• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing electrochemical conversion of lithium polysulfide by 1T-rich MoSe2 nanosheets for high performance lithium–sulfur batteries

    2023-11-21 03:05:02RuilongLiZheBaiWensuoHouZeyuWuPingliFengYuBaiKeningSunZhenhuaWang
    Chinese Chemical Letters 2023年11期

    Ruilong Li,Zhe Bai,Wensuo Hou,Zeyu Wu,Pingli Feng,Yu Bai,Kening Sun,Zhenhua Wang

    Beijing Key Laboratory of Chemical Power Source and Green Catalysis,School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China

    Keywords:MoSe2 Functionalized separator Lithium–sulfur battery Phase Catalytic conversion

    ABSTRACT The sluggish conversion kinetics and shuttle effect of lithium polysulfides (LiPSs) severely hamper the commercialization of lithium–sulfur batteries.Numerous electrocatalysts have been used to address these issues,amongst which,transition metal dichalcogenides have shown excellent catalytic performance in the study of lithium–sulfur batteries.Note that dichalcogenides in different phases have different catalytic properties,and such catalytic materials in different phases have a prominent impact on the performance of lithium–sulfur batteries.Herein,1T-phase rich MoSe2 (T-MoSe2) nanosheets are synthesized and used to catalyze the conversion of LiPSs.Compared with the 2H-phase rich MoSe2 (H-MoSe2) nanosheets,the T-MoSe2 nanosheets significantly accelerate the liquid phase transformation of LiPSs and the nucleation process of Li2S.In-situ Raman and X-ray photoelectron spectroscopy (XPS) find that T-MoSe2 effectively captures LiPSs through the formation of Mo-S and Li-Se bonds,and simultaneously achieves fast catalytic conversion of LiPSs.The lithium–sulfur batteries with T-MoSe2 functionalized separators display a fantastic rate performance of 770.1 mAh/g at 3 C and wonderful cycling stability,with a capacity decay rate as low as 0.065% during 400 cycles at 1 C.This work offers a novel perspective for the rational design of selenide electrocatalysts in lithium–sulfur chemistry.

    Within the background of the rapid development of electric vehicles and portable electronic devices,it is imperative to develop low-cost and high-energy-density secondary batteries [1,2].With the merits of environmental friendliness,low cost,high specific capacity (1675 mAh/g) and high energy density (2600 Wh/kg),lithium–sulfur batteries are considered to be one of the most promising next-generation secondary batteries [3,4].And yet,the commercialization of lithium–sulfur batteries is limited by numerous problems,including the shuttle effect of soluble lithium polysulfides (LiPSs),slow sulfur redox kinetics,and the low reversibility of lithium anodes.In particular,the shuttle effect and sluggish sulfur redox kinetics result in low active material utilization,rapid battery capacity decay,and terrible cycling stability [5–7].

    Over the last decades,numerous researches have been carried out to address the above issues.Based on the mechanism of physical and chemical adsorption,various non-polar carbon materials [8,9],polar carbon materials [10–13],metal oxides [14,15]and sulfides [16,17]etc.are reported to suppress the shuttle effect.However,limited by the finite active adsorption sites and the slow reaction kinetics of sulfur,such strategies cannot effectively solve the problems of lithium–sulfur batteries [18].In this situation,a great deal of studies on electrocatalysts have been reported based on the mechanism of catalytic conversion in the domain of lithium–sulfur batteries.As the role of lithium–sulfur electrocatalysts,oxides [19–22],nitrides [23–25],phosphides [26,27],transition metal dichalcogenide [28–30],and single-atom catalysts[31,32] have been extensively studied.The electrocatalysts cannot only effectively adsorb LiPSs but also facilitates the redox of the active substance sulfur and suppress the shuttle effect [33].Transition metal dichalcogenides have modest adsorption capacity and excellent catalytic ability,so they have attracted the attention of researchers [34,35].Amongst them,transition metal selenides have better electronic conductivity in comparison to sulfides,since selenium has a weaker electronegativity than sulfur.At the same time,transition metal selenides also have the merits of moderate affinity for LiPSs and excellent catalytic performance [36].Besides,it has been reported that the phase structure will significantly affect the activity of transition metal selenides in the HER and OER domains[37–40].Common phase structures of transition metal dichalcogenides include 1T phase and 2H phase.The 1T phase have a much better catalytic ability than the 2H phase due to its abundant active sites and excellent electronic conductivity [41,42].However,in the domain of lithium–sulfur batteries,rare research has been reported on the effect of selenide phase structures on the catalytic performance.

    In this paper,we synthesized 1T-rich MoSe2nanosheets and 2H-rich MoSe2nanosheets and used them to functionalize separators.The effect of the phase structure of MoSe2were explored on the adsorption of LiPSs and the catalytic conversion performance.Electrochemical tests and battery performance prove that T-MoSe2nanosheets not only present stronger chemical affinity to LiPSs but also display better redox kinetics for LiPSs with the comparison of H-MoSe2nanosheets.In addition,in-situRaman spectroscopy as well as XPS found that T-MoSe2effectively captures LiPSs through the formation of Mo-S and Li–Se bonds,and simultaneously achieves fast catalytic conversion of LiPSs.Attributed to the superiorities of T-MoSe2,the lithium–sulfur batteries with TMoSe2functionalized separator delivers wonderful cycling stability,with a capacity decay rate as low as 0.065% over 400 cycles at 1 C.This work offers a new perspective for the application of 1T phase transition metal dichalcogenides in high performance lithium–sulfur batteries.

