• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics simulations of the Li-ion diffusion in the amorphous solid electrolyte interphase

    2023-11-21 03:04:58JianxinTianTaipingHuShenzhenXuRuiWen
    Chinese Chemical Letters 2023年11期

    Jianxin Tian,Taiping Hu,Shenzhen Xu,?,Rui Wen,?

    a CAS Key Laboratory of Molecular Nanostructure and Nanotechnology,CAS Research/Education Center for Excellence in Molecular Sciences,Beijing National Laboratory for Molecular Science (BNLMS),Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c School of Materials Science and Engineering,Peking University,Beijing 100871,China

    Keywords:Molecular dynamics Amorphous solid electrolyte interphase Li-ion diffusion

    ABSTRACT The solid electrolyte interphase (SEI),a passivation film covering the electrode surface,is crucial to the lifetime and efficiency of the lithium-ion (Li-ion) battery.Understanding the Li-ion diffusion mechanism within possible components in the mosaic-structured SEI is an essential step to improve the Li-ion conductivity and thus the battery performance.Here,we investigate the Li-ion diffusion mechanism within three amorphous SEI components (i.e.,the inorganic inner layer,organic outer layer,and their mixture with 1:1 molar ratio) via ab initio molecular dynamic (AIMD) simulations.Our simulations show that the Li-ion diffusion coefficient in the inorganic layer is two orders of magnitude faster than that in the organic layer.Therefore,the inorganic layer makes a major contribution to the Li-ion diffusion.Furthermore,we find that the Li-ion diffusivity in the organic layer decreases slightly with the increase of the carbon chain from the methyl to ethyl owing to the steric hindrance induced by large groups.Overall,our current work unravels the Li-ion diffusion mechanism,and provides an atomic-scale insight for the understanding of the Li-ion transport in the SEI components.

    Rechargeable Li-ion batteries (LIBs) have been widely used in critical applications such as portable electronics,heavy-duty vehicles,and medical equipment due to their high energy storage[1–6].However,as the global energy demand continues to grow,it becomes increasingly important to develop energy storage systems with higher energy densities.Solid electrolyte interphase (SEI) or cathode electrolyte interphase (CEI) is constructed from the side reactions such as electrolyte decomposition on the electrode’s surface during the first charge and discharge of Li-ion batteries [7].Although this layer of SEI/CEI would lead to irreversible loss of battery capacity in the first cycle,a good SEI or CEI layer should prevent further electrolyte decomposition by blocking the electron transport while allowing the Li-ion to pass through during long cycling,thus ensuring good cycling performance of the battery[8–12].Meanwhile,the composition,thickness,morphology,and compactness of SEI/CEI significantly affect battery performance[13–15].Therefore,understanding the Li-ion transport properties of the solid electrolyte interphase is critical for designing long-life and high-performance batteries.

    Tremendous research has provided a complete picture of SEI film chemistry and a general understanding of the mechanism of its formation [16,17].The composition of SEI/CEI films has been revealed by researchers,mainly consisting of the inorganic components (e.g.,Li2CO3,LiF and Li2O) near the electrodes and the organic components (e.g.,ROCO2Li,ROLi (R is an organic group)) near the electrolyte throughinsituandexsitucompositional characterization techniques [18,19].The morphological aspects of the SEI/CEI evolution process and thickness have been proposed with scanning electron microscopy (SEM),transmission electron microscopy(TEM),and atomic force microscopy (AFM) [20–22].However,the Li-ion transport mechanism passing through the SEI and understanding of ionic conductivity are still under debate [23,24].Several computational studies developed independently defect thermodynamics and diffusion mechanisms of SEI in inorganic crystal components,organic components such as dilithium ethylene dicarbonate (Li2EDC) and dilithium butylene dicarbonate (Li2BDC),and the grain boundary [25–28].One of the currently accepted SEIs is the mosaic structure,that is,a dispersion of crystalline phases in these amorphous phases and its random distribution will cause more cracks and other problems during the cycles [29,30].However,relatively little attention has been paid to understanding the Li-ion transport mechanism in the amorphous structures [31].Therefore,it is necessary to understand the Li-ion transport in the amorphous solid electrolyte interphase.

