• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scrutinizing the facile growth of β-Ag2Se fine films

    2023-11-21 03:04:46YongkngGeYnLeiXuLiRuijunQiXiomingZhiZheng
    Chinese Chemical Letters 2023年11期

    Yongkng Ge,Yn Lei,Xu Li,Ruijun Qi,Xioming M,Zhi Zheng,?

    a School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450001,China

    b College of Advanced Materials and Energy,Key Laboratory of Micro-Nano Energy Storage and Conversion Materials of Henan Province,Institute of Surface Micro and Nano Materials,Xuchang University,Xuchang 461000,China

    c School of Physics and Electronic Science,Key Laboratory of Polar Materials and Devices,Ministry of Education,Department of Electronic Science,East China Normal University,Shanghai 200241,China

    d School of Chemistry and Chemical Engineering,Key Laboratory of Green Chemical Media and Reaction,Ministry of Education,Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing,Henan Normal University,Xinxiang 453007,China

    Keywords:β-Ag2Se Fine film Room temperature In-situ transformation Thermoelectric

    ABSTRACT Silver selenide thin film is one of the best candidates for thermoelectric devices.In the previous report,we demonstrated that high-performanced [201] oriented β-Ag2Se thin films can be prepared by direct metal surface element reaction (DMSER) solution selenization in a really short time at room temperature.However,the underlying mechanism of the fast reaction process were not discussed in depth.Herein,based on hard soft acid base (HASB) theory and strong oxidation,we further explored the possible reaction mechanism of the in-situ growth of β-Ag2Se thin films as the function of the reaction time.The time-dependent experimental results showed that the formation of the β-Ag2Se on elemental Ag precursor (~690 nm thick) in Se/Na2S precursor solution is in a growth driven mode with no obvious orientation or growth rate selections to the elemental Ag precursors.Our investigations provide a prerequisite for the further preparation of thermoelectric materials with excellent properties.

    Thermoelectric (TE) material is a new type of functional semiconductor material which can directly convert thermal and electrical energy depending on the movement of carriers in the material.The thermoelectric energy conversion efficiency is mainly determined by the thermoelectric figure-of-merit value (zT=S2σT/κ).Except for Bi2Te3used commercially today,the n-type chalcogenide Ag2Se also has similar properties,which is of high thermoelectric research value [1–4].Ag2Se belongs to the silver chalcogenide group,which transitions from the low temperature orthorhombic phase (β) to the high temperature cubic phase (α) at temperatures close to 410 K [5–7].Compared with the high temperatureα-Ag2Se phase,the low temperatureβ-Ag2Se phase has higher thermoelectric properties,being proved to be a competitive candidate for n-type TE materials [8,9].In addition,compared with traditional bulk thermoelectric devices,thin film thermoelectric cells not only save expensive processing steps and reduce material waste,but also can be made into the required size and shape,which can meet the needs of many narrow spaces and complex device structures [10–12].So more researchers are exploring new synthetic methods to prepareβ-Ag2Se thin films [13–16].

    We reported previously a simple and efficient room temperaturein-situpreparation method to synthesisβ-Ag2Se thin film with high thermoelectric properties by direct metal surface element reaction (DMSER) solution processing selenization pathway.Thein-situsynthetic method not only avoid high experiment temperature,laborious multistep procedures and the harsh experiment conditions,but also can control precisely the composition of products.In the typical process,the Ag film (~690 nm thick) was directly converted into pure phaseβ-Ag2Se film (~1 μm thick) with high [201] oriented columnar grains in only about 25 s [17].However,the fast conversion of Ag toβ-Ag2Se was not studied in depth,which is important to understand the reaction fundamental mechanism and provide the synthetic strategy to obtain the more fine films materials.

