• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TiO2 nanorods based self-supported electrode of 1T/2H MoS2 nanosheets decorated by Ag nano-particles for efficient hydrogen evolution reaction

    2023-11-21 03:05:00ChngzhengLinYunpengLiuYxingSunZhenyuWngHoXuMingtoLiJingtoFengBoHouWeiYn
    Chinese Chemical Letters 2023年11期

    Chngzheng Lin,Yunpeng Liu,Yxing Sun,Zhenyu Wng,Ho Xu,Mingto Li,Jingto Feng,?,Bo Hou,Wei Yn,c,?

    a Department of Environmental Science & Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    b School of Physics and Astronomy,Cardiff University,The Parade,Cardiff,CF24 3AA,Wales,United Kingdom

    c State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China

    d International Research Center for Renewable Energy (IRCRE),State Key Laboratory of Multiphase Flow in Power Engineering (MFPE),Xi’an Jiaotong University,Xi’an 710049,China

    Keywords:Molybdenum disulfide Silver nanoparticles Hydrogen evolution reaction Density functional theory Hydrogen spillover

    ABSTRACT Molybdenum disulfide (MoS2) has shown significant promise as an economic hydrogen evolution reaction (HER) catalyst for hydrogen generation,but its catalytic performance is still lower than noble metalbased catalysists.Herein,a silver nanoparticles (Ag NPs)-decorated 1T/2H phase layered MoS2 electrocatalyst grown on titanium dioxide nanorod arrays (Ag NPs/1T(2H) MoS2/TNRs) was prepared through acid-tunable ammonium ion intercalation.Taking advantage of MoS2 layered structure and crystal phase controllability,as-prepared Ag NPs/1T(2H) MoS2/TNRs exhibited ultrahigh HER activity.As-proposed strategy combines facile hydrogen desorption (Ag NPs) with efficient hydrogen adsorption (1T/2H MoS2) effectively circumventes the kinetic limitation of hydrogen desorption by 1T/2H MoS2.The as-prepared Ag NPs/1T(2H) MoS2/TNRs electrocatalyst exhibited excellent HER activity in 0.5 mol/L H2SO4 with low overpotential (118 mV vs.reversible hydrogen electrode (RHE)) and small Tafel slope (38.61 mV/dec).The overpotential exhibts no obvious attenuation after 10 h of constant current flow.First-principles calculation demonstrates that as-prepared 1T/2H MoS2 exhibit a large capacity to store protons.These protons can be subsequently transferred to Ag NPs,which significantly increases the hydrogen coverage on the surface of Ag NPs in HER process and thus change the rate-determining step of HER on Ag NPs from water dissociation to hydrogen recombination.This study provides a unique strategy to improve the catalytic activity and stability for MoS2-based electrocatalyst.

    Hydrogen is an extremely clean and renewable energy source,which is an ideal substitute of fossil fuels for environmental protection.Among the clean energy conversion methods,hydrogen evolution reaction (HER) is one of the most promising methods for commercial application,which has attracted extensive attentions[1,2].However,the main obstacle to hydrogen production from water electrolysis is a slow HER and large kinetic hindrance [3].Platinum (Pt) has been widely studied as an excellent catalyst with extremely high electrical conductivity and excellent hydrogen adsorption and desorption for HER [4–7].Unfortunately,the broad application of Pt-based catalysts are the significantly limited by their high price and limited natural Pt proven reserves [8].Thus,the development of Pt-free electrocatalysts with comparable performance,better stability and cost-effectiveness preparation process is imminent.

    Researchers have recently investigated many low-cost and highperformance catalysts,mainly including transition metal dichalcogenides (TMDCs) [9–11],metal carbides [12],metal nitrides[13] and metal phosphides [14].Among these candidates,molybdenum disulfide (MoS2) has attracted a lot of attention due to its two-dimensional layered structure and abundant catalytic active sites.Due to differences in the structure of layers (1,2 and 3) and crystals (hexagonal,trigonal and rhombohedral) in a single unit cell,MoS2has three natural or synthetic polymorphisms,namely 1-trigonal (1T),2-hexagonal (2H),and 3-rhombohedral (3R).Unlike 2H-MoS2phase,the 1T-MoS2phase exhibits metallic properties,so it has a high conductivity facilitating its HER performance [15].Metastable 1T-MoS2can only be obtained under harsh synthetic strategies such as alkali metal intercalation-exfoliation[16,17],doping [18],mechanical strain [19],and electron beam irradiation [20].However,the yields of the above methods are low,which severely limits the application of 1T-MoS2.It is a great challenge to obtain high-purity 1T-MoS2by a facile method.To address this issue,an acid regulation strategy is employed to efficiently induce phase transition from 2H-MoS2to 1T-MoS2for enhancing its HER performance [8,21].To improve the conductivity of MoS2,the most widely used approache is coating conductive carbon on MoS2or loading MoS2on conductive carriers to reduce the charge transfer resistance in the electrochemical process [22,23].Although the high 1T phase MoS2catalyst synthesized by the above method improved the HER activity,its stability and surface charge transfer and internal resistance still have great challenges [24,25].Therefore,it is necessary to develop a new type of MoS2-based catalyst with a facile growth approach but,high HER performance and stability.

