that all the neutral M2O4H4(M=Sc,Y,La) complexes have unexpected M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2structures,demonstrating that the H–OH bond breaking,the M–O/M–H/M–OH bond formation,and hydrogen production proceed efficiently in the reactions between laser-vaporized metals and water molecules.

    The experimental IR spectra were measured using an IR-VUV spectroscopy apparatus (see Supporting information for experimental details) [31,32].Neutral M2O4H4(M=Sc,Y,La) complexes were preparedvialaser vaporization in a supersonic expansion of 0.1% H2O/helium.For the IR excitation of neutral M2O4H4complexes,we used a tunable IR optical parametric oscillator/optical parametric amplifier system (LaserVision).Subsequent photoionization was carried out with about 65 ns delay with a VUV light at 193 nm.IR spectra were recorded in the difference mode of operation (IR laser on IR laser off).IR power dependence of the signal was measured to ensure that the predissociation yield was linear with photon flux.

    The experimental IR spectra of M2O4H4(M=Sc,Y,La) in the OH stretching region are shown in Figs.1a–c and the band positions are listed in Table 1.The IR spectrum of each individual M2O4H4complex consists of two groups of bands,centering at 3729/3809 cm-1(Sc),3721/3799 cm-1(Y) and 3683/3749 cm-1(La),respectively.The gap between the two experimental bands for M2O4H4(M=Sc,Y,La) is 80,78 and 66 cm-1,respectively,indicating a monotonical decease down through the group 3 of the periodic table.Such gaps are smaller than that between the symmetric and antisymmetric OH stretching vibrational frequencies of the free water molecule (99 cm-1) [33].

    Table 1Comparison of the experimental band positions (cm-1) of neutral M2O4H4 (M=Sc,Y,La) complexes to the calculated values of the most stable structures (isomers A,I and i) obtained at the B3LYP/aug-pVTZ(O,H)/SDD(Sc,Y,La) level of theory (IR intensities are listed in parentheses in km/mol,and the calculated harmonic vibrational frequencies are scaled by a factor of 0.962).

    To understand the experimentally observed spectral features and identify the structures of the M2O4H4(M=Sc,Y,La) complexes,quantum chemical calculations were carried out at the B3LYP/aug-pVTZ(O,H)/SDD(Sc,Y,La) level of theory (see Supporting information for theoretical details).Relative energies and energy barriers include the zero-point energy corrections.The optimized structures of the two types of isomers are shown in Fig.2.The calculated IR spectra are compared with the experimental ones in Fig.1.

    Fig.1.Comparison of experimental IR spectra (a–c) of neutral M2O4H4 (M=Sc,Y,La) complexes and calculated IR spectra (d–i) of the two types of isomers.

    Fig.2.Optimized structures of the two types of isomers of neutral M2O4H4 (M=Sc,Y,La) complexes (O,red;H,light gray;Sc,purple;Y,blue;La,olive).Relative energies (in parenthesis) are listed in kcal/mol.

    For each of M2O4H4(M=Sc,Y,La),the most stable isomer has a M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2configuration with a singlet electronic ground state (labeled isomers A,I and i in Fig.2),forming an insertion structure.In the second type of isomer (labeled isomers B,II and ii in Fig.2),the water molecules are weakly bound to the metal atoms of the rhombus M2(μ2-O)2unit,forming a solvation structure.Isomers B,II and ii lie much higher in energy than isomers A,I and i by 85.1,84.1 and 73.6 kcal/mol,respectively,indicating that these water-solvated structures are thermodynamically unstable as compared to the insertion structures.