    Herein,we further monitored and explored carefully thein-situgrowth ofβ-Ag2Se fine films at different reaction time during the DMSER elemental selenization.Based on HASB theory and strong oxidation reaction mechanism,combined with XRD,SEM and TEM characterizations,we found that theβ-Ag2Se fine films could be formed after the reaction of Ag film in Se/Na2S precursor solution for 1 s only.We demonstrated that the formation ofβ-Ag2Se thin films is in a growth driven mode with no obvious orientation or growth rate selections to the sputtered elemental Ag films.With the increase of reaction time,β-Ag2Se grew directly from the sur-face of Ag film to the interface between Ag film and PI,until completely reacted into dense large columnar crystals.From the beginning to the end of the reaction,there is no formation of impurities and the preparedβ-Ag2Se film is flat and uniform,which once again verifies the preciseness and accuracy of our previous work.In this study,the forming mechanism ofβ-Ag2Se thin film could be prepared following the schematic illustration in Fig.1.Our research group has reported that the final productβ-Ag2Se was pure phase through this preparation method in the previous work [17].In the present work,Se/Na2S mixed solution contains many ions and its material balance is difficult to study.Through consulting literature materials [18–21],the possible reaction mechanism is as follows:

    Fig.1.Schematic illustration of the forming mechanism of β-Ag2Se thin film.

    where x of (SSex)2-is greater than or equal to 2.Firstly,the dissolution of Se powder can be obviously observed in Na2S mixed solution,and the color of solution changes from colorless to black red with the increase of the dissolution of Se powder.During the process of dissolution,the selenium element interacts with S2-in the aqueous solution to form selenium sulfur anion,which has more active and stronger oxidation ability,similar to peroxyanion or superoxide anion [22].Subsequently,the sputtered elemental Ag can spontaneously react with Se or S (chalcogenide elements) to form Ag2Se or Ag2S.Therein,the calculated chemical hardness of Ag was 3.21,which belonged to soft base,and the chemical hardness values of soft acid S and Se were 4.05 and 3.73,respectively.Based on the HSAB theory,the formation rate of Ag2Se compounds is faster than that of Ag2S [23,24].So,a large area Ag film can be converted to Ag2Se without Ag2S impurity by the low-temperaturein-situmethod [17].

    To understand the process of the fast conversion ofβ-Ag2Se from the elemental Ag,samples with different reaction times were characterized as follows.Fig.2a and Fig.S1 (Supporting information) show that the samples were divided into 6 groups (1–25 s)with the reaction time as the variable and characterized respectively by XRD.The samples are compared with the standard cards of Ag2Se (No.24–1041) and Ag (No.87–718).As shown in Fig.1a,except for the diffraction peaks of Ag,the (121) and (201) diffraction peaks of Ag2Se appear after the sputtered Ag being immersed in Se/Na2S mixed solution for 1 s,indicating that a part of Ag has already been converted intoβ-Ag2Se on the Ag thin film surface,although the content of Ag is still large at this time.During the reaction period of 5–20 s,the peak intensity of Ag gradually becomes weaker,while that of Ag2Se becomes stronger,indicating that the thickness of Ag2Se gradually increased,and the content of Ag gradually decreased.When the reaction time reaches 25 s,the Ag peak signal has disappeared thoroughly,while Ag2Se diffraction peaks without other impurity peaks are consistent with those of Ag2Se standard card.It worth noting that during reaction 1–10 s,β-Ag2Se was formed at this time,but exhibited no preferential orientation.The priority of growth along (121) and (201) crystal planes was roughly similar.Until after 10 s reaction,the preferred crystal orientation ofβ-Ag2Se was along (201) lattice planes [17].

    Fig.2.(a) XRD patterns of the fabricated β-Ag2Se with different reaction time (1 s,10 s and 25 s).(b-d) β-Ag2Se crystal structure view along a,b and c axis (Ag atoms marked with Ag1 form the channels for Ag atoms transport).

    Fig.3.(a-f) SEM images of β-Ag2Se with different reaction time.(g-l) AFM images of β-Ag2Se with different reaction time.

    Fig.4.(a-c) The cross-sectional TEM images of the β-Ag2Se thin film growth at 1 s,10 s and 25 s.(d-l) EDS maps of elements Ag and Se corresponding to 1 s,10 s and 25 s samples.(m) The cross-sectional TEM image of the β-Ag2Se thin film at 1 s.(n,o) TEM and HRTEM images of the interface between β-Ag2Se and Ag phases at 1 s.(p,q) Enlarged HRTEM image of the orange square marked in (o).(r,s) Comparison of thermoelectric properties between this work (samples at 25 s reaction time) and literatures.