    Herein,a novel flower rod-like catalyst stacked by nanosheet MoS2was synthesized by hydrothermal grow MoS2on the surface of TiO2nanorods (TNRs) (Fig.S1a in Supporting information).The organic acid plays a major role in modulating the conversion efficiency of MoS2from 2H phase to the 1T phase which promotes electron transfer.Meanwhile,the internal resistance of charge transfer can be reduced by electrodepositing of Ag NPs.The resulting electrocatalyst exhibited excellent HER activity in 0.5 mol/L H2SO4with low overpotential (118 mVvs.RHE) and small Tafel slope (38.61 mV/dec).Furthermore,as-prepared Ag NPs/MoS2/TNRs shows robust cycle stability and there is negligible overpotential attenuation after 10 h of constant current flow.

    Fig.S1b and Eq.S1 (Supporting information) show the simple hydrothermal synthesis steps of MoS2in H2O as solvent (HMoS2) nanoparticles and MoS2nanosheets on TNRs.In this experiment,thiourea as both sulfur source and reductant was employed to promote the formation of molybdenum blue (MB) from Mo-O-Mo bond condensation of protonated Mo-O-Mo under the action of propionic acid.As shown in Fig.S2 (Supporting information),MB species have the typical absorption band around 600–1100 nm which is attributed to the intervalence charge transfer(IVCT) [26].The maximum absorbance is reached at the propionic acid volume fraction of 58.3 vol%.Fig.S3 (Supporting information)is the Fourier transform infrared spectrometer (FT-IR) spectrum of MB powder,Mo-O bonds with different coordination oxygens have different characteristic absorption bands in the range of 1000–500 cm-1[27].The band at 1414 cm-1corresponds to the bending vibration of the N–H in ammonium ions (NH4+),indicating the presence of NH4+bound to MB through strong electrostatic interaction[28,29].The result of X-ray photoelectron spectroscopy (XPS) spectrum of the Mo 3d in Fig.S4 (Supporting information) confirms the presence of reduced Mo(V) species in the MB powder.As shown in Fig.S5 (Supporting information),graph element mapping analysis reveals a uniform distribution of Mo,S,C and O elements,further validating the formation of polyoxometalates (POMs) [29].These data demonstrate that MB was successfully obtained by adding thiourea to sodium molybdate in the mixture of propionic acid and water.

    As shown in Fig.1a,uniformly dense TNRs with an average diameter of 125 ± 5 nm are grown vertically on SnO2conductive glass doped with fluorine (FTO) surface.As shown in Fig.1b,the MoS2/TNRs show a lamellae MoS2intercalated on the TNRs with a diameter of about 400 nm.As shown in Fig.1c,the electrodeposition of Ag NPs is uniformly loaded on MoS2/TNRs.Meanwhile,Mo,S,Ti,O and Ag species are detectable and distributed uniformly over the entire sample (Figs.S6 and S7 in Supporting information).Comparing with MoS2/TNRs,the MoS2/FTO sample showed nanoflower morphology with a diameter of 1.2 μm,but the coverage of MoS2was also lower (Figs.S8a and b in Supporting information).MoS2on the H-MoS2/TNRs presents a rod-like stack on the surface of the TNRs,and the layered of MoS2has a larger electrochemically active area than the rodlike (Figs.S8c and d in Supporting information).As shown in Fig.1d,the prepared Ag NPs/MoS2/TNRs electrodes are composed of TNR with a diameter of about 125 nm and MoS2(Ag NPs) with a thickness of 50 nm.The HRTEM (Figs.1e,f and h) results further confirmed that the as-prepared TiO2nanorods possess the (110) plane for rutile TiO2[30].The lattice fringe spacing of 0.24 nm (Figs.1e,g and i) in the shell corresponds to the (111) plane of Ag NPs [31].As shown in Fig.S9 (Supporting information),MoS2was successfully loaded on TNRs,and Ag element is uniformly distributed on MoS2.SEM and TEM analysis confirm that the AgNO3precursor was successfully reduced to Ag NPs by electrodeposition.The close contact between Ag NPs and MoS2enables Ag NPs to efficiently transport electrons from Ag NPs to layered MoS2,which is crucial for the high HER performance of Ag NPs/MoS2/TNRs electrodes.

    Fig.1.Top view SEM images of (a) TNRs,(b) MoS2/TNRs and (c) Ag NPs/MoS2/TNRs.(d,e) high-resolution TEM (HRTEM) images of Ag NPs/MoS2/TNRs.The enlarged area denoted in (e) corresponding to the HRTEM images of (f) TiO2 and (g) Ag,respectively.(h,i) Profile plots of the calibration for measuring the spacings of TiO2 and Ag.