    Molecular dynamics simulations are widely used to estimate diffusion behavior because it provides dynamic information about the system’s evolution concerning time [32–34].Here,the migration of the Li-ion in the SEI/CEI was investigated throughabinitiomolecular dynamics (AIMD) simulations.Three amorphous solid electrolyte interphases were constructed namely the inorganic inner layer of LiF and Li2CO3,the organic outer layer of ROCO2Li and ROLi (R=CH3or CH3-CH2),and the mixing layer of their 1:1 mixture.Room-temperature diffusivities in different components are obtained using the Arrhenius extrapolation relationship.Furthermore,the effect of the carbon chain length on the Li-ion diffusion in the organic layer is revealed.Our work elucidates the Li-ion diffusion mechanism in different amorphous SEI components and provides guides for SEI optimization with enhanced Li-ion conductivity for battery designs.

    In order to study the diffusion of Li-ion in three amorphous solid electrolyte interphases of the inorganic,organic,and mixing layers,we have performed density functional theory (DFT) calculations using the ViennaabinitioSimulation Package (VASP) [35–37].The projector augmented wave (PAW) method [38] and Perdew-Burke-Ernzerhof (PBE) [39] functional were used throughout the work.The kinetic cutoff energy was 500 eV and GAMMA-centered k-point meth was used for all calculations,determined by the convergence tests.

    The calculation and simulation are mainly carried out in the following three parts: (1) Structural relaxation: to eliminate the unreasonable contacts in the initially setup amorphous structures;(2) 10 psNpTensemble: AIMD simulation with anNpTensemble at 300 K was performed to obtain the equilibrium volume of 300 K,i.e.,the reasonable density of these different components in SEI.The Langevin thermostat was used to run anNpTsimulation [40,41];(3) 100 psNVTensemble: A range of high temperatures (600,700,800,900,1000,1100,1200 and 1500 K) withNVTensembles were performed for the sampling and extrapolating to the room-temperature diffusivity.The 1 fs time step and the Nose-Hoover thermostat were used in allNVTsimulations [42,43].

    The gradient amorphous and crystalline phase components of SEI affect the internal Li-ion transport.Numerous studies have found the presence of amorphous interphases on the cathode and anode surfaces,which exerts a significant influence on the electrochemical behavior [20,44].Therefore,we constructed the following three types of amorphous SEI components,namely,the inorganic layer of the LiF and the Li2CO3,the organic layer of the ROCO2Li and the ROLi (R=CH3or CH3-CH2),and their mixing layer with 1:1 ratio,to compare the effects of the organic and inorganic components on the Li-ion migration,using the DFT method to calculate the energy and force of the system (Fig.1).

    Fig.1.Schematic diagram of Li-ion diffusion in the amorphous SEI regions with different components.

    To construct the amorphous solid electrolyte interphase,we used the Packmol software [45] to build the inorganic,organic,and mixing layers,consisting of 15 Li2CO3and LiF,8 CH3OLi and CH3OCO2Li,and 6 Li2CO3,LiF,CH3OLi and CH3OCO2Li molecules,with a total of 120,120,and 138 atoms,respectively,based on the cost and computational time limit of AIMD.The initial box shapes are 14×14×14 ?A3,13×13×13 ?A3,and 18×18×18 ?A3,as shown in Fig.S1 (Supporting information).Similarly,the carbon chain is increased to an ethyl configuration,containing 6 CH3CH2OLi and CH3CH2OCO2Li,totaling 126 atoms,and then stacked in a 15×15×15 ?A3cubic simulation box (Fig.S1c).The Li,F and CO3groups are randomly placed into a box with periodic boundaries and the bond length and bond angle of the CO32-group are derived from the inorganic crystal structure database (ICSD).

    The final amorphous morphologies are obtained according to the steps mentioned above,as shown in Figs.S1a’-d’.The final sizes of the boxes are 11.07×11.07×11.07 ?A3,11.54×1.54×1.54 ?A3,11.61×11.61×11.61 ?A3,12.34×12.34×12.34 ?A3for the inorganic layer,the methyl organic layer,the ethyl organic layer,and the mixing layer,respectively.The atomic groups diffuse uniformly and C-O and C-C bonds do not cleavage.As the MD simulation progresses,changes in temperature and energy in each system are monitored to ensure that the simulation reaches equilibrium.Fig.S2 (Supporting information) shows the apparent temperature and energy changes obtained at different temperatures,essentially in equilibrium after 5 ps.