    The variation of theβ-Ag2Se crystal growth orientation may be attributed to the transport of the Ag atoms during thein-situconversion of Ag toβ-Ag2Se.As shown in Figs.2b-d,there are Ag-Se-Ag-Se atom-chains and single Ag atom in theβ-Ag2Se crystal.The channels in the crystal structure can be observed along both theaandbaxes,where the Ag atoms may be transported.However,there are some differences in these two channels.Primarily,alongbaxis,the S sharp Ag-Se-Ag-Se atom-chains block the transport of Ag atoms to a certain degree.In other words,these channels are not suitable for the transport of Ag atoms during the reaction at RT.Interestingly,different from the channels alongbaxis,the channels alongaaxis are more suitable for Ag atoms’transport.These above results indicate that the (100) planes are the preferred planes in theory in our work.Notably,(201) planes are close to(100) planes with an angle of 15.58°,which may be the reason for the special growth direction normal to (201) planes.

    In order to verify the elemental valence of the final product (at 25 s) of the reaction,XPS test was further performed.Figs.S2a and b (Supporting information) show the binding energy of Ag (3d3/2,3d5/2) emerged at 368 eV and 375 eV,suggesting that the oxidation state of Ag was univalent Ag+in thin film.As for Se element,Se (3d3/2,3d5/2) located at 53 eV and 55 eV,suggesting that the oxidation state of Se was univalent Se2-in thin film.These results indicate that the valence states of Ag and Se in the films are consistent with those of pureβ-Ag2Se.From the SEM images(Figs.3a-f),compared with the dense surface of the unreacted Ag film [17],holes appear on the surface of the film after 1 s reaction,indicating that part of Ag has already converted toβ-Ag2Se.As the reaction time increase,we can find that the crystal sizes and morphology ofβ-Ag2Se are almost the same,but there are little pin-holes in theβ-Ag2Se thin films,indicating theβ-Ag2Se products gradually become well compactness.Similarly,from the AFM images (Figs.3g-l),it was found that the height of the middle region was inconsistent with that of the two sides at 1 s,indicating that some Ag was reacted.The crystal surface shape at each time period was roughly similar to that of SEM image,and the formed films became more and more uniform and flat with the increase of the reaction time.XRD,SEM and AFM indicate that the reaction rate of Ag in Se/Na2S precursor solution is extremely high,and the surface of preparedβ-Ag2Se film is flat and uniform,implying it is in a growth driven mode.

    The crystal growth kinetics ofβ-Ag2Se from the elemental Ag in the Se/Na2S solution should be either nucleation driven or growth driven.Next,to further explore the microscopic origin of crystallization kinetics ofβ-Ag2Se from elemental Ag,the crosssectional TEM images of theβ-Ag2Se thin film growth at 1 s,10 s and 25 s have been measured and illustrated in Figs.4a-c,as well as the EDS mappings of element Ag,Se (Figs.4d-l).We can clearly observe the uniform and flat interface between theβ-Ag2Se and Ag,suggesting that this reaction occurred from top to the bottom of the samples with consistent reaction rate for different Ag grains,following the growth driven mode with very fast crystal growth rate and no sizeable and robust crystalline seeds form during the short timescale involved in the growth process.Taking sample at 1 s as an example.It is obvious from the Ag or Se elemental image that there are two parts with different color depths.The upper part of the Ag image with light color and the upper part of the Se image with deep color are bothβ-Ag2Se,whereas the lower part of them is mostly Ag simple substance that has not been reacted.The elemental images of Ag or Se of samples at 10 s and 25 s are similar to it,except that the content of Ag simple substance decreases with time,and Ag has been completely replaced byβ-Ag2Se at 25 s.It can be found that,part of the Ag has been already converted intoβ-Ag2Se at 1 s,andβ-Ag2Se has occupied a dominant content at 10 s.This reaction can finish within about 25 s,which is consistent with XRD results.As the increase of the reaction time,the columnarβ-Ag2Se crystal gradually formed,and this structure was conducive to improving the thermoelectric properties of material.In this process,the thickness of the initial Ag film toβ-Ag2Se formed (at 25 s) increased from about 690 nm to about 1 μm.Combined with the above characterizations,when Ag reacts in Se/Na2S precursor solution for 1 s,its surface morphology is very close to that of pureβ-Ag2Se,andβ-Ag2Se is formed by rapid direct growth from the surface of Ag film to the interface between Ag film and PI during the reaction process [25].Figs.4m and n are the cross-sections and top-view of TEM images of sample at 1 s.It can be clearly seen that there are two parts with different color depths,β-Ag2Se and Ag respectively,and their boundaries have been marked with red dotted lines.It is verified again thatβ-Ag2Se has been generated in 1 s.Figs.4p-q are the HRTEM image of sample at 1 s and its local magnified image,which clearly shows the lattice stripes ofβ-Ag2Se and Ag.