    As shown in Fig.2a,the peaks at 3133 and 1400 cm-1are due to the stretching and bending vibrations of the N–H bond,revealing the presence of intercalated NH4+in the MoS2/TNRs [32].The XPS spectra of N 1s (Fig.S10 in Supporting information) indicate the presence of intercalated NH4+.The Intercalation of NH4+as electron donors lead to the formation and stabilization of 1T-phase MoS2[33].As shown in Fig.2b,a broad molybdenum sulfide peak is observed only at 13.8° when an aqueous solution of propionic acid was used as the solvent for the hydrothermal preparation of MoS2[34].The Ag NPs peaks in the X-ray diffraction (XRD) pattern of Ag NPs/MoS2/TNRs are detected at 2θ=38.22° and 44.35°consistent with (111) and (200) plane (JCPDS card No.04–0783)[35].As shown in Fig.2c,at H-MoS2/TNRs,the characteristic Raman shifts at 408 and 452 cm-1expected for the E2g1and A1gmodes of 2H-MoS2are clearly observed [15,36].At MoS2/TNRs,the vibration of bridging/shared disulfide (ν(S-S)br/sh) and terminal disulfide (ν(S-S)t) are found at 555 and 525 cm-1,respectively.Molybdenum sulfide bonds [37,38] are found atν(Mo-S) of 382–284 cm-1whereas theν(Mo3-μ3S) vibration is detected at 450 cm-1.Raman vibration signatures of Ag NPs/MoS2/TNRs indicate that the disulfide ligands are not displaced after the electrodeposition of silver.As shown in Fig.S11 (Supporting information),H-MoS2/TNRs,MoS2/TNRs and Ag NPs/MoS2/TNRs contain Ag(Ag NPs/MoS2/TNRs),S,Mo,C and O peaks without any impurity.As can be seen from the curve in Fig.S12 (Supporting information),the high-resolution Mo 3d spectrum of the MoS2/TNRs sample contains three spin-splitting doublets (Mo 3d5/2and Mo 3d3/2),where Mo 3d5/2peaks at ≈228.8 eV,≈229.5 eV,and ≈233.8 eV.The feature at 228.8 eV and 229.5 eV is assignable to Mo4+,which is compatible with the binding energy of the 1T and 2H phase of MoS2[15,31].Mo6+originates from the MoOyor MoSxOyregions in the electrodes (Figs.S11 and S13 in Supporting information)[39,40].The high-resolution S 2p spectra in Fig.S14 (Supporting information) further demonstrate the generation of 1T/2H MoS2.However,these peaks in the MoS2/TNRs and Ag NPs/MoS2/TNRs samples are red-shifted.This result proves the existence of electronic interaction between Ag NPs and MoS2.Furthermore,for the Ag 3d of Ag NPs/MoS2/TNRs (Fig.2d),two peaks located at 368.3 eV and 374.3 eV prove the existence of metallic Ag,because the difference between the two peaks is 6.0 eV [41].In Figs.2e and f,H-MoS2/TNRs prepared with water as the only solvent have 2H-MoS2but no 1T phase MoS2.Therefore,XPS results along with electron microscopy,FT-IR,XRD,and Raman demonstrate the successful formation of the acid-controlled ammonium ion intercalated Ag NPs/MoS2/TNRs hybrid structure with high 1T phase MoS2and more active sites.

    Fig.2.(a) FT-IR spectra of H-MoS2 and MoS2 samples.(b) XRD patterns and (c) Raman spectra of Ag NPs/MoS2/TNRs and each component.(d) The high-resolution XPS spectra of Ag 3d from Ag NPs/MoS2/TNRs.The high-resolution XPS spectra of (e) Mo 3d and (f) S 2p from MoS2/TNRs and H-MoS2/TNRs.