    Using the selenium powder as selenium source and the sodium molybdate as molybdenum source,MoSe2nanosheets were synthesizedviaa simple one-step hydrothermal approach under the action of a strong reducing agent,hydrazine hydrate (Fig.1a).MoSe2nanosheets with different 1T phase contents,MoSe2nanosheets rich 1T phase (T-MoSe2) and nanosheets rich 2H phase(H-MoSe2),were obtained by adjusting the synthesis temperature.The morphology and structural information of the MoSe2nanosheets were investigated by SEM and TEM.It is apparent that T-MoSe2exhibits a hierarchical architecture with the size of 100–200 nm comprising numerous nanosheet with the thickness of approximately 10 nm (Figs.S1 and S2 in Supporting information).Moreover,EDS indicates uniform distribution of Se and Mo elements,and the atomic ratio is roughly 2:1 (Figs.1b-d and Fig.S3 in Supporting information).To further characterize the crystal structure,selective area electron diffraction (SAED) was performed.The diffraction rings with the radii of 0.17,0.27 and 0.77 nm correspond to (110),(100),(002) crystal planes of the T-MoSe2,respectively (Fig.S4 in Supporting information).The slightly larger (002)and (110) crystal plane spacing of T-MoSe2compared to the standard 2H MoSe2crystal plane spacing are probably closely linked to the existence of 1T-phase MoSe2[37,42].To further demonstrate the existence of the 1T phase state,high-resolution transmission electron microscopy was performed.Note that the two observed different atomic arrangements correspond to two different phases of 1T and 2H for T-MoSe2respectively (Fig.1e).The Mo atoms of 1T phase exhibit an octahedral or trigonal antiprismatic symmetry coordination,while the 2H phase display trigonal prismatic coordination [43,44].The above phenomena all indicate that two phases of 1T and 2H co-existence in T-MoSe2.It is noteworthy that HMoSe2has a similar morphology and crystal structure to T-MoSe2,which allows us to directly compare the differences in catalytic performance due to phase differences (Figs.S5-S7 in Supporting information).

    Fig.1.(a) Schematic diagram of the preparation processes for T-MoSe2 and HMoSe2.(b-d) HAADF-STEM image of T-MoSe2 and EDS analysis.(e) HRTEM images of T-MoSe2.

    The XRD was performed to examine the crystal structure of the synthesized MoSe2nanosheets.As clearly displayed in Fig.2a,the H-MoSe2diffraction peaks located at 12.5°,31.9°,37.4° and 56.5°can be attributed to the (002),(100),(103) and (110) crystal planes of the standard 2H phase MoSe2(PDF#29-0914),respectively.Due to taking hydrothermal method,the samples exhibit poor crystallinity.Furthermore,the presence of (103) diffraction peaks suggests that H-MoSe2is enriched with 2H-phase MoSe2.The diffraction peak corresponding to the (002) crystal plane of T-MoSe2shifts left and the diffraction peak corresponding to the (100) crystal plane of T-MoSe2shifts right compared with H-MoSe2,which is in congruent with the previous reports of the existence of 1T phase MoSe2[45,46].According to Bragg’s equation,the (002) layer spacing of T-MoSe2is 0.77 nm,which fits well the 0.77 nm layer spacing obtained by SAED results (Fig.S4 in Supporting information),and is more than the layer spacing of the standard 2H phase MoSe2.Raman spectroscopy is a nondestructive tool,which could be used to analyze the phase state of T-MoSe2and H-MoSe2(Fig.2b).The H-MoSe2exhibits characteristic Raman peak of the 2H phase at 240 cm-1,corresponding to the A1gmode of the 2H phase.At the same time,both T-MoSe2and H-MoSe2have two characteristic Raman peaks of the 1T phase at 198 and 288 cm-1,which correspond to the J1andvibration modes [42,47].This phenomenon indicates that T-MoSe2contains abundant 1T phase MoSe2.

    Fig.2.(a) XRD patterns of T-MoSe2.(b) Raman spectra of the obtained T-MoSe2 and H-MoSe2.(c) XPS spectra of Se 3d regions of T-MoSe2.XPS spectra of Mo 3d regions of(d) T-MoSe2 and (e) H-MoSe2.(f) Ratios of 1T and 2H phases of T-MoSe2 and H-MoSe2.

    Then,the surface chemical bonding of H-MoSe2and T-MoSe2nanosheets was examined by XPS.The peaks at 53.5 and 54.9 eV are from Se 3d5/2and Se 3d3/2of the 1T phase,while the peaks at 54.1 and 55.3 eV are from Se 3d5/2and Se 3d3/2of the 2H phase[43,44].The co-existence of 1T and 2H phases is further demonstrated in Fig.2c and Fig.S8 (Supporting information) [35].As illustrated in Figs.2d and e,the peaks at 228.5 and 231.6 eV are ascribed to Mo 3d5/2and Mo 3d3/2of 1T-MoSe2,and the weaker peaks at 228.9 and 232 eV are relevant to Mo 3d5/2and Mo 3d3/2of 2H-MoSe2,separately.According to XPS analysis results,the content of different phases can be obtained by the area of different types of peaks [41,42].The results display that only 22.18% of 1T phase MoSe2in H-MoSe2,and 50.59% 1T phase MoSe2in T-MoSe2,which was consistent with XRD and Raman results (Fig.2f).