    The lattice spacing ofβ-Ag2Se and Ag is 0.210 nm and 0.231 nm respectively,which correspond to the crystal plane (201) ofβ-Ag2Se and the crystal plane (111) of Ag respectively,which further proves thatβ-Ag2Se grows along (201) crystal plane.To further verify the thermoelectric properties ofβ-Ag2Se (samples at 25 s reaction time) thin films at room temperature,we obtained the values of mobility,carrier concentration and Seebeck coeffi-cient through instrument tests.Compared with state of art reports on the thermoelectric properties ofβ-Ag2Se films (Figs.4r and s,Table S1 in Supporting information),it is found that theβ-Ag2Se films prepared in this work possess better thermoelectric properties [14,17,26-28].The properties in this work are similar to the best of our previous work,combined with the above characterizations,it is further verified that theβ-Ag2Se thin film are generated by above method was conducive to phonon scattering and carrier transmission [27],and effectively improves the thermoelectric properties [17,29].

    To explore the microscopic origin of crystal growth kinetics with the aim to improve the TE properties ofβ-Ag2Se films,we have carried out time-dependent investigation in the quality and thickness control forβ-Ag2Se films.Based on HSAB theory and strong anion oxidation and the comprehensive analyses,we demonstrated that the formation ofβ-Ag2Se film is in a growth driven mode without orientation or reaction rate selections to the Ag precursor in Se/Na2S solution,which attributed to the obvious conversion of a uniform and flatβ-Ag2Se fine film on the Ag precursor for 1 s only.The (201) crystal planes ofβ-Ag2Se became the preferred orientation after 10 s reaction.In the whole reaction growth process,β-Ag2Se grew directly from the surface of Ag film to the interface between Ag film and PI,meanwhile,the structure ofβ-Ag2Se generated in 1–25 s was always very dense.Additional part of thermoelectric properties measured in this work,it is verified again that the structure of the thin film optimizes the electrical and thermal conductivity,which greatly improves the thermoelectric properties.The room temperaturein-situpreparation strategy forβ-Ag2Se TE films could pave a new avenue to promote the development of thermoelectric materials at RT in air,as a complementary approach to current nanotechnology.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We are grateful for the financial support provided by National Natural Science Foundation of China (Nos.52072327,21673200,21877027,61504117,U1604121),Zhongyuan Scholars Program of Henan Province,China (No.20210151004),Youth Talents Lifting Project of Henan Province,China (No.2018HYTP010),and Key Research and Development Project of Henan Province,China (No.192102210183).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108191.