    In the simulated IR spectrum of isomer A of Sc2O4H4(Fig.1d),the band at 3736 cm-1is attributed to the OH stretching mode of the bridging OH group,which is consistent with the experimental band of 3729 cm-1(Table 1);the antisymmetric and symmetric OH stretching modes of the terminal OH groups are calculated to 3789 and 3790 cm-1,respectively,which are in agreement with the experimental band of 3809 cm-1.The simulated IR spectrum of isomer B of Sc2O4H4(Fig.1g) exhibits a single band at 3438 cm-1,which is not observed experimentally.It thus appears that isomer B does not contribute to the experimental spectrum of Sc2O4H4.Similar results are also obtained for the Y2O4H4and La2O4H4complexes.The calculated band gap between the OH and antisymmetric/symmetric OH stretching modes of isomers A,I,and i is 53,45 and 12 cm-1,respectively,which trend is in accordance with the experimental trend.Note that the predicted band gaps are systematically smaller than the experimental values,which may be attributed to the deficiencies of theoretical methods.The decease of the band gap between the bridging and terminal OH stretching modes for M2O4H4(M=Sc,Y,La) might be rationalized by the reduced electronegativities down through the group 3 of the periodic table.The Pauling electronegativity of Sc,Y and La is 1.36,1.22 and 1.10,respectively.The charge transfer from the metal to the OH group weakens the O–H bond and reduces the frequency of its vibrational mode [12].Furthermore,the O–H bond in the monodentate terminal OH group is more strongly influenced by binding to the metal center than that in the bidentate bridging OH group,resulting in a larger red-shift of stretching vibrational frequency(Table 1).Overall,the agreement of the simulated IR spectra of isomers A,I and i with experiment is reasonable to confirm the assignment of these insertion structures responsible for the experimental spectra.

    The most striking observation in the present work is the identification of the M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2structures instead of the water-solvated motifs.The results suggest that the H–OH bond breaking and M–O/M–H/M–OH bond formation proceed in the reactions between laser-vaporized metals and water molecules.Note that the reaction processes taking place in the plasma conditions in the laver-vaporization source are quite complicated and are very difficult to be clearly characterized,quantum chemical calculations were performed to explore the possible reaction mechanisms.

    Due to the spectra and structural similarity of M2O4H4among the group 3 metals,we will focus on the discussion of formation mechanisms of Sc2O4H4.The potential energy profiles for the reactions between Sc atoms and water molecules were calculated at the B3LYP/aug-pVTZ(O,H)/SDD(Sc) level of theory.The reaction (1)is predicted to be exothermic by 11.4 kcal/mol,whereas the reaction (2) is exothermic by 7.3 kcal/mol [34].This implies that the initial reaction of Sc with H2O to form Sc(H2O) is more favorable than the dimerization of Sc atoms.

    As shown in Fig.3,the isomerization from Sc(H2O) to HScOH is highly exothermic by 47.0 kcal/molviaa transition state (TS1)with a small barrier of 9.4 kcal/mol.HScOH could release H2to produce ScOviaTS2.TS1 and TS2 lies below the energy of Sc+H2O reactants by 2.0 and 29.7 kcal/mol,respectively.The Sc+H2O →ScO+H2overall reaction is exothermic by 42.0 kcal/mol and is thus thermodynamically favorable.Indeed,the ScO+species is observed in the mass spectra (Fig.S1 in Supporting information).This water splitting by Sc atom is supported by the absence of water-solvated structures in the present IR-VUV and previous matrix-isolation experiments [19,20].

    Fig.3.Potential energy profiles for the formation of mononuclear complexes.The abbreviation “IM” stands for intermediate and “TS” for transition state.The corresponding structures are embedded in the inset (O,red;H,light gray;Sc,purple).The complexes dedicated to the formation of target product are marked with red color.

    The addition of H2O to ScO forms ScO(H2O),which is exothermic by 16.1 kcal/mol.Although the dehydrogenation of ScO(H2O) is endothermic by 25.6 kcal/mol,this entropy-driven reaction might be feasible in the high-temperature plasma environments.On the other hand,OScOH lies energetically below the reactants by 32.5 kcal/mol,indicating that the formation of OScOH is thermodynamically favored.The addition of H2O to Sc(H2O) yields Sc(H2O)2,which could undergo isomerization and dehydrogenation to generate HSc(OH)2.These processes are predicated to be both thermodynamically exothermic and kinetically facile.The HScOH(H2O)complex could undergo H2production to form Sc(OH)2,which is exothermic by 23.7 kcal/mol with a very small barrier of 0.7 kcal/mol (TS4).The Sc(OH)3complex might be formedviathe addition of the third water molecule to Sc(OH)2and the subsequent dehydrogenation.The Sc(OH)n(n=1-3) complexes might also be produced by the reactions of Sc atoms with OH radicals as proposed previously [19].Although the barrier for the ScOH →HScO isomerization is very high (30.4 kcal/mol),the strong exothermic property of the Sc+OH →HScO overall reaction suggests that this process is thermodynamically favorable.Alternatively,the formation of HScO could be assisted by the H2addition to ScOH.The MO,HMO,M(OH)1,2and HM(OH)1,2(M=Sc,Y,La) complexes were captured from the reactions between laservaporized metal atoms and water molecules in rare-gas matrixes[18–20],which support the aforementioned mechanisms.