    The efficient trapping of LiPSs by adsorption is of great significance for effectively suppressing the shuttle effect and facilitating the catalytic conversion of LiPSs.Visual LiPSs absorption ability test was conducted.It can be seen that the Li2S6electrolyte with T-MoSe2had the lightest color,followed by H-MoSe2(Fig.3a).The UV–visible spectroscopy revealed that T-MoSe2showed the weakest absorption peak.This is due to the stronger chemisorption between T-MoSe2and LiPSs.During the discharge process,the sulfur cathode is composed of two reaction processes: liquid phase reaction and liquid–solid reaction,which contribute 1/4 and 3/4 of the specific discharge capacity,respectively [33].To assess the catalytic effect of T-MoSe2and H-MoSe2on the liquid phase reaction process,the two materials and CNT mixture were scraped on aluminum foil as sulfur-free cathodes,and Li2S6symmetrical cells were assembled to test the CV curves respectively.To remove the influence of CNTs on the symmetrical CV test results,the symmetrical CV curves of pure CNT electrodes were also tested.As shown in Fig.3b,the response value of the redox current is T-MoSe2>HMoSe2>CNT,which suggests that T-MoSe2has the stronger catalytic ability on the liquid phase reaction.The impedance of the symmetric cell was tested to study the interfacial charge transfer behavior.As shown in Fig.S9 (Supporting information),the T-MoSe2symmetric cell has a smaller charge transfer impedance compared with the H-MoSe2symmetric cell.The reason is that TMoSe2had a higher content of 1T phase MoSe2with high electronic conductivity,which can contribute more electrocatalytic active sites and promote the liquid phase catalytic conversion of LiPSs [48].The liquid-solid reaction has slower kinetics than the liquid phase reaction process,and is the step that determines the reaction rate of the sulfur cathode.To evaluate the catalytic effect of CNT,T-MoSe2and H-MoSe2on the liquid-solid reaction process,potentiostatic discharge was conducted to examine the nucleation behaviors of Li2S on various hosts (Figs.3c-e).The three materials all reached the peak value of the current approximately 1000 s,but the capacity of Li2S precipitation was very different.The Li2S on nucleation capabilities were 188.30,208.53 and 256.46 mAh/g of CNT,H-MoSe2and T-MoSe2,respectively.The above experimental results demonstrate that T-MoSe2nanosheets significantly accelerate the liquid phase transformation of LiPSs and the Li2S nucleation process compared with the H-MoSe2nanosheets.The successive reduction processes from S8to Li2S2/Li2S on T-MoSe2and H-MoSe2is schematically illustrated in Fig.3f.

    Fig.3.(a) Comparative photo and UV–visible spectroscopy after 12 h of static adsorption of Li2S6.(b) CV curves of Li2S6 symmetric cells employing T-MoSe2,H-MoSe2 and CNT,respectively.(c-e) Potentiostatic discharge current-time curves and the corresponding capacity of Li2S precipitation.(f) Schematic illustration of the reaction processes from S8 to Li2S2/Li2S on T-MoSe2 and H-MoSe2.

    Recently,the construction of functional separators is also considered as an effective way to suppress the shuttle effect and improve the kinetics of lithium–sulfur chemistry,which is more economical and convenient than the precise design and construction of sulfur cathode to obtain the results in line with the commercial demand [33,49,50].Therefore,we used a simple blade coating process to prepare functional membranes by loading T-MoSe2,HMoSe2and CNT on PP separators respectively.As shown in Fig.S10(Supporting information),the three materials are uniformly covered on the PP separator,and at the same time,the functionalized separators loaded with different materials all show good flexibility and stability,and the slurry will not crack and fall off in the situation of bending.SEM was applied to characterize the surface morphologies of the three functionalized separators.The microscopic morphologies of the three functionalized separators are basically the same,and the surfaces are relatively flat.The exposed PP separator was not visible even when zoomed in to the micrometer scale.The cross-sections of the three functionalized separators were observed by SEM,and the coating thicknesses of the three functionalized separators were about 4–5 μm.The electrocatalytic material loading of the functionalized separators were also controlled to be approximately 0.2 mg/cm2.The three functionalized separators had good structural consistency,which eliminated the influence of structural differences on electrochemical performance (Figs.S11-S13 in Supporting information).DFT theoretical calculation results show that 1T phase MoSe2and LiPSs neutral molecules have higher binding energy (Fig.S14 in Supporting information) and recent studies show that LiPSs are mainly present as Li2Snmolecules in ether-based electrolytes [51,52],and that the polysulfide anions are rarely present.It can be predicted that TMoSe2functionalized separator can effectively block LiPSs.The Hcell-type tests showed that no obvious Li2S6penetration was observed in the T-MoSe2functionalized separator after 3 h,compared with the other two functionalized separators (Fig.S15 in Supporting information).We examined the ionic conductivity (σ) and Li ion transference number (tLi+) of different functionalized separators.(Figs.4a-c and Fig.S16 in Supporting information).Theσof CNT,H-MoSe2and T-MoSe2functionalized separators is calculated to be 0.22,0.28 and 0.32 mS/cm at 25 °C,respectively.ThetLi+of T-MoSe2,H-MoSe2and CNT functionalized separators is 0.363,0.323 and 0.251,respectively.These results indicate that the Li–S batteries with T-MoSe2functionalized separators will have better rate performance [53].

    To demonstrate the practical effect of different phases on MoSe2electrocatalysts,the lithium–sulfur full batteries with HMoSe2,T-MoSe2,and CNT functionalized separators,respectively,were assessed in CR2025-type coin cells.The CV curves recorded in the voltage range of 1.7–2.8 V at a scan rate of 0.1 mV/s.There are two typical cathodic peaks at 2.3–2.4 and 1.9–2.1 V,which correspond to the successive reduction reaction from S8to long-chain LiPSs (Li2Sx(4 ≤x ≤6)) and then to Li2S2/Li2S,respectively.Meantime,the anodic peak at approximately 2.4 V is allocated to Li2S oxidation (Fig.4d).It is worth noting that the cells based on the T-MoSe2functionalized separator exhibits the largest response current and the lowest polarization voltage compared to T-MoSe2and CNT functionalized separators.This phenomenon indicates that the increase of 1T phase content in MoSe2can significantly facilitate the redox reaction of sulfur.The electrocatalytic performance of the material can be measured by the Tafel slope [54–56].Analyzing of the first stage of the reduction reaction,the Tafel slopes for CNT,H-MoSe2and T-MoSe2batteries are 59.6,57.2 and 56.3 mV/dec(Fig.4f).The Tafel slopes of CNT,H-MoSe2,T-MoSe2batteries for the oxidation process are 81.3,77.1,64.3 mV/dec (Fig.4e).The TMoSe2battery displays the minimum Tafel slope in the reduction and oxidation reactions,so the T-MoSe2functionalized separator battery has the most outstanding electrocatalytic performance.In addition,the Randles-Sevcik equation is shown below.The lithiumion diffusion coefficient (DLi+) can be acquiredviameasuring the CV curves at different sweep rates [57,58].