    国产亚洲av高清不卡| 国产伦精品一区二区三区视频9 | 国产精品一及| av视频在线观看入口| 一本久久中文字幕| 精品日产1卡2卡| netflix在线观看网站| 国产极品精品免费视频能看的| 亚洲成人中文字幕在线播放| 女生性感内裤真人,穿戴方法视频| av在线天堂中文字幕| 在线观看一区二区三区| 一进一出抽搐gif免费好疼| 婷婷精品国产亚洲av| 国产精品国产高清国产av| 日韩国内少妇激情av| 不卡av一区二区三区| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 美女cb高潮喷水在线观看 | av天堂在线播放| 欧美日韩精品网址| 亚洲国产日韩欧美精品在线观看 | 免费看十八禁软件| 久久香蕉国产精品| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| 我的老师免费观看完整版| 国产精品,欧美在线| 国产精品 国内视频| 亚洲精品456在线播放app | 国产精品久久久久久人妻精品电影| 麻豆国产av国片精品| 99精品久久久久人妻精品| 桃红色精品国产亚洲av| 日日干狠狠操夜夜爽| АⅤ资源中文在线天堂| 国产精品九九99| 男女床上黄色一级片免费看| 人人妻,人人澡人人爽秒播| 午夜免费成人在线视频| 村上凉子中文字幕在线| 97碰自拍视频| 91字幕亚洲| 亚洲专区中文字幕在线| 日韩人妻高清精品专区| 亚洲 国产 在线| 欧美日韩综合久久久久久 | 性欧美人与动物交配| tocl精华| 中文字幕久久专区| 伊人久久大香线蕉亚洲五| 床上黄色一级片| 精品一区二区三区视频在线 | 精品国产亚洲在线| 亚洲18禁久久av| 国产精华一区二区三区| 国内精品久久久久精免费| 国产午夜福利久久久久久| 色吧在线观看| 天天添夜夜摸| 国模一区二区三区四区视频 | 亚洲 欧美一区二区三区| 看免费av毛片| 又粗又爽又猛毛片免费看| 女生性感内裤真人,穿戴方法视频| 在线观看免费午夜福利视频| 国产午夜精品论理片| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 18禁黄网站禁片午夜丰满| 中文字幕久久专区| 村上凉子中文字幕在线| 午夜精品在线福利| 可以在线观看的亚洲视频| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| 国产精品久久久久久精品电影| 亚洲,欧美精品.| 国产高清视频在线观看网站| 999久久久精品免费观看国产| 麻豆成人av在线观看| 丰满的人妻完整版| 国产成人影院久久av| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 亚洲欧美日韩无卡精品| 观看美女的网站| 99在线视频只有这里精品首页| 国产单亲对白刺激| 麻豆成人av在线观看| 亚洲激情在线av| 久久久久久大精品| 亚洲精品色激情综合| 亚洲国产看品久久| 日韩欧美一区二区三区在线观看| 91麻豆精品激情在线观看国产| 神马国产精品三级电影在线观看| 久久久久久国产a免费观看| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 亚洲国产精品999在线| 日日干狠狠操夜夜爽| 亚洲精品乱码久久久v下载方式 | 一a级毛片在线观看| 亚洲精华国产精华精| 精品久久久久久久久久久久久| 女同久久另类99精品国产91| 琪琪午夜伦伦电影理论片6080| 非洲黑人性xxxx精品又粗又长| 黑人操中国人逼视频| 最好的美女福利视频网| 天天躁日日操中文字幕| 99热精品在线国产| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 精品午夜福利视频在线观看一区| 天天一区二区日本电影三级| 国产精品久久久人人做人人爽| а√天堂www在线а√下载| 免费观看的影片在线观看| 99久久无色码亚洲精品果冻| 亚洲精品中文字幕一二三四区| 亚洲国产欧美人成| 91麻豆精品激情在线观看国产| 亚洲九九香蕉| 成人18禁在线播放| 999精品在线视频| or卡值多少钱| 久久伊人香网站| 亚洲中文字幕一区二区三区有码在线看 | 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 亚洲美女黄片视频| 久久久久久久精品吃奶| 亚洲欧美日韩高清在线视频| 色在线成人网| 18禁裸乳无遮挡免费网站照片| 日韩大尺度精品在线看网址| 国产成人系列免费观看| 亚洲黑人精品在线| 国内精品久久久久精免费| 熟女电影av网| 精品一区二区三区视频在线观看免费| 欧美一级a爱片免费观看看| av黄色大香蕉| 一级毛片精品| 亚洲精品一区av在线观看| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 