    The experimental results of Figs.S15 and S16 (Supporting information) showed that the overpotential was lowest at a propionic acid volume fraction of 58.3 vol% (Fig.S17 in Supporting information) and 3 mmol/L sodium molybdate and 15 mmol/L thiourea(48 mL solution).Fig.3a shows that FTO,TNRs and Ag NPs/TNRs hardly exhibit the performance of electrocatalytic hydrogen evolution.Compared with H-MoS2/TNRs,MoS2/TNRs have higher electrocatalytic hydrogen evolution performance,which may be due to the high catalytic activity and high electrochemical active area of the 1T phase [15,18,39,42].After silver electrodeposited,its electrocatalytic hydrogen evolution performance will be further improved,which may be due to electrocatalytic performance and high electrical conductivity of Ag [43].The electrochemical doublelayer capacitance (Cdl) value of Ag NPs/MoS2/TNRs is determined to be 28.34 mF/cm2,which is 1.2,2.6 and 69.1 times higher than that of MoS2/TNRs (24.01 mF/cm2),H-MoS2/TNRs (11.04 mF/cm2) and MoS2/FTO (0.14 mF/cm2),respectively (Fig.3b and Fig.S18 in Supporting information).The maximumCdlvalue of Ag NPs/MoS2/TNRs indicates the highest electrochemically active region with exposed active sites,which greatly enhances the HER performance [39].The Nyquist curve (Fig.3c) and equivalent circuit fitting (Fig.S19 and Table S1 in Supporting information) results show that MoS2/FTO and H-MoS2/TNRs have greater charge transfer resistance (Rct=4.83×1011Ωand 6.28×104Ω) compared with MoS2/TNRs.These results demonstrate that the crystal phase tuning and Ag NPs deposition can greatly facilitate charge transfer,thereby enhancing the reaction efficiency and promoting efficient electrical integration to reduce parasitic ohmic losses [44,45].To get into the HER mechanism of these samples,we calculate the Tafel curves based on their linear sweep voltammetry (LSV) (Fig.3d).The Tafel slope of Ag NPs/MoS2/TNRs is only 38.61 mV/dec,which is smaller than that of MoS2/TNRs (40.36 mV/dec),HMoS2/TNRs (91.62 mV/dec) and MoS2/FTO (74.64 mV/dec),indicating that it is more consistent with the Heyrovsky-Tafel mechanism(Eq.S2 in Supporting information).Smaller Tafel slopes show faster HER reaction kinetics,resulting in efficient H2generation [42].The stability of Ag NPs/MoS2/TNRs,MoS2/TNRs and MoS2/FTO are analysed by performing chronoamperometry test (Fig.3e) at constant potentials (?10) of 120 mV,210 mV and 280 mVvs.RHE,respectively.The presence of TNRs (MoS2/TNRs) and Ag NPs deposited on MoS2surface significantly enhance the stability.As shown in Fig.3e and Fig.S20 (Supporting information),the polarization curves of Ag NPs/MoS2/TNRs after 10 h constant voltage test almost overlap,the overpotential at 10 mA/cm2changes from the initial 118 mVvs.RHE to 123 mVvs.RHE,and the overpotential at 50 mA/cm2changes from the initial 163 mVvs.RHE to 169 mVvs.RHE.The above results indicate that TNRs provide good loading sites for MoS2,which has great advantages over FTO and the enhanced stability of 1T-MoS2is related to its substrate and surface electrodeposited Ag NPs.As summerised in Fig.3f,the HER performance of the as-prepared Ag NPs/MoS2/TNRs is also better than previous reported Mo-based materials.

    Fig.3.(a) Polarization curves of electroplating silver in 0.5 mol/L H2SO4 solution with a scan rate of 5 mV/s.Capacitive currents with (b) various sweeping velocities,(c)Nyquist plot and (d) tafel plots of the electrodes.(e) Constant voltage response of MoS2/FTO,MoS2/TNRs and Ag NPs/MoS2/TNRs.(f) Comparison Tafel slope and ?10 with other HER electrocatalysts reported recently.Values were plotted from references (Table S2 in Supporting information).

    Hydrogen spillover,the migration of activated hydrogen atoms generated by the dissociation of di-hydrogen adsorbed on a metal surface onto a reducible metal oxide support,is a common phenomenon in heterogeneous catalysis [3].To gain theoretical insights into whether hydrogen spillover can take place from MoS2to Ag NPs,density functional theory (DFT) calculation was carried out to determine the hydrogen transfer energy barriers.As shown in Fig.4a,the adsorption of hydrogen is extremely weak on the surface of Ag (111),while the adsorption onto MoS2(002) is significantly enhanced,indicating that MoS2(002) is prone to hydrogen adsorption.As shown in Fig.4b and Fig.S21 (Supporting information),the Gibbs free energy (ΔGH?) of adsorbed hydrogen in MoS2surface with the Ag absence (site 1′) tends to be negative.The thermodynamic energy barrier of adsorbed hydrogen desorption to free hydrogen is 0.35 eV,indicating that hydrogen is diffi-cult to desorbed from site 2′ to site 4′.At high hydrogen coverage,theΔGH?is 0.54 eV,and the thermodynamic energy barrier with the adsorbed hydrogen on the MoS2surface near Ag is 0.2 eV,indicating that the hydrogen transfer process from MoS2(site 3′) to MoS2near Ag (site 1) is greatly promoted.Additionally,hydrogen adsorption is stronger on Ag NPs (site 4) which is combined to MoS2surface,which is more negative at site 4 than at site 1′′.Thus,adsorbed hydrogen can be spontaneously transferred to Ag from the MoS2adsorption site covered with high density hydrogen(from site 3′ to site 5).To unravel the facilitated hydrogen transfer process on Ag NPs/MoS2,the charge density difference was calculated to explore the charge distribution at the interface.As shown in Fig.4c,electron accumulation is observed below the surface layer of Ag.High density electrons are favorable to trap hydrogen atoms by interacting with unsaturated electrons in the H 1s orbital.As a result,hydrogen spillover from MoS2to Ag is thermodynamically and kinetically facilitated.To investigate charge transfer between Ag and MoS2,the work functions (?) of Ag and MoS2were calculated.The work function of MoS2is determined to be 4.25 eV,smaller than that of Ag (4.33 eV),revealing electron transfer from MoS2to Ag (Fig.4d and Fig.S22 in Supporting information).Combining with the above analyses,a reasonable explanation for hydrogen spillover from MoS2to Ag is given as follows: the difference in work function between Ag and MoS2leads to electron accumulation at the subsurface of Ag,which enhances the hydrogen adsorption on Ag surface and weakens the hydrogen adsorption on the MoS2surface,driving the desorption of hydrogen.As shown in Fig.S23 (Supporting information),it is difficult for adsorbed hydrogen on MoS2to evolve molecular hydrogen (Pathway 1).As a result,MoS2serves as an adsorbed hydrogen reservoir,which form hydrogen through Pathways 2–5.