    Fig.4.(a) Nyquist plots of stainless steel sheet symmetric cells with CNT,H-MoSe2 and T-MoSe2 functionalized separators.Current-time curves for the cells with (b) T-MoSe2 and (c) H-MoSe2 functionalized separators.(d) CV curves of T-MoSe2,H-MoSe2 and CNT functionalized separators at 0.1 mV/s.Tafel plots of (e) the peak A and (f) peak C1.The linear relationship between peak current and square root scan rate for (g) peak A and (h) peak C2 in three functionalized separators,respectively.(i) Nyquist plots of batteries with different functionalized separators.

    whereArepresents area of electrode,nrepresents charge transfer number,νrepresents scan rate,CLi+represents concentration of Li+andIprepresents peak current.The fitted curves of the T-MoSe2functionalized separator are steeper for all redox peaks,which correspond to the largestDLi+during electrochemical reactions (Figs.4g and h,Fig.S17 in Supporting information).This result suggests that T-MoSe2with a higher 1T phase content has a higher diffusion coefficient of lithium ions.Electrochemical impedance spectroscopy (EIS) testing was performed on lithium–sulfur batteries based on CNT,H-MoSe2and T-MoSe2functionalized separator,when the batteries were 100% state of charge.The plots were analyzed with the help of the equivalent circuit modeling (Fig.4i).In this sense,Zwrepresents the Warburg element andRsrepresents the resistance of the electrolyte.The sloping line in the low-frequency region corresponds to ion diffusivity and the semicircle in the high-frequency region reflects charge-transfer impedance [59].Note that the lithium–sulfur batteries with TMoSe2functionalized separator harvests the lowest charge-transfer resistance value (Table S2 in Supporting information).The conclusion indicates that the rise in 1T phase content is benefit to electron transfer.

    The rate capabilities of the batteries based on CNT,H-MoSe2and T-MoSe2functionalized separators are shown in Fig.5a.The battery with T-MoSe2functionalized separator demonstrates outstanding rate performance with the capacities of 1231.2,966.3,876.7,813.7 and 770.1 mAh/g at 0.2,0.5,1.0,2.0 and 3.0 C,respectively.Note that the CNT and T-MoSe2functionalized separator exhibit lower capacity at the same rate.Particularly when the rate reaches 3C,CNT and H-MoSe2functionalized separators only maintain the specific capacities of 562.9 and 654.3 mAh/g.A further analysis of charge-discharge profiles (Fig.5b and Fig.S19 in Supporting information) show that the T-MoSe2functionalized separator has the smallest overpotential and a flatter voltage plateau.The overpotential of the T-MoSe2functionalized separator at 0.2,0.5,1,2 and 3 C are 0.166,0.203,0.273,0.409 and 0.533 V,respectively (Fig.5c).These results demonstrate that TMoSe2has a superior electrocatalytic capacity for LiPSs.Fig.5f shows the cycle stability of these functionalized separators at 1 C.The T-MoSe2functionalized separator acquires a high initial discharge capacity of 845.9 mAh/g and holds a high capacity of 599.5 mAh/g after 400 cycles.In comparison,CNT and H-MoSe2functionalized separators obtain an initial discharge capacity of 834.2 and 772.5 mAh/g,separately.After 200 cycles,only the capacity of 552.5 and 508.2 mAh/g have left respectively.The highvoltage plateau capacityQH(S8-Li2S4) and the low-voltage plateau capacityQL(Li2S4–Li2S/Li2S2) together constitute the entire discharge capacity.Note that the T-MoSe2functionalized separator has the maximum values ofQHandQL(Fig.5d),suggesting that the T-MoSe2can validly accelerate the electrochemical conversion of LiPSs,thus bringing improvement in the utilization of sulfur.

    Fig.5.(a) The rate capabilities of the T-MoSe2,H-MoSe2 and CNT functionalized separators.(b) Corresponding charge–discharge profiles of T-MoSe2 functionalized separators.(c) Polarization at various rates.(d) The capacity contribution of the high plateau and the low plateau at 1 C.(e) Cycling performance of T-MoSe2 functionalized separator with raised sulfur loadings at 0.1 C.(f) Ultralong cycling performance the T-MoSe2,H-MoSe2 and CNT functionalized separators.

    Fig.6.In-situ Raman spectra of the (a) H-MoSe2 and (d) T-MoSe2 functionalized separator.Voltage–capacity curves corresponding the (b) H-MoSe2 and (e) T-MoSe2 functionalized separator.The corresponding contour curves of (c) H-MoSe2 and (f) T-MoSe2 functionalized separator.(g) XPS spectra of Se 3d regions of T-MoSe2 in different states of charge.(h) XPS spectra of Mo 3d regions of T-MoSe2 in different states of charge.