    As shown in Fig.4,the dimerization of Sc(OH)2produces the intermediate IM1,which is predicted to be highly exothermic by 55.3 kcal/mol.The combination of ScOH and Sc(OH)3generates the intermediate IM2,releasing the energy by 45.6 kcal/mol.The aggregation of ScH-containing fragments,HScO+Sc(OH)3and OScOH+HSc(OH)3,is even more exothermic of 79.2 and 85.4 kcal/mol,yielding more stable intermediates IM3 and IM5.All the intermediates (IM1,IM2,IM3 and IM5) can be isomerized to the most stable structure of isomer Aviaseveral intermediates and transition states,with the largest barrier of ~15 kcal/mol.The potential energy profiles clearly demonstrate that the formation of isomer A is both thermodynamically exothermic and kinetically facile in the gas phase,indicating that the H–OH bond breaking,the M–O/M–H/M–OH bond formation,and hydrogen production proceed quite efficiently at the experimental conditions.

    Fig.4.Potential energy profiles for the formation of target product (Sc2O4H4,isomer A).The abbreviation “IM” stands for intermediate and “TS” for transition state.The corresponding structures are embedded in the inset (O,red;H,light gray;Sc,purple).

    The above pathway for the formation of Sc2O4H4begins with the generation of mononuclear complexes from the reactions between Sc and H2O (Fig.3) and then proceeds with the aggregation of the relevant mononuclear complexes (Fig.4).Such reaction mechanisms are not exclusive.For instance,the combination of Sc atoms with mononuclear complexes or the reaction of Sc2with H2O to produce the binuclear complexes is also likely.As exemplified in Fig.S2 (Supporting information),the addition of Sc atom to the HScOH complex,resulting in the formation of Sc2(μ2-H)(μ2-OH).This binuclear complex could further undergo H2O addition,isomerization,and H2production,leading to the formation of IM1.As shown in Fig.4,the isomerization from IM1 to isomer A is both thermodynamically exothermic and kinetically facile.As shown in Fig.S3 (Supporting information),the addition of H2O to Sc2forms the Sc2(H2O) adduct,which is exothermic by 12.2 kcal/mol.Sc2(H2O) undergoes OH dissociation to produce Sc2(μ2-H)(η1-OH),which is highly exothermic by 58.6 kcal/mol with a very small barrier of 4.3 kcal/mol (TS18).The isomerization from Sc2(μ2-H)(η1-OH) to Sc2(μ2-H)(μ2-OH) is exothermic by 6.5 kcal/mol with a barrier of 5.8 kcal/mol (TS19).The subsequent reactions could proceed efficiently to reach the final product (Fig.S2).Since the reducibility of Y and La is stronger than that of Sc,the proposed mechanisms of Sc2O4H4would be more feasible for the formation of Y2O4H4and La2O4H4complexes.

    In summary,the neutral M2O4H4(M=Sc,Y,La) complexes were prepared in the gas phasevialaser vaporization technique.Infrared-vacuum ultraviolet (IR-VUV) spectroscopy in conjunction with quantum chemical calculations confirm that all of these complexes have M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2structures.The results indicate that the H–OH bond breaking,the M–O/M–H/M–OH bond formation,and H2production proceed efficiently in the reactions between laser-vaporized metal atoms and water molecules.Theoretical calculations reveal that the formation of M2(μ2-O)(μ2-H)(μ2-OH)(η1-OH)2from the reaction of group 3 metals with water is both thermodynamically exothermic and kinetically facile in the gas phase.The present findings provide important insights into the structure-reactivity mechanism of metal clusters toward the water molecules and key microscopic information for systematic understanding of water splitting on the active sites of catalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the Dalian Coherent Light Source (DCLS) for support and assistance.This work was supported by the National Key Research and Development Program of China (No.2021YFA1400501),the National Natural Science Foundation of China (Nos.22125303,92061203,92061114,21976049,22103082,22273101 and 22288201),the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (No.2020187),Innovation Program for Quantum Science and Technology (No.2021ZD0303304),CAS (No.GJJSTD20220001),Dalian Institute of Chemical Physics (No.DICP DCLS201702),International Partnership Program of CAS (No.121421KYSB20170012),and K.C.Wong Education Foundation (No.GJTD-2018-06).