免费观看精品视频网站| avwww免费| 国模一区二区三区四区视频 | 一个人免费在线观看电影 | 波多野结衣高清作品| 国产成人av教育| 熟妇人妻久久中文字幕3abv| 欧美黑人欧美精品刺激| 美女高潮的动态| 免费av不卡在线播放| 九色成人免费人妻av| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影| 色综合站精品国产| 日本在线视频免费播放| 男人舔奶头视频| 欧美在线一区亚洲| 99久久综合精品五月天人人| 精品久久久久久久人妻蜜臀av| 成人国产综合亚洲| 色老头精品视频在线观看| 国产av在哪里看| 日韩欧美免费精品| 精品一区二区三区视频在线 | 欧美色视频一区免费| 成人无遮挡网站| 午夜精品久久久久久毛片777| 中文字幕av在线有码专区| 美女午夜性视频免费| 十八禁人妻一区二区| 亚洲av中文字字幕乱码综合| 一进一出好大好爽视频| aaaaa片日本免费| 精品福利观看| 99精品欧美一区二区三区四区| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 性欧美人与动物交配| 熟女电影av网| 俄罗斯特黄特色一大片| 亚洲 欧美一区二区三区| 美女免费视频网站| av女优亚洲男人天堂 | 欧美在线一区亚洲| 91在线观看av| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 一区二区三区激情视频| 欧美一区二区国产精品久久精品| 亚洲男人的天堂狠狠| 日韩免费av在线播放| 18禁美女被吸乳视频| 久久久精品大字幕| 国产蜜桃级精品一区二区三区| 无人区码免费观看不卡| 国产视频一区二区在线看| 国产欧美日韩精品亚洲av| 国产精品久久视频播放| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 亚洲国产欧美人成| cao死你这个sao货| 夜夜爽天天搞| 九色国产91popny在线| 不卡一级毛片| 露出奶头的视频| 热99re8久久精品国产| 九色国产91popny在线| 岛国在线观看网站| 一个人看的www免费观看视频| 亚洲精品在线美女| 久久久久久国产a免费观看| 亚洲精品乱码久久久v下载方式 | 在线观看一区二区三区| x7x7x7水蜜桃| 午夜视频精品福利| 午夜福利视频1000在线观看| 亚洲欧美日韩东京热| 亚洲精品美女久久久久99蜜臀| 国产成人欧美在线观看| 久久精品人妻少妇| 麻豆国产av国片精品| 亚洲色图av天堂| 中文字幕熟女人妻在线| 91老司机精品| 亚洲国产看品久久| 又爽又黄无遮挡网站| 黄色 视频免费看| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 国产高清激情床上av| 日韩有码中文字幕| 亚洲一区二区三区色噜噜| 51午夜福利影视在线观看| 国内精品久久久久精免费| 一区福利在线观看| 国产精品亚洲av一区麻豆| 悠悠久久av| 色精品久久人妻99蜜桃| 亚洲最大成人中文| 在线观看美女被高潮喷水网站 | 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 精品免费久久久久久久清纯| 国产精品电影一区二区三区| 久久中文看片网| 成熟少妇高潮喷水视频| 日本与韩国留学比较| 亚洲成av人片免费观看| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 久久久久免费精品人妻一区二区| 88av欧美| 国产精品久久电影中文字幕| 精品电影一区二区在线| 男人和女人高潮做爰伦理| 国产精品99久久99久久久不卡| a级毛片a级免费在线| 中文字幕最新亚洲高清| 国产真人三级小视频在线观看| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3| 欧美黑人巨大hd| 免费无遮挡裸体视频| av中文乱码字幕在线| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 亚洲 欧美 日韩 在线 免费| 淫秽高清视频在线观看| 精品熟女少妇八av免费久了| 亚洲中文日韩欧美视频| www.