    Previous studies have shown that the long-term cycling stability of lithium–sulfur batteries is strongly dependent on lithium anode protection [60,61].With the help of SEM,we investigated the morphology of the lithium anode after cycling.In comparation with the lithium anode corresponding to CNT and H-MoSe2functionalized separator,the lithium anode corresponding to T-MoSe2functionalized separator is relatively flat (Fig.S21 in Supporting information).This is because the T-MoSe2functionalized separator contains more 1T phase,so it has more efficient adsorption and catalytic conversion performance of LiPSs.Therefore,the T-MoSe2functionalized separator effectively suppresses the shuttle effect of LiPSs.In the consideration of the commercialization of lithium–sulfur batteries,it is crucial to study lithium–sulfur batteries under lean liquid and high sulfur loading conditions [62,63].The cycling performance of the T-MoSe2functionalized separator with the sulfur load of 3.8 and 5.4 mg/cm2were measured (Fig.5e).The batteries with a sulfur loading of 3.8 mg/cm2and an E/S ratio of about 10 μL/mg sulfur provided an initial discharge specific capacity of 854.3 mAh/g at 0.1 C current density.The high sulfur loading battery maintained a discharge specific capacity of 655.2 mAh/g after 100 cycles.With the sulfur loading of 5.4 mg/cm,the cell had an initial discharge specific capacity of 706.6 mAh/g at 0.1 C,and still retained a specific capacity of 471.3 mAh/g after 100 cycles.At the same time,the batteries with T-MoSe2functionalized separators still provide stable cycling performance with the E/S ratio of 4.8 μL/mg (Fig.S22 in Supporting information).These experimental results can be attributed to the efficacious enhancement of the catalytic conversion of LiPSs by T-MoSe2.

    With the assistance ofin-situRaman spectroscopy,we monitored the evolutions of LiPSs in the neighborhood of the functionalized separator in real time.Figs.6a-c correspond to the Raman test results,voltage-time curves and corresponding contour plots of H-MoSe2when charged and discharged at a rate of 0.1 C,respectively.In the initial stage of discharge,a clear S8/S82-signal can be detected at 475 cm-1.At the same time,the peaks of S62-/S42-and S42-/S32-can be observed near 400 and 455 cm-1.As the discharge progresses,the peak intensities of S62-and S42-gradually decrease,indicating that the long-chain LiPSs to short-chain LiPSs occurred at this stage,while S8maintained a high peak intensity,indicating that the H-MoSe2functionalized separator failed to catalyze the conversion of polysulfides well.However,in the TMoSe2functionalized separator (Figs.6d-f),no obvious peak signals of S62-/S42-and S42-/S32-were detected,and the peak intensity of S8was also lower,which indicated that the T-MoSe2functionalized separator could effectively catalyze the conversion of LiPSs.The phenomenon during charging were similar to discharging.The above phenomena suggest that the T-MoSe2with abundant 1T phase can efficaciously accelerate the redox kinetics of LiPSs,inhibit the shuttle effect,and raise the utilization of sulfur.

    To further reveal the electrocatalytic mechanism of T-MoSe2nanosheets during the discharge process,the T-MoSe2nanosheets at different SOCs were investigated by means of XPS (Figs.6g and h).The characteristic peaks located at 228.5 and 231.6 eV are attributed to MoSe2of 1T phase,while the characteristic peaks of 228.9 and 232 eV are attributed to the characteristic peaks of 2H phase.The characteristic peak located at about 233.3 eV,corresponding to the characteristic peak of Mo6+,is due to the inevitable oxidation during the disassembly of the battery to test XPS.At different SOCs,we were able to observe the Mo-S bonds and Li-Se bonds [48],which contributed to the efficient adsorption of LiPSs by T-MoSe2nanosheets.In previous reports [48],the phase transition phenomenon of MoSe2during sulfur cathode discharge stage was reported.However,quantitative studies of 2H to 1T are lacking.As mentioned above,the 1T phase content of TMoSe2is 50.59% while the 1T phase content of H-MoSe2is 22.18%.Our results show that the 1T phase content of T-MoSe2increases by about 20% during sulfur cathode discharge stage,and the 1T phase content decreases by about 17% during charge stage.After a complete charge-discharge process,the 2H to 1T phase variable is only about 3% (Fig.S23 in Supporting information).Similarly,we find that the 1T phase content of H-MoSe2increases by about 13% during sulfur cathode discharge stage and decreases by about 11% during charge stage.After a complete charge-discharge process,the 2H to 1T phase variable was only about 2%(Fig.S27 in Supporting information).During the charge-discharge process,T-MoSe2always maintains a higher 1T phase content than H-MoSe2,which contributes to the catalytic conversion of polysulfides.Therefore,lithium–sulfur batteries with T-MoSe2functionalized separators exhibit more superior electrochemical performance.

    In conclusion,we successfully synthesized 1T phase-rich MoSe2(T-MoSe2) nanosheets and 2H phase-rich MoSe2(H-MoSe2)nanosheets to research the effect of phase structure on the catalytic conversion.Compared with H-MoSe2,the T-MoSe2have stronger adsorption capacity and catalytic conversion ability in sulfur redox reactions.With the help ofin-situRaman and XPS,we found that the T-MoSe2functionalized separator can adsorb LiPSs through Mo–S and Li–Se bonds,and facilitating the catalytic conversion of LiPSs to effectively suppress the shuttle effect.Benefiting from the superiority of T-MoSe2,the lithium–sulfur batteries with T-MoSe2functionalized separator exhibit superior cycling stability(the capacity decay rate of only 0.065% during 400 cycles),and outstanding rate capacity (770.1 mAh/g under 3 C).This research provides a new perspective for designing highly efficient lithium–sulfur batteries based on selenide electrocatalysts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (No.22179007).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108263.

    熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区| 美女免费视频网站| www.自偷自拍.com| 国产高清视频在线播放一区| 在线观看免费视频日本深夜| 三级男女做爰猛烈吃奶摸视频| 黄色成人免费大全| 黑人巨大精品欧美一区二区mp4| 熟女电影av网| av福利片在线观看| 欧美三级亚洲精品| 精品国产超薄肉色丝袜足j| 少妇粗大呻吟视频| 91字幕亚洲| ponron亚洲| 午夜福利在线在线| 此物有八面人人有两片| 波多野结衣高清无吗| 欧美又色又爽又黄视频| 日韩欧美 国产精品| 精品电影一区二区在线| 亚洲真实伦在线观看| 亚洲成人精品中文字幕电影| 国产又色又爽无遮挡免费看| 一进一出好大好爽视频| 美女黄网站色视频| 五月玫瑰六月丁香| 岛国视频午夜一区免费看| 91麻豆精品激情在线观看国产| 国产av一区二区精品久久| 国产免费av片在线观看野外av| 日本 av在线| 免费在线观看完整版高清| 免费电影在线观看免费观看| 黄色视频不卡| 久久久国产精品麻豆| 国内毛片毛片毛片毛片毛片| 日本免费a在线| 两个人视频免费观看高清| 一级片免费观看大全| 亚洲成av人片免费观看| 亚洲成人久久爱视频| av片东京热男人的天堂| 性欧美人与动物交配| 欧美另类亚洲清纯唯美| xxx96com| 日日爽夜夜爽网站| 一本大道久久a久久精品| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av| 黑人巨大精品欧美一区二区mp4| 日韩中文字幕欧美一区二区| 身体一侧抽搐| 好男人电影高清在线观看| 久久久久久人人人人人| 老司机靠b影院| 妹子高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| ponron亚洲| 美女大奶头视频| 欧美黑人精品巨大| 国产又色又爽无遮挡免费看| 久久中文看片网| 国产三级黄色录像| 欧美日韩乱码在线| 麻豆av在线久日| 久久性视频一级片| 最新在线观看一区二区三区| 亚洲人成电影免费在线| aaaaa片日本免费| 校园春色视频在线观看| 久久人妻av系列| 国产亚洲精品av在线| 成年版毛片免费区| 日本黄色视频三级网站网址| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 一区福利在线观看| 国产精品久久久久久精品电影| 欧美日韩亚洲综合一区二区三区_| 在线观看午夜福利视频| 国产精品美女特级片免费视频播放器 | 成人手机av| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av中文字字幕乱码综合| 日本熟妇午夜| 国产99白浆流出| 丁香欧美五月| 国产精品,欧美在线| videosex国产| 又大又爽又粗| 99热6这里只有精品| 99热这里只有精品一区 | 久久久久国内视频| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 久久久久精品国产欧美久久久| 免费在线观看亚洲国产| 国产v大片淫在线免费观看| www.精华液| 在线国产一区二区在线| h日本视频在线播放| 国产免费一级a男人的天堂| 亚洲欧美精品专区久久| 男女做爰动态图高潮gif福利片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本五十路高清| 久久99热这里只有精品18| 国产成人精品婷婷| 偷拍熟女少妇极品色| 插阴视频在线观看视频| 在线免费十八禁| 人妻久久中文字幕网| 国产欧美日韩精品一区二区| 九草在线视频观看| 人妻夜夜爽99麻豆av| 欧美bdsm另类| 久久人人爽人人爽人人片va| 精品免费久久久久久久清纯| 久久午夜亚洲精品久久| 久久99热6这里只有精品| 亚洲国产精品国产精品| 亚洲成av人片在线播放无| 在线a可以看的网站| 不卡一级毛片| av免费观看日本| 亚洲av成人av| 我要搜黄色片| 国产真实乱freesex| 欧美另类亚洲清纯唯美| 可以在线观看毛片的网站| 国产精品国产高清国产av| 国产女主播在线喷水免费视频网站 | 欧美性感艳星| 好男人视频免费观看在线| av女优亚洲男人天堂| 久久草成人影院| 成人美女网站在线观看视频| 91狼人影院| 人妻夜夜爽99麻豆av| 少妇丰满av| a级毛片a级免费在线| 国产成人a∨麻豆精品| 热99re8久久精品国产| 亚洲精品乱码久久久v下载方式| 美女被艹到高潮喷水动态| 熟妇人妻久久中文字幕3abv| 两个人的视频大全免费| 精品人妻视频免费看| 长腿黑丝高跟| 91久久精品国产一区二区成人| 精品人妻熟女av久视频| 亚洲国产精品久久男人天堂| 午夜视频国产福利| 精品不卡国产一区二区三区| 国产午夜精品久久久久久一区二区三区| 五月玫瑰六月丁香| 精品免费久久久久久久清纯| 国产人妻一区二区三区在| 高清在线视频一区二区三区 | 99热6这里只有精品| 极品教师在线视频| 免费观看精品视频网站| 亚洲av二区三区四区| 男人舔奶头视频| 99热网站在线观看| 深爱激情五月婷婷| 国产淫片久久久久久久久| 国产久久久一区二区三区| 久久久久免费精品人妻一区二区| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 综合色av麻豆| 夜夜爽天天搞| 韩国av在线不卡| 日韩视频在线欧美| 国内精品一区二区在线观看| 亚洲激情五月婷婷啪啪| 国产av不卡久久| videossex国产| 国产美女午夜福利| 成人亚洲精品av一区二区| 亚洲丝袜综合中文字幕| 亚洲国产高清在线一区二区三| 欧美日韩精品成人综合77777| or卡值多少钱| 男插女下体视频免费在线播放| 成年av动漫网址| 尾随美女入室| 日韩人妻高清精品专区| 少妇丰满av| 精品久久久久久久久av| 午夜老司机福利剧场| 老司机福利观看| 在线播放无遮挡| 欧美一区二区精品小视频在线| 色噜噜av男人的天堂激情| 欧美性猛交╳xxx乱大交人| 一进一出抽搐动态| 中文字幕人妻熟人妻熟丝袜美| 不卡视频在线观看欧美| 午夜福利高清视频| av免费在线看不卡| 狠狠狠狠99中文字幕| 一进一出抽搐动态| 十八禁国产超污无遮挡网站| 一个人看的www免费观看视频| 国产伦一二天堂av在线观看| 欧美日韩国产亚洲二区| 色哟哟哟哟哟哟| 