    The amorphous SEI structures are analyzed by examining radial distribution functions (RDFs) involving F and O,which are compared among systems with different compositions (Fig.2).The higher Li-F RDF peak in the mixing system (Fig.2a) corresponds to a relatively smaller coordination number (Fig.2b) compared to the inorganic component system because the average densities of the calculated group in different compositional SEI layers are different.The Li-F first peak is around 1.85 ?A.The Li-F peaks are located at the same distances of 1.85 ?A in different components.The Li+ion is strongly coordinated by the F-ions in the inorganic layer as opposed to the mixing layer,with coordination numbers of 1.36 fluorine atoms in the inorganic layer and 0.75 fluorine atoms in the mixing layer within a distance of 2.65 ?A to a Li+ion.The choice of the Li-F coordination number sheath of 2.65 ?A depends on the distance where the Li-F RDF decays to the first valley,so fluorine within 2.65 ?A is considered to be strongly coordinating with the Li+ion.The position of the first peak of the Li-O RDF is around 1.95 ?A for all systems.Even though the interaction between Li/F restricts the movement of ions,it still has a similar Li-O coordination shell of ~2.75 ?A,indicating that the Li+ion is surrounded by another three to four O atoms in the coordination sheath.Due to the higher proportion of O atoms in the organic components,the corresponding first solvation sheath (2.85 ?A) is larger and has more oxygen coordination atoms (3.80) (Fig.S3 in Supporting information).

    Fig.2.(a) Radial distribution functions and (b) coordination numbers for the inorganic layer,the methyl organic layer,the ethyl organic layer,and the mixing layer at 600 K.The arrows indicate the first coordination shell: 2.65 ?A for Li-F and ~2.75 ?A for Li-O.

    We study the Li-ion transport in the SEI by calculating Li-ion self-diffusion coefficients (Ds) by the mean square displacement over time in different compositional layers:

    wheredindicates the Li diffusion dimension and it equals 3 in our cases.The 〈[→r(t)]2〉,that is MSD(t),is a mean-square displacement of all Li-ions during timet,calculated according to the following formula:

    MSD is the average overall Li-ions ofNand is a statistical average over time t0.Speaking generally,a sufficient sampling at room temperature requires a long time (>10 ns) simulation,which goes far beyond the time scale of the AIMD.Therefore,the Arrhenius relationship was used to extrapolate the room-temperature diffusion coefficient from the high-temperature results [46,47].

    To investigate the ionic diffusivity,the MSDs of the Li-ion in the SEI layer at different temperatures were calculated (Fig.S4a in Supporting information).The overall MSD at each temperature was obtained from the three directionsa,bandc(Fig.S4b in Supporting information).As shown,the MSD of the Li-ion increases almost linearly with time,indicating that sampling is sufficient and the diffusion is relatively uniform [48].At the same time,it can be seen that the diffusion coefficient increases with the increase in temperature because the high temperature intensifies the movement and collision of molecules,which is beneficial to diffusion.The slope of the MSD curves is used to calculate the diffusion coefficient by Eq.1.Owing to the poor statistics,the first and last 10%MSD curves are excluded to linearly fit the diffusivity and the final results are listed in Tables S1-S4 (Supporting information) [49].