    欧美又色又爽又黄视频| 如何舔出高潮| 搡老熟女国产l中国老女人| av.在线天堂| 日韩中字成人| 美女内射精品一级片tv| 内地一区二区视频在线| 人妻丰满熟妇av一区二区三区| 成人高潮视频无遮挡免费网站| 一个人看视频在线观看www免费| 免费av不卡在线播放| 亚洲精品一区av在线观看| 久久久久久国产a免费观看| 国模一区二区三区四区视频| 蜜桃久久精品国产亚洲av| 国产成人freesex在线 | 特大巨黑吊av在线直播| 国产精品国产高清国产av| 深夜a级毛片| 嫩草影院精品99| 一进一出抽搐动态| 精品国内亚洲2022精品成人| 日韩一本色道免费dvd| 国产av不卡久久| 99久久精品国产国产毛片| 又爽又黄a免费视频| 亚洲av五月六月丁香网| 搡女人真爽免费视频火全软件 | 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 国产一区二区在线av高清观看| 老司机影院成人| 国产高清三级在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲综合色惰| 久久国内精品自在自线图片| 中文字幕久久专区| 男人舔奶头视频| 色综合站精品国产| 性欧美人与动物交配| 亚洲欧美成人精品一区二区| 成人三级黄色视频| АⅤ资源中文在线天堂| 免费看美女性在线毛片视频| 国产精品久久久久久久久免| 久久久久国产精品人妻aⅴ院| 天天躁夜夜躁狠狠久久av| 热99在线观看视频| 久久精品综合一区二区三区| 最近中文字幕高清免费大全6| 夜夜爽天天搞| 国产人妻一区二区三区在| 极品教师在线视频| 亚洲三级黄色毛片| 日本熟妇午夜| 色哟哟哟哟哟哟| 91av网一区二区| 国产高清视频在线观看网站| 一个人免费在线观看电影| 毛片女人毛片| 欧美成人免费av一区二区三区| 成人综合一区亚洲| 久久久久国产网址| 国产高潮美女av| 欧美又色又爽又黄视频| 久久久成人免费电影| 97在线视频观看| 久久午夜福利片| 午夜激情福利司机影院| 蜜桃久久精品国产亚洲av| a级一级毛片免费在线观看| 黄色配什么色好看| 中文字幕av成人在线电影| 久久亚洲精品不卡| 久久精品综合一区二区三区| 毛片一级片免费看久久久久| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 99国产极品粉嫩在线观看| 黄片wwwwww| 免费不卡的大黄色大毛片视频在线观看 | 色在线成人网| 深夜精品福利| av视频在线观看入口| 别揉我奶头~嗯~啊~动态视频| 老司机福利观看| 午夜视频国产福利| 成年版毛片免费区| 日日啪夜夜撸| 十八禁网站免费在线| 欧美激情在线99| 成人鲁丝片一二三区免费| 久久精品国产鲁丝片午夜精品| 变态另类丝袜制服| 男女下面进入的视频免费午夜| 亚洲自拍偷在线| 波多野结衣高清无吗| 日韩中字成人| 国产一区二区亚洲精品在线观看| 天天躁日日操中文字幕| 精品无人区乱码1区二区| 十八禁国产超污无遮挡网站| 搞女人的毛片| 国产女主播在线喷水免费视频网站 | 日本-黄色视频高清免费观看| 成人国产麻豆网| 国产精品精品国产色婷婷| 禁无遮挡网站| 亚洲精品乱码久久久v下载方式| 91在线观看av| 美女大奶头视频| 欧美在线一区亚洲| av专区在线播放| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 亚洲人成网站在线播放欧美日韩| 深夜精品福利| 久久草成人影院| 网址你懂的国产日韩在线| 99久久中文字幕三级久久日本| 亚洲国产色片| av在线亚洲专区| 婷婷色综合大香蕉| 最近在线观看免费完整版| 国产精品人妻久久久久久| 日本色播在线视频| 高清毛片免费观看视频网站| 欧美日韩国产亚洲二区| 热99在线观看视频| 欧美色视频一区免费| 日日摸夜夜添夜夜添av毛片| 亚洲综合色惰| 日本黄色片子视频| 亚洲电影在线观看av| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 久久精品国产99精品国产亚洲性色| 亚洲av五月六月丁香网| 久久久精品94久久精品| 老司机午夜福利在线观看视频| 免费av不卡在线播放| 国产亚洲91精品色在线| 老司机福利观看| 精品熟女少妇av免费看| 少妇裸体淫交视频免费看高清| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| a级毛片免费高清观看在线播放| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 最近中文字幕高清免费大全6| 又爽又黄a免费视频| 22中文网久久字幕| 日本a在线网址| 老师上课跳d突然被开到最大视频| 欧美一区二区精品小视频在线| 