自偷自拍.com| 亚洲五月婷婷丁香| 一二三四在线观看免费中文在| 亚洲国产欧美人成| 成人欧美大片| 波多野结衣高清作品| 亚洲欧洲精品一区二区精品久久久| 无遮挡黄片免费观看| 亚洲人与动物交配视频| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 视频区欧美日本亚洲| 久久久久久久久免费视频了| 午夜免费观看网址| 色av中文字幕| 男女下面进入的视频免费午夜| aaaaa片日本免费| 久久久久久九九精品二区国产| 久久久久国内视频| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 在线观看舔阴道视频| 老汉色av国产亚洲站长工具| 免费在线观看日本一区| 丰满的人妻完整版| 亚洲天堂国产精品一区在线| 宅男免费午夜| 国产精品一区二区免费欧美| 国产精品,欧美在线| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 天天躁狠狠躁夜夜躁狠狠躁| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 老司机午夜十八禁免费视频| 人人妻人人澡欧美一区二区| aaaaa片日本免费| 97碰自拍视频| 在线看三级毛片| 又粗又爽又猛毛片免费看| 亚洲国产色片| 悠悠久久av| 午夜精品在线福利| 悠悠久久av| 久久午夜亚洲精品久久| 国产午夜福利久久久久久| 两个人视频免费观看高清| 一级毛片女人18水好多| 欧美三级亚洲精品| 国产私拍福利视频在线观看| 中亚洲国语对白在线视频| 久久久久久久久免费视频了| 午夜影院日韩av| av视频在线观看入口| 精品久久久久久久久久久久久| 黑人操中国人逼视频| 免费看a级黄色片| 淫秽高清视频在线观看| 亚洲五月婷婷丁香| 国产午夜精品论理片| 欧美性猛交黑人性爽| 国产精品野战在线观看| 亚洲av电影在线进入| 日日摸夜夜添夜夜添小说| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费| АⅤ资源中文在线天堂| 99国产精品99久久久久| 欧美一区二区国产精品久久精品| 国产亚洲精品综合一区在线观看| 国产精品av久久久久免费| 在线永久观看黄色视频| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆 | 手机成人av网站| av在线天堂中文字幕| 在线观看舔阴道视频| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 90打野战视频偷拍视频| 亚洲av中文字字幕乱码综合| 欧美性猛交╳xxx乱大交人| 91九色精品人成在线观看| 综合色av麻豆| 欧美乱码精品一区二区三区| 香蕉丝袜av| 中文资源天堂在线| 免费观看人在逋| 一本综合久久免费| 欧美激情在线99| 老熟妇乱子伦视频在线观看| www.www免费av| 在线a可以看的网站| 久久天躁狠狠躁夜夜2o2o| 老司机在亚洲福利影院| 精品久久久久久久末码| 亚洲精品在线美女| 真人一进一出gif抽搐免费| 亚洲精品在线美女| bbb黄色大片| 91字幕亚洲| 国内精品久久久久久久电影| 美女大奶头视频| 国产69精品久久久久777片 | 看免费av毛片| 综合色av麻豆| 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 黄色成人免费大全| 桃红色精品国产亚洲av| 午夜视频精品福利| 亚洲成a人片在线一区二区| 精品久久久久久,| 狂野欧美激情性xxxx| 亚洲国产看品久久| 欧美大码av| 国产高清视频在线观看网站| 中文字幕av在线有码专区| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点| 99久久无色码亚洲精品果冻| 精品国产亚洲在线| 国产成人av教育| 最好的美女福利视频网| 精品99又大又爽又粗少妇毛片 | 亚洲av片天天在线观看| 日韩欧美免费精品| 网址你懂的国产日韩在线| 亚洲精品久久国产高清桃花| 国产99白浆流出| 在线观看日韩欧美| 国产野战对白在线观看| 蜜桃久久精品国产亚洲av| 91麻豆精品激情在线观看国产| 99热这里只有是精品50| 90打野战视频偷拍视频| 在线十欧美十亚洲十日本专区| 亚洲国产欧美一区二区综合| 身体一侧抽搐| 国产成人一区二区三区免费视频网站| 成人三级黄色视频| 午夜成年电影在线免费观看| 欧美黄色片欧美黄色片| 成人精品一区二区免费| а√天堂www在线а√下载| 黄色日韩在线| 午夜精品在线福利| 亚洲精品在线观看二区| 99久久综合精品五月天人人| 在线永久观看黄色视频| 啦啦啦韩国在线观看视频| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看| 嫁个100分男人电影在线观看| 999久久久精品免费观看国产| 女警被强在线播放| av国产免费在线观看| 国产成人啪精品午夜网站| 日韩欧美三级三区| 色综合婷婷激情| 免费观看人在逋| 国产精品一区二区精品视频观看| 久久九九热精品免费| ponron亚洲| 99久久精品国产亚洲精品| 97人妻精品一区二区三区麻豆| 美女扒开内裤让男人捅视频| 天堂动漫精品| 国产伦在线观看视频一区| 欧美黑人巨大hd| 日本黄大片高清| 精品一区二区三区四区五区乱码| 