    Fig.4.(a) Calculated free energy diagram for HER on MoS2 and Ag.(b) Free energies of HER on MoS2 and Ag were calculated for different hydrogen coverage and adsorption sites.(c) Electron density difference plot across the Ag-MoS2 interface.Electron accumulation and depletion are indicated in blue and purple,respectively.(d) Work function calculations for various Ag and MoS2.

    In conclusion,we proposed a layered 1T/2H phase Ag NPs/MoS2/TNRs as a high-performance and high-stability electrode for hydrogen evolution in acidic water electrolysis.The composite electrodes have excellent hydrogen evolution performance and low charge transfer resistance.The resulting composite electrodes exhibit good HER activity in 0.5 mol/L H2SO4solution with a low overpotential (118 mVvs.RHE) and a small Tafel slope(38.61 mV/dec).More importantly,after electrodeposition of Ag NPs,not only the performance of electrocatalytic hydrogen evolution is increased,but also its stability is significantly increased.These results suggest that Ag NPs,lamellar MoS2,and TNRs composites have a good synergy effect,which enables each component to play a unique role in efficient-performance of HER applications.DFT simulation and comprehensive characterisations suggest that the high HER catalytic activity of Ag NPs/MoS2/TNRs in acid possibly results from an unusual hydrogen spillover effect between multiple catalytic sites,whereby MoS2site captures proton,then proton diffuses from MoS2site to Ag site,and eventually forming H2and releases from MoS2-Ag boundary and Ag site.Our proof-of-concept study of unique molybdenum disulfide supported noble metal structure is expected to be a general strategy to improve the catalytic activity and stability of TMDCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.52270078) and the Royal Society IECNSFC211201-International Exchanges 2021 Cost Share (NSFC).The authors thank Zijun Ren at the Instrument Analysis Center of Xi’an Jiaotong University for their assistance with SEM analysis.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108265.