少妇裸体淫交视频免费看高清| av黄色大香蕉| 国产午夜精品久久久久久一区二区三区 | 一个人看的www免费观看视频| av免费在线看不卡| 亚洲精品456在线播放app| 插逼视频在线观看| 一级毛片久久久久久久久女| 国产精品一区二区免费欧美| 少妇丰满av| 久久午夜亚洲精品久久| 99久久九九国产精品国产免费| 国产男人的电影天堂91| 亚洲精品456在线播放app| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 久久久久性生活片| 夜夜看夜夜爽夜夜摸| 中国国产av一级| 国产精品永久免费网站| 国产三级中文精品| 午夜老司机福利剧场| 日韩欧美在线乱码| 亚洲自偷自拍三级| 精品久久久久久成人av| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 看片在线看免费视频| 黄片wwwwww| 麻豆成人午夜福利视频| 亚洲国产精品合色在线| a级毛片免费高清观看在线播放| 成年av动漫网址| 国产高潮美女av| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 国产精品久久久久久av不卡| 亚洲欧美成人精品一区二区| 国产国拍精品亚洲av在线观看| 干丝袜人妻中文字幕| 在线天堂最新版资源| 激情 狠狠 欧美| av黄色大香蕉| 少妇丰满av| 最近2019中文字幕mv第一页| 免费观看在线日韩| 欧美一区二区亚洲| 国产欧美日韩精品一区二区| 免费电影在线观看免费观看| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站 | 国产亚洲精品av在线| 99久久中文字幕三级久久日本| 一级黄片播放器| 成人亚洲欧美一区二区av| 欧美性感艳星| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| 内地一区二区视频在线| 亚洲成人精品中文字幕电影| 简卡轻食公司| 欧美日韩综合久久久久久| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 亚洲美女视频黄频| 91精品国产九色| 国产女主播在线喷水免费视频网站 | 亚洲性久久影院| 99热只有精品国产| 亚洲不卡免费看| 亚洲精品亚洲一区二区| 久久久色成人| 日本成人三级电影网站| 少妇的逼水好多| 日本黄大片高清| 日日干狠狠操夜夜爽| 免费一级毛片在线播放高清视频| 在线免费观看的www视频| 如何舔出高潮| 国产极品精品免费视频能看的| 色综合站精品国产| 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx在线观看| 国内精品宾馆在线| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 欧美日本亚洲视频在线播放| 少妇裸体淫交视频免费看高清| 精品午夜福利视频在线观看一区| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 综合色丁香网| 久久99热6这里只有精品| 欧美人与善性xxx| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| av黄色大香蕉| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 在线看三级毛片| 看免费成人av毛片| 99久久精品热视频| 久久久色成人| 少妇的逼水好多| 亚洲自拍偷在线| 国产精品久久久久久av不卡| 亚洲在线自拍视频| 亚洲精品在线观看二区| 男女之事视频高清在线观看| 一本精品99久久精品77| 久久久久久九九精品二区国产| 午夜亚洲福利在线播放| 日韩欧美在线乱码| 哪里可以看免费的av片| 久久久久久久亚洲中文字幕| 91麻豆精品激情在线观看国产| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩无卡精品| 日本撒尿小便嘘嘘汇集6| 色哟哟哟哟哟哟| 国产精品久久视频播放| 亚洲欧美日韩东京热| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩高清在线视频| 丰满人妻一区二区三区视频av| 欧美另类亚洲清纯唯美| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 国产成人aa在线观看| 久久精品91蜜桃| 久久韩国三级中文字幕| 亚洲色图av天堂| 日韩成人av中文字幕在线观看 | 少妇的逼好多水| 久久久a久久爽久久v久久| 国产高清激情床上av| 国产单亲对白刺激| 日韩欧美精品v在线| 