    Both the Li-ion diffusion coefficient and ionic conductivity were extracted from the slopes of the MSD linear fitting and then extrapolated to low temperatures.Based on the above MSD curves,the Arrhenius plot log(D)-1000/Tof the diffusion coefficient from 600 K to 1500 K are shown in Fig.3,including the inorganic layer,the methyl organic layer,the ethyl organic layer,and the mixing layer.The corresponding calculation data are recorded in Tables S5-S8 (Supporting information).It can be seen that as the temperature decreases,the Li-ion diffusion coefficient in the inorganic layer decreases more slowly than that of the organic layer,which indicates that the Li-ion is more mobile in the inorganic small molecules at low temperatures.Therefore,the Li-ion diffusion coefficient of 9.24×10-8cm2/s in the inorganic layer extrapolated to room temperature of 300 K was found to be two orders of magnitude larger than the diffusion in the methyl-organic layer of 8.29×10-10cm2/s and at least an order of magnitude larger than the Li-ion diffusion of 1.63×10-9cm2/s in the mixing layer (Table S9 in Supporting information).Although bulk LiF is an electronic insulator,numerous studies have proved that LiF-rich SEI (polycrystalline and amorphous LiF) has a great advantage in Li-ion transport when forming nanoscale interfaces with other components (Li2O,Li2CO3),which may be that they synergistically form a heterogeneous structure,improving the ionic conductivity on the anode side of the battery,and also consistent with our AIMD simulations [50,51].At first glance,the Li-ion diffusion coefficients of the two sizes of organic group layers are in the same order of magnitude,but the methyl organic layer is slightly larger,which also indicates that the large group formed by the increase of the carbon chain does restrict the Li-ion diffusion.The activation energy of the Li-ion diffusion can be calculated using the Arrhenius formula.The results show that the Li-ion has smaller activation energy in the inorganic layer,indicating a faster diffusion coefficient,which is consistent with our previous calculations.

    Fig.3.Linear fitting of log(D)-1000/T of the inorganic layer,organic layer (methyl,ethyl) and mixing layer.

    In order to gain further insights into the transport mechanism of the Li-ion in different SEI components,the trajectories after 5 ps where the system reaches equilibrium are selected for analysis.Fig.4 shows the displacement of the Li-ion over 5 ps,where blue and pink balls represent the initial and final positions of the Li-ion during the simulation segment,respectively,and the arrows indicate the directions of each Li-ion’s movement.It can be seen that in the inorganic SEI component,after the 100 ps AIMD simulation,the range of Li-ion movement is larger.This visualized schematic diagram of the Li-ion diffusion is consistent with the calculated Liion mobility,which once again proves the binding effect of organic components.In the future design of battery performance,it should be considered to preferentially induce the formation of inorganicrich components SEI,to effectively improve the Li-ion diffusion in the interphases.

    Fig.4.Displacements of the Li-ion for (a) the inorganic layer and (b) the methylorganic layer at 600 K.

    In summary,AIMD simulations are performed to investigate the Li-ion diffusion coefficient and ionic conductivity for different amorphous SEI components.Furthermore,the Li-ion transport mechanism in those components is revealed.Our simulations show that the Li-ion diffusion in the inorganic layer is significantly faster than that in the organic layer,while the diffusion in the mixing layer is between the two.Meanwhile,as the carbon chain increases from methyl to ethyl in the organic layer,the Li-ion diffusion is limited and a slightly lower diffusion coefficient is obtained.This effect is related to the group size of the ROCO2-anions,which limits the Li-ion diffusion in the interphases,thereby reducing the Li-ion conductivity.Overall,our current work provides an understanding of the Li-ion transport mechanism in the amorphous SEI at the atomic scale and provides the guidance for the battery interphase design.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    R.Wen acknowledges the financial support from the National Key R&D Program of China (No.2021YFB2500300) and the CAS Project for Young Scientists in Basic Research (No.YSBR-058).S.Xu acknowledges funding support from the Chinese Ministry of Science and Technology (No.2021YFB3800303),DP Technology Corporation (No.2021110016001141),and the School of Materials Science and Engineering at Peking University.

    Supplementary materials

    Supplementary material associated with this article can be found in the online version at doi:10.1016/j.cclet.2023.108242.