    一级av片app| 三级国产精品片| 国产 精品1| 麻豆成人午夜福利视频| 性色av一级| 免费黄频网站在线观看国产| 日韩在线高清观看一区二区三区| 亚洲色图av天堂| 欧美三级亚洲精品| 亚洲真实伦在线观看| 人妻一区二区av| 国产大屁股一区二区在线视频| 少妇猛男粗大的猛烈进出视频 | 国产色爽女视频免费观看| 成人午夜精彩视频在线观看| 久久久久久久久久久免费av| 婷婷色麻豆天堂久久| 菩萨蛮人人尽说江南好唐韦庄| 国产成人精品婷婷| 亚洲高清免费不卡视频| 国产乱来视频区| 国产乱来视频区| 久久久久久久亚洲中文字幕| 搞女人的毛片| 成年版毛片免费区| 国产成人精品久久久久久| 国产黄色免费在线视频| 久久精品久久久久久噜噜老黄| 高清在线视频一区二区三区| 日韩一区二区三区影片| 亚洲,欧美,日韩| freevideosex欧美| 精品一区在线观看国产| 国产乱来视频区| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 噜噜噜噜噜久久久久久91| 国产人妻一区二区三区在| 午夜精品一区二区三区免费看| 久久鲁丝午夜福利片| 黄片无遮挡物在线观看| 青青草视频在线视频观看| 人妻系列 视频| 看黄色毛片网站| 三级国产精品欧美在线观看| 亚洲精品国产色婷婷电影| 国产成人aa在线观看| 成人一区二区视频在线观看| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 极品教师在线视频| 国产精品一区二区在线观看99| 99热国产这里只有精品6| 日本爱情动作片www.在线观看| 美女视频免费永久观看网站| 人人妻人人澡人人爽人人夜夜| 国内揄拍国产精品人妻在线| 日韩欧美精品免费久久| 国产淫语在线视频| 永久免费av网站大全| 国产成人精品婷婷| 久久人人爽人人片av| 人妻 亚洲 视频| 午夜福利高清视频| 丰满乱子伦码专区| 亚洲精品456在线播放app| 国产探花极品一区二区| 亚洲精品成人久久久久久| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 成人一区二区视频在线观看| 全区人妻精品视频| 亚洲欧美精品自产自拍| 少妇人妻一区二区三区视频| 大码成人一级视频| 毛片一级片免费看久久久久| 人妻少妇偷人精品九色| 男人狂女人下面高潮的视频| 亚洲人成网站高清观看| av在线亚洲专区| 永久网站在线| 蜜臀久久99精品久久宅男| 少妇人妻一区二区三区视频| 少妇的逼好多水| 国产av国产精品国产| 婷婷色综合www| 免费看av在线观看网站| 亚洲av中文字字幕乱码综合| 亚洲av二区三区四区| 亚洲精品乱码久久久久久按摩| 日韩精品有码人妻一区| 日韩av免费高清视频| 国产av国产精品国产| 简卡轻食公司| 成人亚洲精品av一区二区| 亚洲丝袜综合中文字幕| 九草在线视频观看| 日韩av不卡免费在线播放| 日韩制服骚丝袜av| 成人特级av手机在线观看| 嫩草影院入口| 久久久久性生活片| 男女那种视频在线观看| 伊人久久精品亚洲午夜| 日韩人妻高清精品专区| 国产高清国产精品国产三级 | 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 欧美日韩视频高清一区二区三区二| 亚洲精品456在线播放app| 女人久久www免费人成看片| 国产伦精品一区二区三区视频9| 久久午夜福利片| 国产 一区 欧美 日韩| 亚洲欧美精品自产自拍| 国产精品精品国产色婷婷| 成人二区视频| 你懂的网址亚洲精品在线观看| 欧美精品国产亚洲| 国产成人aa在线观看| 色5月婷婷丁香| 日本午夜av视频| 国产成人a∨麻豆精品| 丝袜喷水一区| 免费看a级黄色片| 久久精品久久精品一区二区三区| 国产色爽女视频免费观看| av网站免费在线观看视频| 97在线视频观看| 国产黄色视频一区二区在线观看| 91精品国产九色| 精品一区在线观看国产| 国产综合精华液| 欧美成人一区二区免费高清观看| 麻豆乱淫一区二区| 日本一本二区三区精品| 亚洲在久久综合| 国产成人精品久久久久久| 欧美bdsm另类| 欧美日韩视频高清一区二区三区二| 水蜜桃什么品种好| 精品一区二区三卡| 老司机影院毛片| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 欧美日韩在线观看h| 国产精品三级大全| 一级片'在线观看视频| 黄色怎么调成土黄色| 少妇熟女欧美另类| 国产精品国产av在线观看| 纵有疾风起免费观看全集完整版| 26uuu在线亚洲综合色| 国产高清国产精品国产三级 | 日韩免费高清中文字幕av| 国产在线一区二区三区精| 网址你懂的国产日韩在线| 草草在线视频免费看| 国产高清有码在线观看视频| 欧美极品一区二区三区四区| 国产毛片在线视频| 亚洲熟女精品中文字幕| 亚洲国产精品成人综合色| 欧美 日韩 精品 国产| 联通29元200g的流量卡| 制服丝袜香蕉在线| 亚洲欧美成人综合另类久久久| 青青草视频在线视频观看| 色视频www国产| 美女被艹到高潮喷水动态| 日本免费在线观看一区| 免费av毛片视频| 亚洲精品久久午夜乱码| 国产69精品久久久久777片| 免费少妇av软件| 国产高潮美女av| 久久人人爽人人爽人人片va| 91在线精品国自产拍蜜月| 99久国产av精品国产电影| 中文字幕人妻熟人妻熟丝袜美| 美女脱内裤让男人舔精品视频| 美女国产视频在线观看| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 天堂中文最新版在线下载 | 一区二区三区乱码不卡18| av在线app专区| 网址你懂的国产日韩在线| 亚洲国产精品专区欧美| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| www.av在线官网国产| 欧美bdsm另类| 嫩草影院入口| 真实男女啪啪啪动态图| 国产成人精品久久久久久| 高清av免费在线| 亚洲国产精品成人久久小说| 中文字幕久久专区| 午夜福利网站1000一区二区三区| 一级片'在线观看视频| 简卡轻食公司| 日韩一区二区视频免费看| 亚洲精品自拍成人| 欧美性猛交╳xxx乱大交人| 欧美丝袜亚洲另类| 国产精品国产av在线观看| 亚洲真实伦在线观看| 亚洲av一区综合| 