久久99热这里只有精品18| av视频在线观看入口| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 搡女人真爽免费视频火全软件| 日韩成人av中文字幕在线观看| 精品人妻熟女av久视频| 国产高清三级在线| 欧美区成人在线视频| 18禁黄网站禁片免费观看直播| 激情 狠狠 欧美| 欧美色视频一区免费| 久久人妻av系列| 欧美日韩综合久久久久久| 少妇丰满av| av视频在线观看入口| 女的被弄到高潮叫床怎么办| 特级一级黄色大片| 国产真实伦视频高清在线观看| 免费大片18禁| 在线免费观看不下载黄p国产| 赤兔流量卡办理| 国产极品天堂在线| 又粗又硬又长又爽又黄的视频 | 国产在视频线在精品| 婷婷亚洲欧美| 欧美日韩精品成人综合77777| 欧美日韩乱码在线| 91精品国产九色| 亚洲最大成人中文| 美女大奶头视频| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看 | 日韩欧美国产在线观看| 欧美最新免费一区二区三区| 国产精品av视频在线免费观看| 久久韩国三级中文字幕| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 免费在线观看成人毛片| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 青春草亚洲视频在线观看| 国产亚洲欧美98| 91狼人影院| 18禁黄网站禁片免费观看直播| 两个人视频免费观看高清| 中文字幕制服av| 国语自产精品视频在线第100页| 国产高清激情床上av| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩东京热| 免费看a级黄色片| 久久久精品欧美日韩精品| 精品无人区乱码1区二区| 成人永久免费在线观看视频| 色噜噜av男人的天堂激情| 亚洲五月天丁香| 亚洲第一电影网av| 三级经典国产精品| 国产私拍福利视频在线观看| 一本久久精品| 午夜精品一区二区三区免费看| 天天躁夜夜躁狠狠久久av| 亚洲无线在线观看| 免费看av在线观看网站| 看免费成人av毛片| 国产一区二区在线观看日韩| 国产精品久久久久久av不卡| 亚洲天堂国产精品一区在线| 亚洲人成网站在线播放欧美日韩| 国产一区亚洲一区在线观看| 午夜激情欧美在线| 91精品一卡2卡3卡4卡| 亚洲欧美日韩无卡精品| 国产高清有码在线观看视频| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 久久久久久伊人网av| 日韩亚洲欧美综合| 欧美最黄视频在线播放免费| 国产极品天堂在线| 亚洲成人精品中文字幕电影| 国产一区二区三区在线臀色熟女| 中文字幕精品亚洲无线码一区| 久久亚洲国产成人精品v| 亚洲精品日韩av片在线观看| 久久6这里有精品| 99热这里只有是精品50| 国产成人精品久久久久久| 久久久精品94久久精品| 国产精品一二三区在线看| 国产精品乱码一区二三区的特点| 精品一区二区免费观看| 美女cb高潮喷水在线观看| 精品久久久噜噜| 亚洲精品日韩在线中文字幕 | 国产精品电影一区二区三区| 亚洲精品乱码久久久久久按摩| 69人妻影院| av在线老鸭窝| 神马国产精品三级电影在线观看| 久久久精品欧美日韩精品| 一卡2卡三卡四卡精品乱码亚洲| 国产精品.久久久| 欧美精品国产亚洲| 久久精品夜色国产| 日韩国内少妇激情av| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看 | 成年女人永久免费观看视频| 久久99热6这里只有精品| 伦理电影大哥的女人| 国产一区亚洲一区在线观看| 麻豆国产av国片精品| 国产伦一二天堂av在线观看| 国产高清激情床上av| 欧美色视频一区免费| 国产黄片美女视频| 亚洲av男天堂| 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| av国产免费在线观看| 免费观看的影片在线观看| 亚洲丝袜综合中文字幕| 国产精品福利在线免费观看| 久久6这里有精品| 久久久a久久爽久久v久久| 此物有八面人人有两片| 国产黄色小视频在线观看| 亚洲不卡免费看| 一区二区三区高清视频在线| 观看美女的网站| 日韩欧美国产在线观看| 此物有八面人人有两片| а√天堂www在线а√下载| 又黄又爽又刺激的免费视频.| 波多野结衣高清无吗| 女人十人毛片免费观看3o分钟| 免费人成在线观看视频色| 亚洲成人精品中文字幕电影| 美女内射精品一级片tv| 亚洲在线自拍视频| 91aial.com中文字幕在线观看| 69av精品久久久久久| 成人欧美大片| 97人妻精品一区二区三区麻豆| 国产成人影院久久av| 亚洲精华国产精华液的使用体验 | 国产单亲对白刺激| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆| 日本免费一区二区三区高清不卡| 综合色丁香网| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 日韩在线高清观看一区二区三区| 免费看光身美女| 麻豆成人av视频| 观看免费一级毛片| 国产久久久一区二区三区| 亚洲av不卡在线观看| 国产色爽女视频免费观看| 日产精品乱码卡一卡2卡三| 欧美成人a在线观看| 国产精品人妻久久久久久| 亚洲国产欧美在线一区| 成人亚洲精品av一区二区| av卡一久久| 国产精品电影一区二区三区| 久久久久久久久久黄片| 麻豆乱淫一区二区| 又粗又爽又猛毛片免费看| 国产一区二区亚洲精品在线观看| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 国产老妇女一区| 岛国在线免费视频观看| 欧美潮喷喷水| 亚洲欧洲国产日韩| 日韩欧美精品免费久久| 中国美白少妇内射xxxbb| 又粗又硬又长又爽又黄的视频 | 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 日韩三级伦理在线观看| 国产真实伦视频高清在线观看| 欧美成人一区二区免费高清观看| 免费av观看视频| 国产精品国产三级国产av玫瑰| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 69av精品久久久久久| 美女被艹到高潮喷水动态| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| 