    免费在线观看完整版高清| 欧美最黄视频在线播放免费 | 村上凉子中文字幕在线| 亚洲精品国产精品久久久不卡| 国产精品久久视频播放| 黄色丝袜av网址大全| 热99国产精品久久久久久7| 97碰自拍视频| 亚洲av日韩精品久久久久久密| 久久性视频一级片| 欧美另类亚洲清纯唯美| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 99国产精品免费福利视频| 久久天躁狠狠躁夜夜2o2o| 欧美中文日本在线观看视频| 国产亚洲精品一区二区www| 天天躁夜夜躁狠狠躁躁| 琪琪午夜伦伦电影理论片6080| 国产成人影院久久av| 免费av中文字幕在线| 欧美性长视频在线观看| 亚洲国产毛片av蜜桃av| 99国产精品一区二区蜜桃av| 欧美中文综合在线视频| 曰老女人黄片| 黄色女人牲交| 国产精品偷伦视频观看了| 国产精品永久免费网站| 欧美成人午夜精品| 岛国视频午夜一区免费看| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产一区二区精华液| 又黄又粗又硬又大视频| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 精品卡一卡二卡四卡免费| 日本免费一区二区三区高清不卡 | 成人手机av| 正在播放国产对白刺激| 亚洲人成网站在线播放欧美日韩| 欧美黄色片欧美黄色片| 久久香蕉激情| 亚洲av成人一区二区三| 亚洲欧美激情在线| 欧美日韩黄片免| 少妇的丰满在线观看| 色综合欧美亚洲国产小说| 一区二区日韩欧美中文字幕| 免费在线观看完整版高清| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人免费av一区二区三区| 国产极品粉嫩免费观看在线| 亚洲成a人片在线一区二区| 亚洲avbb在线观看| 国产成人啪精品午夜网站| 亚洲avbb在线观看| 免费在线观看日本一区| 亚洲va日本ⅴa欧美va伊人久久| 侵犯人妻中文字幕一二三四区| 丝袜在线中文字幕| 91成人精品电影| 欧美老熟妇乱子伦牲交| 淫秽高清视频在线观看| 一个人观看的视频www高清免费观看 | 亚洲欧美一区二区三区久久| 免费少妇av软件| 在线看a的网站| 中出人妻视频一区二区| a级毛片黄视频| 男人舔女人下体高潮全视频| a级毛片在线看网站| av网站在线播放免费| 久久久久国产精品人妻aⅴ院| 国产精品久久久av美女十八| 国产成人精品无人区| av网站在线播放免费| 成年版毛片免费区| 91麻豆精品激情在线观看国产 | ponron亚洲| 久久精品人人爽人人爽视色| 可以免费在线观看a视频的电影网站| 精品久久久精品久久久| 黄色女人牲交| 国产熟女午夜一区二区三区| 一区二区三区国产精品乱码| 国产三级在线视频| 国产精品 国内视频| 国内久久婷婷六月综合欲色啪| 久久香蕉精品热| 黄片小视频在线播放| 国产精品成人在线| 咕卡用的链子| 精品人妻在线不人妻| 国产成人影院久久av| 黄色a级毛片大全视频| 三上悠亚av全集在线观看| 久久久久久久午夜电影 | av在线播放免费不卡| 亚洲aⅴ乱码一区二区在线播放 | 国产精品自产拍在线观看55亚洲| 国产精品 欧美亚洲| 又紧又爽又黄一区二区| 亚洲熟妇中文字幕五十中出 | 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 我的亚洲天堂| 亚洲国产精品999在线| 久久99一区二区三区| 夫妻午夜视频| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 桃色一区二区三区在线观看| 亚洲欧美日韩另类电影网站| 国产一区二区在线av高清观看| 无人区码免费观看不卡| 色婷婷久久久亚洲欧美| 国产精品二区激情视频| 十分钟在线观看高清视频www| 国产精品乱码一区二三区的特点 | 免费搜索国产男女视频| xxxhd国产人妻xxx| 成人三级黄色视频| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 免费看a级黄色片| 在线看a的网站| 成人影院久久| 日韩免费av在线播放| 免费高清在线观看日韩| 国内久久婷婷六月综合欲色啪| 在线观看www视频免费| 国产午夜精品久久久久久| x7x7x7水蜜桃| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 色婷婷av一区二区三区视频| 在线观看66精品国产| 国产成年人精品一区二区 | 美女午夜性视频免费| 久久精品91无色码中文字幕| 国产激情欧美一区二区| av在线播放免费不卡| 91国产中文字幕| 看黄色毛片网站| 国产成人系列免费观看| 成年人黄色毛片网站| 午夜日韩欧美国产| 另类亚洲欧美激情| 欧美精品一区二区免费开放| 国产成+人综合+亚洲专区| 亚洲片人在线观看| 18禁黄网站禁片午夜丰满| 