亚洲人与动物交配视频| 国产一级毛片七仙女欲春2| 六月丁香七月| 亚洲专区国产一区二区| 一区二区三区免费毛片| 国产精品国产高清国产av| 欧美日韩乱码在线| 亚洲av美国av| 如何舔出高潮| 一a级毛片在线观看| 国产亚洲欧美98| 此物有八面人人有两片| 欧美xxxx性猛交bbbb| 1000部很黄的大片| 能在线免费观看的黄片| 一进一出抽搐gif免费好疼| 亚洲精品影视一区二区三区av| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 欧美区成人在线视频| 露出奶头的视频| 51国产日韩欧美| 天天一区二区日本电影三级| 男人舔女人下体高潮全视频| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 丰满人妻一区二区三区视频av| 国产av一区在线观看免费| avwww免费| 啦啦啦啦在线视频资源| 97人妻精品一区二区三区麻豆| 麻豆av噜噜一区二区三区| 嫩草影视91久久| 熟女人妻精品中文字幕| 中文字幕av成人在线电影| 亚洲欧美中文字幕日韩二区| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 国产熟女欧美一区二区| 午夜精品在线福利| 久久久久久九九精品二区国产| 麻豆国产av国片精品| 身体一侧抽搐| 亚洲国产精品成人久久小说 | 97超视频在线观看视频| 国产精品一区二区免费欧美| 长腿黑丝高跟| 成人欧美大片| 中文字幕熟女人妻在线| 午夜日韩欧美国产| 深爱激情五月婷婷| 国产免费男女视频| 卡戴珊不雅视频在线播放| 日本熟妇午夜| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 国模一区二区三区四区视频| 精品熟女少妇av免费看| 国产真实乱freesex| ponron亚洲| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 最近2019中文字幕mv第一页| 人人妻人人澡欧美一区二区| 国产精品久久久久久久久免| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 日韩欧美三级三区| 久久久a久久爽久久v久久| 99热只有精品国产| av专区在线播放| 欧美一区二区国产精品久久精品| 91在线观看av| av在线播放精品| 又黄又爽又免费观看的视频| 中国美女看黄片| 一级黄色大片毛片| 国产精华一区二区三区| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 美女大奶头视频| 色av中文字幕| 国产蜜桃级精品一区二区三区| 别揉我奶头 嗯啊视频| 日日撸夜夜添| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看| 真人做人爱边吃奶动态| 欧美日韩乱码在线| h日本视频在线播放| 美女内射精品一级片tv| 亚洲欧美精品自产自拍| 能在线免费观看的黄片| 村上凉子中文字幕在线| 午夜福利成人在线免费观看| 91麻豆精品激情在线观看国产| 国产又黄又爽又无遮挡在线| 国产精品无大码| 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 亚洲av成人av| 日本三级黄在线观看| 国产精品无大码| 在线免费十八禁| av福利片在线观看| 观看美女的网站| 国产激情偷乱视频一区二区| 免费电影在线观看免费观看| 国产v大片淫在线免费观看| 嫩草影视91久久| 99久久精品国产国产毛片| 看十八女毛片水多多多| 亚洲最大成人av| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 国产精品一二三区在线看| 22中文网久久字幕| 99久国产av精品国产电影| 亚洲av五月六月丁香网| 国产精品女同一区二区软件| 人人妻人人看人人澡| 天堂√8在线中文| 在线播放国产精品三级| 美女大奶头视频| 99热这里只有是精品在线观看| 久久热精品热| 亚洲欧美日韩高清专用| 女同久久另类99精品国产91| 嫩草影院精品99| 青春草视频在线免费观看| 国产伦精品一区二区三区视频9| 亚洲一区高清亚洲精品| 在线观看av片永久免费下载| 插阴视频在线观看视频| 日韩精品中文字幕看吧| 偷拍熟女少妇极品色| 国产精品野战在线观看| 黑人高潮一二区| 亚洲国产精品国产精品| 色噜噜av男人的天堂激情| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 午夜精品在线福利| 女同久久另类99精品国产91| 欧美成人a在线观看| 99久久九九国产精品国产免费| 午夜亚洲福利在线播放| 国产午夜精品论理片| 