亚洲国产精品sss在线观看| 久久久久网色| 欧美激情久久久久久爽电影| 床上黄色一级片| 日本三级黄在线观看| 欧美日韩在线观看h| 日韩亚洲欧美综合| 国产毛片a区久久久久| a级毛片免费高清观看在线播放| 天堂影院成人在线观看| 村上凉子中文字幕在线| 国产精品久久久久久精品电影小说 | 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 麻豆国产97在线/欧美| 99久久人妻综合| 亚洲成人精品中文字幕电影| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 日韩制服骚丝袜av| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 亚洲av熟女| 国产69精品久久久久777片| 中文亚洲av片在线观看爽| 国产黄片视频在线免费观看| 联通29元200g的流量卡| 久久婷婷人人爽人人干人人爱| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频 | 免费黄网站久久成人精品| 日韩欧美精品v在线| av女优亚洲男人天堂| 亚洲电影在线观看av| av视频在线观看入口| 亚洲,欧美,日韩| 欧美一区二区国产精品久久精品| 乱码一卡2卡4卡精品| 精品国产三级普通话版| 成人二区视频| 日本与韩国留学比较| 一进一出抽搐动态| 女同久久另类99精品国产91| 99国产精品一区二区蜜桃av| 欧美日韩国产亚洲二区| 一边亲一边摸免费视频| 3wmmmm亚洲av在线观看| 国产老妇伦熟女老妇高清| .国产精品久久| 日本免费a在线| 亚洲精华国产精华液的使用体验 | 亚洲av成人精品一区久久| 国产精品久久久久久精品电影| 国产一级毛片在线| 人人妻人人澡欧美一区二区| 可以在线观看的亚洲视频| 国产精品久久久久久久电影| 美女内射精品一级片tv| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆国产97在线/欧美| 国产 一区 欧美 日韩| www.色视频.com| 校园春色视频在线观看| 欧美日韩在线观看h| 日本黄色片子视频| 久久99精品国语久久久| 国产麻豆成人av免费视频| 永久网站在线| 亚洲四区av| 精品熟女少妇av免费看| 高清毛片免费观看视频网站| 国产黄片美女视频| 亚洲欧美日韩卡通动漫| 内射极品少妇av片p| 一级毛片久久久久久久久女| 91精品一卡2卡3卡4卡| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 哪里可以看免费的av片| 又黄又爽又刺激的免费视频.| 国产精品一及| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人综合另类久久久 | 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 欧美高清性xxxxhd video| 国产精品福利在线免费观看| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 午夜爱爱视频在线播放| 12—13女人毛片做爰片一| 毛片女人毛片| 亚洲中文字幕一区二区三区有码在线看| 狠狠狠狠99中文字幕| 国产成人freesex在线| av在线播放精品| 亚洲国产精品合色在线| 成人午夜高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品精品国产色婷婷| 中国美白少妇内射xxxbb| 一级二级三级毛片免费看| 中文资源天堂在线| 久久综合国产亚洲精品| 欧美高清成人免费视频www| 国产精品爽爽va在线观看网站| 成人午夜精彩视频在线观看| 国产精品日韩av在线免费观看| 国产欧美日韩精品一区二区| 色哟哟·www| 赤兔流量卡办理| 亚洲最大成人av| 尾随美女入室| 一夜夜www| 看免费成人av毛片| 一区二区三区四区激情视频 | 69人妻影院| 婷婷亚洲欧美| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 中国美女看黄片| 成人亚洲欧美一区二区av| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 午夜福利视频1000在线观看| 成年女人看的毛片在线观看| 精品一区二区三区视频在线| 欧美一区二区精品小视频在线| 欧美xxxx性猛交bbbb| 2022亚洲国产成人精品| 免费看av在线观看网站| 亚洲欧美精品专区久久| 国产精品蜜桃在线观看 | 欧美激情在线99| 夫妻性生交免费视频一级片| 中国美女看黄片| 欧美三级亚洲精品| 男人和女人高潮做爰伦理| ponron亚洲| 美女 人体艺术 gogo| 国产乱人视频| 日本黄色片子视频| 欧美日韩精品成人综合77777| 九九爱精品视频在线观看| 免费av毛片视频| 亚洲在线自拍视频| 亚洲欧洲日产国产| kizo精华| 91在线精品国自产拍蜜月| 在线a可以看的网站| 亚洲av免费高清在线观看| 午夜福利高清视频| 麻豆精品久久久久久蜜桃| 精品人妻视频免费看| 日本三级黄在线观看| 国产精品一及| 成人欧美大片| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 中国美女看黄片| 身体一侧抽搐| 久久精品夜色国产| 少妇人妻一区二区三区视频| 九九爱精品视频在线观看| 爱豆传媒免费全集在线观看| 免费观看精品视频网站| 久久久久久大精品| 色5月婷婷丁香| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 国产精品久久久久久精品电影小说 | 男插女下体视频免费在线播放| 欧美三级亚洲精品| 最近手机中文字幕大全| 大型黄色视频在线免费观看| 美女高潮的动态| 久久人人精品亚洲av| 国产精品蜜桃在线观看 | 一本久久中文字幕| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| av国产免费在线观看| 亚洲天堂国产精品一区在线| 又粗又硬又长又爽又黄的视频 | 欧美日本亚洲视频在线播放| 中文字幕免费在线视频6| 我的女老师完整版在线观看| 久久这里有精品视频免费| 日本免费a在线| 女同久久另类99精品国产91| 99在线视频只有这里精品首页|