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| 精品乱码久久久久久99久播| 女人被狂操c到高潮| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19| 亚洲一区中文字幕在线| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 午夜激情av网站| 男女床上黄色一级片免费看| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 欧美一区二区精品小视频在线| 一夜夜www| 成人影院久久| 一级a爱片免费观看的视频| 日本免费a在线| 两人在一起打扑克的视频| 天堂√8在线中文| 一个人观看的视频www高清免费观看 | 波多野结衣一区麻豆| 亚洲成a人片在线一区二区| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 啦啦啦免费观看视频1| 香蕉丝袜av| bbb黄色大片| 国产99久久九九免费精品| 国产无遮挡羞羞视频在线观看| 91麻豆精品激情在线观看国产 | 国产视频一区二区在线看| 国产高清激情床上av| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 在线观看66精品国产| 国产免费现黄频在线看| 国产精品一区二区免费欧美| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 久久久国产成人精品二区 | 99久久精品国产亚洲精品| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 美女大奶头视频| 在线观看免费日韩欧美大片| 9热在线视频观看99| 国产精品二区激情视频| 久久伊人香网站| 18禁观看日本| 久久性视频一级片| 水蜜桃什么品种好| 叶爱在线成人免费视频播放| 丁香六月欧美| 精品人妻在线不人妻| 国产精品秋霞免费鲁丝片| 激情在线观看视频在线高清| 亚洲性夜色夜夜综合| 伦理电影免费视频| 国产精品久久久av美女十八| 久久这里只有精品19| 女同久久另类99精品国产91| 亚洲欧美一区二区三区黑人| 91在线观看av| 国产一区二区三区综合在线观看| 久久午夜综合久久蜜桃| 日本 av在线| 午夜精品久久久久久毛片777| 激情在线观看视频在线高清| 91av网站免费观看| 黄色毛片三级朝国网站| 黄色女人牲交| 久久久国产成人精品二区 | 久久久国产成人精品二区 | 少妇的丰满在线观看| 老汉色∧v一级毛片| 日日干狠狠操夜夜爽| 91大片在线观看| 国产成人系列免费观看| 很黄的视频免费| 国产精品亚洲一级av第二区| 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 欧美黄色片欧美黄色片| 法律面前人人平等表现在哪些方面| 亚洲精品成人av观看孕妇| 99热只有精品国产| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲男人天堂网一区| 如日韩欧美国产精品一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区视频了| 国产亚洲欧美在线一区二区| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 一a级毛片在线观看| 久久久久国内视频| 国产精品一区二区免费欧美| 女人被躁到高潮嗷嗷叫费观| 久久久久久大精品| 婷婷丁香在线五月| 黄色 视频免费看| 国产精品久久久久久人妻精品电影| 久久国产亚洲av麻豆专区| 宅男免费午夜| 多毛熟女@视频| 国产av在哪里看| 成人手机av| 精品福利观看| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 人人妻人人爽人人添夜夜欢视频| 搡老乐熟女国产| 国产不卡一卡二| 操美女的视频在线观看| 18禁观看日本| 在线观看免费午夜福利视频| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看 | 在线观看免费日韩欧美大片| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情 高清一区二区三区| 久99久视频精品免费| 黄网站色视频无遮挡免费观看| 日韩av在线大香蕉| 无限看片的www在线观看| 女性生殖器流出的白浆| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看| 国产精品 欧美亚洲| 丁香欧美五月| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜 | 欧美精品啪啪一区二区三区| 欧美激情高清一区二区三区| 