精品久久国产蜜桃| 国产精品乱码一区二三区的特点| 亚洲欧美清纯卡通| 亚洲精品在线观看二区| 亚洲美女搞黄在线观看 | 日日摸夜夜添夜夜添av毛片| 亚洲无线在线观看| 午夜日韩欧美国产| 露出奶头的视频| 真人做人爱边吃奶动态| 国产一区亚洲一区在线观看| 成年av动漫网址| 欧美日韩精品成人综合77777| 99久国产av精品| 99热网站在线观看| 真人做人爱边吃奶动态| 日日摸夜夜添夜夜爱| 五月玫瑰六月丁香| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 熟女电影av网| 日本撒尿小便嘘嘘汇集6| 一区福利在线观看| 青春草视频在线免费观看| 欧美一区二区亚洲| 插逼视频在线观看| aaaaa片日本免费| 久久这里只有精品中国| 成人欧美大片| 欧美在线一区亚洲| 一区二区三区高清视频在线| 国产单亲对白刺激| 精品乱码久久久久久99久播| 久久久欧美国产精品| 99久久无色码亚洲精品果冻| 成人毛片a级毛片在线播放| 亚洲精品456在线播放app| 丰满人妻一区二区三区视频av| 日韩欧美在线乱码| 一区二区三区免费毛片| 男人舔奶头视频| 成年av动漫网址| 亚洲熟妇熟女久久| 欧美激情久久久久久爽电影| 啦啦啦观看免费观看视频高清| 国产精品精品国产色婷婷| 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 久久精品国产自在天天线| 亚洲人成网站高清观看| 日本免费a在线| 在线观看免费视频日本深夜| 美女 人体艺术 gogo| 国产高清激情床上av| 日韩一区二区视频免费看| 亚洲七黄色美女视频| 国产午夜福利久久久久久| 最新在线观看一区二区三区| 精品乱码久久久久久99久播| 国产成人一区二区在线| 春色校园在线视频观看| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3| 最近视频中文字幕2019在线8| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 一区福利在线观看| 波多野结衣巨乳人妻| 天天躁日日操中文字幕| 97碰自拍视频| 又爽又黄a免费视频| 嫩草影院精品99| 国产精品亚洲一级av第二区| 久久人人爽人人片av| 无遮挡黄片免费观看| 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | 赤兔流量卡办理| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 我要看日韩黄色一级片| 中文亚洲av片在线观看爽| 欧美丝袜亚洲另类| 日韩欧美三级三区| 欧美绝顶高潮抽搐喷水| 久久久国产成人免费| 在线观看一区二区三区| 少妇的逼水好多| 成人无遮挡网站| 神马国产精品三级电影在线观看| 又爽又黄a免费视频| 美女xxoo啪啪120秒动态图| 九九在线视频观看精品| 国产精品一二三区在线看| 97超视频在线观看视频| 国产成人freesex在线 | 3wmmmm亚洲av在线观看| 天堂av国产一区二区熟女人妻| 免费搜索国产男女视频| 中文字幕av成人在线电影| 国产av一区在线观看免费| 国产精品精品国产色婷婷| av.在线天堂| 如何舔出高潮| 久久精品综合一区二区三区| 在线观看免费视频日本深夜| 美女高潮的动态| 亚洲av成人av| 亚洲经典国产精华液单| aaaaa片日本免费| 深夜精品福利| 亚洲av五月六月丁香网| 国产日本99.免费观看| 亚洲精品色激情综合| 久久久久国产网址| 在线免费观看不下载黄p国产| 99久久中文字幕三级久久日本| 欧美日韩国产亚洲二区| 久久久国产成人免费| 草草在线视频免费看| 搡老熟女国产l中国老女人| 在现免费观看毛片| 在线观看一区二区三区| 在线播放无遮挡| 日本欧美国产在线视频| 国内揄拍国产精品人妻在线| 欧美日本视频| 日本欧美国产在线视频| 精品国产三级普通话版| 欧美日本视频| 99在线视频只有这里精品首页| 国产精品av视频在线免费观看| 尾随美女入室| 久久久色成人| 日韩制服骚丝袜av| 国产午夜精品论理片| 禁无遮挡网站| 欧美又色又爽又黄视频| 成熟少妇高潮喷水视频| 亚洲精品日韩在线中文字幕 | 免费av毛片视频| 国产大屁股一区二区在线视频| 精品一区二区免费观看| 久久久精品大字幕| 91久久精品国产一区二区三区| 国产午夜精品论理片| 一个人观看的视频www高清免费观看| 内射极品少妇av片p| 久久久久国内视频| 色哟哟哟哟哟哟| 欧美xxxx性猛交bbbb| 亚洲真实伦在线观看| 别揉我奶头 嗯啊视频| 波多野结衣高清作品| 人人妻人人看人人澡| 久久韩国三级中文字幕| 三级国产精品欧美在线观看| 欧美丝袜亚洲另类| 久久婷婷人人爽人人干人人爱|