国产v大片淫在线免费观看| 一个人看视频在线观看www免费| 黄片无遮挡物在线观看| 青春草亚洲视频在线观看| 国产亚洲一区二区精品| 国产伦理片在线播放av一区| eeuss影院久久| 91精品伊人久久大香线蕉| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 大码成人一级视频| 麻豆成人午夜福利视频| 午夜视频国产福利| av在线观看视频网站免费| 超碰av人人做人人爽久久| 日本黄色片子视频| 国产探花极品一区二区| 成人黄色视频免费在线看| 美女内射精品一级片tv| 最近最新中文字幕大全电影3| 在线天堂最新版资源| 大片电影免费在线观看免费| 国产亚洲精品久久久com| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 综合色丁香网| 一级av片app| 久久精品国产亚洲av天美| 麻豆久久精品国产亚洲av| 免费大片18禁| 特大巨黑吊av在线直播| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 最近2019中文字幕mv第一页| 日日啪夜夜爽| 国产免费一级a男人的天堂| 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 天堂网av新在线| 大话2 男鬼变身卡| 男女国产视频网站| 亚洲精品日本国产第一区| 日韩在线高清观看一区二区三区| 99热国产这里只有精品6| 久久久久九九精品影院| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 国产精品一二三区在线看| www.av在线官网国产| 亚洲怡红院男人天堂| 欧美xxxx黑人xx丫x性爽| 欧美成人午夜免费资源| 亚洲经典国产精华液单| 久久国产乱子免费精品| 性色avwww在线观看| 一级毛片aaaaaa免费看小| 国产极品天堂在线| 我要看日韩黄色一级片| 美女视频免费永久观看网站| 大陆偷拍与自拍| 美女主播在线视频| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 日本wwww免费看| 亚洲av免费高清在线观看| 亚洲性久久影院| 精品久久久久久久久亚洲| 大片免费播放器 马上看| 国产精品麻豆人妻色哟哟久久| 日本-黄色视频高清免费观看| 中文天堂在线官网| 美女xxoo啪啪120秒动态图| a级毛色黄片| 久久鲁丝午夜福利片| 在线观看一区二区三区| 亚洲婷婷狠狠爱综合网| 最近最新中文字幕大全电影3| 我的老师免费观看完整版| 国产精品国产三级国产av玫瑰| 五月天丁香电影| 小蜜桃在线观看免费完整版高清| 自拍偷自拍亚洲精品老妇| 久久人人爽av亚洲精品天堂 | 美女视频免费永久观看网站| 夫妻性生交免费视频一级片| 大码成人一级视频| 少妇熟女欧美另类| 久久女婷五月综合色啪小说 | 97热精品久久久久久| 老师上课跳d突然被开到最大视频| 九九在线视频观看精品| 丰满人妻一区二区三区视频av| 国产中年淑女户外野战色| 岛国毛片在线播放| xxx大片免费视频| 99热6这里只有精品| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 极品少妇高潮喷水抽搐| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 狠狠精品人妻久久久久久综合| 国产成人精品福利久久| 亚洲熟女精品中文字幕| 性插视频无遮挡在线免费观看| 久久这里有精品视频免费| 国产一区二区三区av在线| 丝袜美腿在线中文| 中文在线观看免费www的网站| 亚洲av日韩在线播放| 大码成人一级视频| 春色校园在线视频观看| 赤兔流量卡办理| 男女下面进入的视频免费午夜| 毛片女人毛片| 国产精品国产av在线观看| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 国模一区二区三区四区视频| 成年女人在线观看亚洲视频 | 国产黄色视频一区二区在线观看| 搞女人的毛片| 亚洲精品乱久久久久久| 少妇人妻精品综合一区二区| 国产欧美亚洲国产| 色吧在线观看| 午夜激情福利司机影院| 色综合色国产| 日韩三级伦理在线观看| 久久久久性生活片| 成人免费观看视频高清| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 热99国产精品久久久久久7| av天堂中文字幕网| 18禁裸乳无遮挡免费网站照片| 欧美最新免费一区二区三区| 91久久精品国产一区二区成人| 免费看光身美女| 亚洲精品久久午夜乱码| 五月开心婷婷网| 免费观看性生交大片5| 十八禁网站网址无遮挡 | 男女边吃奶边做爰视频| 久热这里只有精品99| 亚洲欧洲日产国产| 91精品一卡2卡3卡4卡| 欧美另类一区| 欧美日本视频| 亚洲最大成人av| 免费看不卡的av| 综合色av麻豆| 国产精品99久久久久久久久| 国精品久久久久久国模美| 日本熟妇午夜| 大片免费播放器 马上看| 亚洲av二区三区四区| 大片免费播放器 马上看| 免费av不卡在线播放| 美女内射精品一级片tv| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧洲日产国产| 在线播放无遮挡| 99九九线精品视频在线观看视频| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 国产精品一区二区在线观看99| 久久韩国三级中文字幕| 国产av码专区亚洲av| 午夜福利视频1000在线观看| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| av播播在线观看一区| 色视频www国产| 久久国产乱子免费精品| 日本三级黄在线观看| 国产精品秋霞免费鲁丝片| 久久精品国产a三级三级三级| 99热网站在线观看| 青春草视频在线免费观看| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 综合色av麻豆| 欧美+日韩+精品| 国产高清有码在线观看视频| 国产男女超爽视频在线观看| 色婷婷久久久亚洲欧美| 婷婷色麻豆天堂久久| 性色av一级| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 