精品国产国语对白av| 免费高清视频大片| 免费在线观看日本一区| 99在线人妻在线中文字幕| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 国产片内射在线| 日本欧美视频一区| 成年女人毛片免费观看观看9| 亚洲伊人色综图| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 黄频高清免费视频| 一本大道久久a久久精品| 亚洲狠狠婷婷综合久久图片| 日日夜夜操网爽| 亚洲第一青青草原| 欧美大码av| 亚洲片人在线观看| 黑人猛操日本美女一级片| 美女午夜性视频免费| 操美女的视频在线观看| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 99久久久亚洲精品蜜臀av| 十八禁人妻一区二区| 757午夜福利合集在线观看| 亚洲五月婷婷丁香| 精品少妇一区二区三区视频日本电影| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 视频在线观看一区二区三区| 亚洲三区欧美一区| 日韩大码丰满熟妇| 激情视频va一区二区三区| 午夜福利在线观看吧| 精品福利观看| 免费看十八禁软件| 亚洲精品成人av观看孕妇| 中亚洲国语对白在线视频| 岛国在线观看网站| 99国产精品一区二区蜜桃av| 国产精品一区二区精品视频观看| 一级片免费观看大全| 亚洲色图av天堂| 久久人妻熟女aⅴ| netflix在线观看网站| 90打野战视频偷拍视频| 91九色精品人成在线观看| 久久久国产精品麻豆| 真人做人爱边吃奶动态| 国产免费现黄频在线看| 国产熟女xx| 国产精品av久久久久免费| 精品久久久精品久久久| 亚洲精品中文字幕一二三四区| 午夜福利影视在线免费观看| 国产精品爽爽va在线观看网站 | 国产成人av教育| 91字幕亚洲| 视频区图区小说| 欧美日韩亚洲高清精品| 日韩有码中文字幕| 嫩草影视91久久| 三级毛片av免费| 18禁观看日本| 免费少妇av软件| 欧美乱妇无乱码| 国产成+人综合+亚洲专区| 免费观看人在逋| 99精品在免费线老司机午夜| 国产高清激情床上av| 自拍欧美九色日韩亚洲蝌蚪91| 日本欧美视频一区| 色尼玛亚洲综合影院| 亚洲片人在线观看| 多毛熟女@视频| av视频免费观看在线观看| 亚洲欧洲精品一区二区精品久久久| 国产欧美日韩一区二区三| 搡老乐熟女国产| 日韩欧美三级三区| 日韩大尺度精品在线看网址 | 99精品久久久久人妻精品| 亚洲国产欧美日韩在线播放| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网| 两人在一起打扑克的视频| 日韩成人在线观看一区二区三区| 欧美另类亚洲清纯唯美| 亚洲精品一二三| 色尼玛亚洲综合影院| 亚洲视频免费观看视频| 免费观看精品视频网站| 色综合站精品国产| 亚洲国产欧美网| 一个人免费在线观看的高清视频| av电影中文网址| а√天堂www在线а√下载| 曰老女人黄片| 在线观看免费日韩欧美大片| 三上悠亚av全集在线观看| 久久这里只有精品19| 午夜影院日韩av| 91麻豆av在线| 午夜免费观看网址| 亚洲色图综合在线观看| av在线天堂中文字幕 | 91成年电影在线观看| 一本综合久久免费| 亚洲一码二码三码区别大吗| 一边摸一边做爽爽视频免费| 午夜精品久久久久久毛片777| 97碰自拍视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 岛国视频午夜一区免费看| av国产精品久久久久影院| 天堂√8在线中文| 亚洲av片天天在线观看| 久久人妻熟女aⅴ| 777久久人妻少妇嫩草av网站| 午夜免费激情av| 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区四区五区乱码| 免费看a级黄色片| 精品日产1卡2卡| av欧美777| 欧美大码av| 日韩三级视频一区二区三区| 成人永久免费在线观看视频| 亚洲精华国产精华精| 中文亚洲av片在线观看爽| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 制服诱惑二区| 99久久人妻综合| 99久久综合精品五月天人人| 国产精品国产av在线观看| 国产aⅴ精品一区二区三区波| 亚洲熟妇熟女久久| 无限看片的www在线观看| 久久亚洲真实| 黄色 视频免费看| 色婷婷av一区二区三区视频| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 欧美亚洲日本最大视频资源| 久久亚洲真实| 岛国在线观看网站| 满18在线观看网站| 9热在线视频观看99| 电影成人av| 黄色成人免费大全| 久久精品国产亚洲av高清一级| 咕卡用的链子| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 