色噜噜av男人的天堂激情| 最近最新中文字幕大全电影3| 久久香蕉国产精品| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 国产男靠女视频免费网站| 校园春色视频在线观看| 国产精品一区二区三区四区久久| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 99视频精品全部免费 在线 | 亚洲片人在线观看| 日韩大尺度精品在线看网址| 我要搜黄色片| 久久香蕉精品热| 亚洲国产色片| 亚洲成人中文字幕在线播放| 国产高清三级在线| 天天添夜夜摸| 变态另类成人亚洲欧美熟女| 国产美女午夜福利| 亚洲国产看品久久| 精品国产乱子伦一区二区三区| 成在线人永久免费视频| av天堂中文字幕网| 99久久国产精品久久久| 精华霜和精华液先用哪个| 久久人妻av系列| 国产精品日韩av在线免费观看| 亚洲最大成人中文| 成年人黄色毛片网站| av中文乱码字幕在线| 法律面前人人平等表现在哪些方面| 亚洲国产欧洲综合997久久,| 韩国av一区二区三区四区| 国产精品久久久久久人妻精品电影| 不卡一级毛片| 成年女人毛片免费观看观看9| 久久中文看片网| 9191精品国产免费久久| 在线观看午夜福利视频| 亚洲精品在线观看二区| 伦理电影免费视频| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站| 伊人久久大香线蕉亚洲五| 美女扒开内裤让男人捅视频| 麻豆国产97在线/欧美| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩高清专用| 日韩成人在线观看一区二区三区| 黑人欧美特级aaaaaa片| 黄色视频,在线免费观看| 在线a可以看的网站| 精品一区二区三区四区五区乱码| 久久99热这里只有精品18| 国产激情欧美一区二区| 国产精品久久久久久人妻精品电影| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 亚洲av成人av| 不卡av一区二区三区| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 成人一区二区视频在线观看| cao死你这个sao货| 91字幕亚洲| 日本三级黄在线观看| 麻豆国产97在线/欧美| 欧美不卡视频在线免费观看| 一进一出抽搐动态| 亚洲片人在线观看| 人人妻人人看人人澡| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 久久国产精品人妻蜜桃| 国产黄色小视频在线观看| 国产亚洲精品久久久久久毛片| av片东京热男人的天堂| 美女高潮喷水抽搐中文字幕| 日本熟妇午夜| 欧美色视频一区免费| 亚洲国产看品久久| 一级毛片高清免费大全| 嫩草影院入口| 日本免费一区二区三区高清不卡| svipshipincom国产片| 国产一区二区三区在线臀色熟女| 中文亚洲av片在线观看爽| 99久久精品国产亚洲精品| 黄片小视频在线播放| 欧美日韩国产亚洲二区| 男人的好看免费观看在线视频| 免费看a级黄色片| 国产在线精品亚洲第一网站| 亚洲七黄色美女视频| 1000部很黄的大片| 亚洲国产中文字幕在线视频| 国产亚洲欧美在线一区二区| 白带黄色成豆腐渣| 黄色片一级片一级黄色片| 一进一出好大好爽视频| 欧美乱色亚洲激情| 久久午夜亚洲精品久久| 在线观看一区二区三区| 欧美高清成人免费视频www| 桃红色精品国产亚洲av| 五月伊人婷婷丁香| 麻豆一二三区av精品| 中亚洲国语对白在线视频| av天堂在线播放| 成人性生交大片免费视频hd| 丁香欧美五月| 看片在线看免费视频| 亚洲精华国产精华精| 久久久久亚洲av毛片大全| 国产高清三级在线| 欧美zozozo另类| 精品电影一区二区在线| 午夜久久久久精精品| 精品国产乱码久久久久久男人| 动漫黄色视频在线观看| 久久久久国产一级毛片高清牌| 亚洲精品美女久久av网站| 老熟妇乱子伦视频在线观看| 亚洲欧美激情综合另类| 男女床上黄色一级片免费看| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 日本 av在线| 好看av亚洲va欧美ⅴa在| 亚洲成av人片免费观看| 日本 av在线| 国产亚洲精品一区二区www| 国产欧美日韩一区二区精品| 久久婷婷人人爽人人干人人爱| 国产午夜精品论理片| 成人性生交大片免费视频hd| 亚洲激情在线av| 成人高潮视频无遮挡免费网站| 午夜激情福利司机影院| 18禁国产床啪视频网站| 不卡av一区二区三区| 三级毛片av免费| 五月玫瑰六月丁香| 国产精品1区2区在线观看.| 首页视频小说图片口味搜索| 国产三级黄色录像| 亚洲中文字幕日韩| 熟女少妇亚洲综合色aaa.| 国产精品精品国产色婷婷|