97在线视频观看| 熟女av电影| 日韩成人av中文字幕在线观看| 国产成人freesex在线| 在线观看免费高清a一片| 人人妻人人澡人人爽人人夜夜| 能在线免费看毛片的网站| 天堂中文最新版在线下载 | 精品国产一区二区三区久久久樱花 | 舔av片在线| 亚洲在久久综合| 卡戴珊不雅视频在线播放| 国产老妇女一区| 日韩亚洲欧美综合| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 菩萨蛮人人尽说江南好唐韦庄| 中文在线观看免费www的网站| 啦啦啦在线观看免费高清www| 可以在线观看毛片的网站| 国产精品爽爽va在线观看网站| 久久久久久久久久成人| 天天躁日日操中文字幕| 日本-黄色视频高清免费观看| 国产人妻一区二区三区在| 蜜臀久久99精品久久宅男| 国产v大片淫在线免费观看| 一区二区av电影网| 国产日韩欧美在线精品| 在线观看国产h片| 久久精品国产亚洲av涩爱| 亚洲aⅴ乱码一区二区在线播放| 精品国产一区二区三区久久久樱花 | 久久综合国产亚洲精品| 国产成人freesex在线| 亚洲国产精品成人综合色| 人体艺术视频欧美日本| 下体分泌物呈黄色| 日本与韩国留学比较| 极品教师在线视频| 国产精品国产三级国产av玫瑰| 国产日韩欧美在线精品| 青春草亚洲视频在线观看| www.av在线官网国产| 日韩欧美精品免费久久| 搞女人的毛片| 欧美一区二区亚洲| 久久久久国产网址| 婷婷色综合www| 日韩人妻高清精品专区| 如何舔出高潮| 免费电影在线观看免费观看| 国产午夜精品一二区理论片| 久久6这里有精品| 全区人妻精品视频| 韩国av在线不卡| 26uuu在线亚洲综合色| 最近最新中文字幕大全电影3| 精品久久国产蜜桃| 亚洲国产日韩一区二区| 久久国内精品自在自线图片| 亚洲精品视频女| 嘟嘟电影网在线观看| 日韩制服骚丝袜av| 日韩欧美一区视频在线观看 | 国产黄a三级三级三级人| 国产成人一区二区在线| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 建设人人有责人人尽责人人享有的 | 在线观看av片永久免费下载| 欧美 日韩 精品 国产| 免费电影在线观看免费观看| 国产成人午夜福利电影在线观看| 国产成人a∨麻豆精品| av在线蜜桃| 国产亚洲一区二区精品| 美女国产视频在线观看| 18+在线观看网站| 亚洲国产精品成人综合色| 国产白丝娇喘喷水9色精品| 国产免费视频播放在线视频| 成人免费观看视频高清| 下体分泌物呈黄色| 黄片wwwwww| 天堂网av新在线| 久久综合国产亚洲精品| 美女脱内裤让男人舔精品视频| 日韩 亚洲 欧美在线| 日韩中字成人| 午夜精品一区二区三区免费看| 男女边吃奶边做爰视频| 色综合色国产| 国产人妻一区二区三区在| 97人妻精品一区二区三区麻豆| 国产大屁股一区二区在线视频| 亚洲精品国产成人久久av| 成人免费观看视频高清| 亚洲成人久久爱视频| 日韩伦理黄色片| 男女无遮挡免费网站观看| 日本av手机在线免费观看| 你懂的网址亚洲精品在线观看| 一级黄片播放器| 久久99热这里只有精品18| 成年女人在线观看亚洲视频 | 国产午夜福利久久久久久| 国产精品一二三区在线看| 亚洲综合色惰| 欧美日本视频| 一本久久精品| av播播在线观看一区| 国产 一区 欧美 日韩| 久久影院123| 国产老妇女一区| 少妇熟女欧美另类| 日日撸夜夜添| av在线亚洲专区| 久久久久九九精品影院| 国产黄频视频在线观看| 久久久a久久爽久久v久久| 深爱激情五月婷婷| 天堂中文最新版在线下载 | 中文字幕av成人在线电影| 成年av动漫网址| 麻豆国产97在线/欧美| 五月开心婷婷网| 国产成人aa在线观看| 搡女人真爽免费视频火全软件| 国产伦精品一区二区三区四那| 少妇猛男粗大的猛烈进出视频 | 特大巨黑吊av在线直播| 九色成人免费人妻av| 大香蕉久久网| 熟女人妻精品中文字幕| 亚洲国产av新网站| 亚洲人成网站在线观看播放| 中文乱码字字幕精品一区二区三区| 2021天堂中文幕一二区在线观| 丝袜喷水一区| 嫩草影院新地址| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 久久久久久久午夜电影| 国产高清不卡午夜福利| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 精品少妇黑人巨大在线播放| av女优亚洲男人天堂| 欧美日韩精品成人综合77777| 黄色欧美视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久九九精品二区国产| 久久99热6这里只有精品| 最新中文字幕久久久久| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久 | 最近中文字幕高清免费大全6| 最近中文字幕2019免费版| 国产精品一区www在线观看| 欧美日韩在线观看h| 中文在线观看免费www的网站| 欧美国产精品一级二级三级 | 人妻系列 视频| 精品国产乱码久久久久久小说| tube8黄色片| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区| 国产成人a∨麻豆精品| 日本黄大片高清| 韩国高清视频一区二区三区| 国产伦精品一区二区三区视频9| 成年女人在线观看亚洲视频 | 精品少妇黑人巨大在线播放| 能在线免费看毛片的网站| 日本黄大片高清| 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 国产欧美另类精品又又久久亚洲欧美| 国产淫语在线视频| 欧美性感艳星| 黄色日韩在线| 国产片特级美女逼逼视频| 蜜臀久久99精品久久宅男| 精品99又大又爽又粗少妇毛片| 各种免费的搞黄视频| 另类亚洲欧美激情| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 国产乱来视频区| 欧美日韩精品成人综合77777| 免费大片18禁| 中文字幕久久专区| 啦啦啦在线观看免费高清www| 国产伦在线观看视频一区| 一级毛片我不卡| 日产精品乱码卡一卡2卡三| 国产欧美日韩一区二区三区在线 | 777米奇影视久久|