99热只有精品国产| 成人影院久久| 在线永久观看黄色视频| 无人区码免费观看不卡| 99久久国产精品久久久| 久久香蕉精品热| 久久亚洲真实| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 久久精品国产99精品国产亚洲性色 | 18禁裸乳无遮挡免费网站照片 | 免费观看人在逋| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 亚洲中文日韩欧美视频| 国产亚洲欧美在线一区二区| 丁香六月欧美| 国产一区二区激情短视频| 亚洲精品久久午夜乱码| 日本精品一区二区三区蜜桃| 亚洲情色 制服丝袜| 亚洲第一青青草原| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 国产高清videossex| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 国产xxxxx性猛交| 久久久国产成人精品二区 | 精品久久蜜臀av无| 久久人人精品亚洲av| 女人被狂操c到高潮| 高清av免费在线| 亚洲男人天堂网一区| 欧美乱码精品一区二区三区| 一级,二级,三级黄色视频| 精品电影一区二区在线| 午夜久久久在线观看| 国产黄a三级三级三级人| 免费日韩欧美在线观看| 真人一进一出gif抽搐免费| 日韩成人在线观看一区二区三区| 亚洲情色 制服丝袜| 丝袜美腿诱惑在线| 欧美成人午夜精品| e午夜精品久久久久久久| 一区二区日韩欧美中文字幕| 麻豆一二三区av精品| 交换朋友夫妻互换小说| 日本免费一区二区三区高清不卡 | 久久久久久久久中文| 99国产综合亚洲精品| 亚洲av成人一区二区三| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 人成视频在线观看免费观看| 又紧又爽又黄一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产一区二区三区四区第35| 精品国产乱子伦一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产视频一区二区在线看| 性少妇av在线| 亚洲第一青青草原| 又黄又粗又硬又大视频| 亚洲色图 男人天堂 中文字幕| 国产精品久久久av美女十八| 一级毛片女人18水好多| 久久人妻熟女aⅴ| 国产无遮挡羞羞视频在线观看| 狂野欧美激情性xxxx| 91精品三级在线观看| 免费日韩欧美在线观看| 99精品久久久久人妻精品| 日韩精品免费视频一区二区三区| 看片在线看免费视频| cao死你这个sao货| 好男人电影高清在线观看| 亚洲avbb在线观看| 久久久久久大精品| 一边摸一边做爽爽视频免费| 成人国语在线视频| 美女高潮喷水抽搐中文字幕| 欧美国产精品va在线观看不卡| 久久午夜亚洲精品久久| 国产又色又爽无遮挡免费看| 久久 成人 亚洲| a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 制服人妻中文乱码| 黄频高清免费视频| 欧美日韩亚洲高清精品| 国产精品 欧美亚洲| 亚洲狠狠婷婷综合久久图片| 夜夜看夜夜爽夜夜摸 | 免费在线观看影片大全网站| 免费久久久久久久精品成人欧美视频| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 成年女人毛片免费观看观看9| 亚洲熟妇熟女久久| 亚洲精品一卡2卡三卡4卡5卡| 三级毛片av免费| 国产一卡二卡三卡精品| 国产免费男女视频| 真人一进一出gif抽搐免费| 午夜a级毛片| 亚洲国产欧美网| 国产精华一区二区三区| 99re在线观看精品视频| 久久久久久久久中文| 男人的好看免费观看在线视频 | av天堂久久9| 国产伦人伦偷精品视频| 三上悠亚av全集在线观看| 在线播放国产精品三级| 免费观看人在逋| 欧美日韩亚洲高清精品| 国内久久婷婷六月综合欲色啪| 黑丝袜美女国产一区| 不卡一级毛片| 午夜成年电影在线免费观看| 俄罗斯特黄特色一大片| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 成在线人永久免费视频| 精品国产亚洲在线| 亚洲avbb在线观看| 亚洲性夜色夜夜综合| 麻豆久久精品国产亚洲av | 日本黄色日本黄色录像| 欧美性长视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲,欧美精品.| 不卡av一区二区三区| 99在线视频只有这里精品首页| 男女做爰动态图高潮gif福利片 | 亚洲熟女毛片儿| 老司机午夜福利在线观看视频| 一二三四社区在线视频社区8| av免费在线观看网站| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 久久精品亚洲熟妇少妇任你|