• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prussian blue analogue derived NiCoSe4 coupling with nitrogen-doped carbon nanofibers for pseudocapacitive electrodes

    2023-11-21 03:04:44GuohaoYangChengangPeiFangXuHoSeokParkXuYuHuanPang
    Chinese Chemical Letters 2023年11期

    Guohao Yang,Chengang Pei,Fang Xu,Ho–Seok Park,Xu Yu,Huan Pang

    a School of Material Science and Engineering,Guizhou Minzu University,Guiyang 550025,China

    b School of Chemical Engineering,Guizhou Minzu University,Guiyang 550025,China

    c Department of Chemical Engineering,College of Engineering,Sungkyunkwan University,Suwon-si,Gyeonggi-do 440-746,Republic of Korea

    d School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,China

    Keywords:Electrospinning Carbon nanofibers Supercapacitors Heteroatom doping Metal selenides

    ABSTRACT The design of pseudocapacitive materials by coupling transition metal compounds with a conductive carbon matrix is important for the high performance of supercapacitors.Herein,we construct the Prussian blue analogue derived nickel-cobalt selenides coupling with nitrogen-doped carbon nanofibers (NiCoSe4-NCNFs) by carbonization and selenization of polyacrylonitrile nanofibers.The effect of selenization and element N doping on the morphological structure and surface chemistry of NiCoSe4-NCNFs are evaluated.Due to the accelerated electrolyte ion diffusion,enlarged active surface area and the modified surface chemistry by the strong interaction at NiCoSe4/NCNFs interfaces,NiCoSe4-NCNFs show excellent capacitive behaviors in 1 mol/L KOH,and the specific capacitance is 1257 F/g at 1 A/g with a rate capability of 78% and cyclic stability of 82.9%.The Gibbs free energy of adsorption OH- is calculated by density functional theory to investigate the charge storage mechanism.This work offers a new strategy to construct the transition metal selenides/carbon nanofibers hybrids for high-performance supercapacitor devices.

    The combustion of fossil fuels results in serious environmental problems and the aim to get rid of the energy crisis is a global concern [1,2].Supercapacitors (SCs) own the merits of high-power density,long-term stability,and less susceptibility to overheating at high charge/discharge rates,which are one promising energy storage system to satisfy the energy demand [3–5].Pseudocapacitors (PCs) arise from the reversible redox reactions by the accommodation of charges at or near the electrode surface [6–9].However,the low energy density is still the dominant limitation of PCs in practical applications.The effort on developing conspicuous electrode materials is an effective strategy to enhance the energy density.

    Prussian blue analogue (PBA) as one member of metal-organic frameworks owns the merits of abundant porosity and uniform element distribution [10,11],and PBA-derived transition metal oxides(TMO) as pseudocapacitive electrode materials have attracted attention due to their rich faradic reaction and large specific surface area [12–14].To overcome their low electrical conductivity,the electronic structure modification of TMO by heteroatoms doping has been reported,such as sulfidation and phosphidation [15–17].Cubic NiS nanoframes and hollow nickel cobalt phosphate with nitrogen-doped carbon show improved capacitive behaviors[16,17].Recently,transition metal selenides (TMS) with excellent capacitive behaviors attract attention.Selenium has similar physical and chemical properties with sulfur and oxygen [18,19] and a larger atomic size than sulfur [20],which result in a smaller band gap and larger polarizability of TMS than TMO [21].The replacement of oxygen sites by selenide species is the primary motivation to explore pseudocapacitive materials.Furthermore,the introduction of a conductive matrix as the second functional component can increase the cyclic stability of electrode materials.

    Carbon-based nanomaterials (carbon nanotubes,graphene) have received extensive attention as conductive materials attributing to their high electrical conductivity [22–25].The hybrids by incorporating TMO with graphene,carbon nanotubes have been constructed to show the enhanced electrochemical performance,such as MnO2/graphene [5] and Co(OH)2/carbon nanotube [26].Onedimensional (1D) carbon nanofibers (CNFs) obtained from the electrospinning technique own large surface-volume ratios and effi-cient ion/electron transport [27–29].After stabilization and carbonization,CNFs with high porosity and the rough surface can expose more specific surfaces and accelerate the electrolyte ion diffusion.It was well known that the performance of electrode materials is strong relative to their morphological structure and chemical composition.Heteroatom-doped CNFs with excellent capacitive performance have been reported.The incorporation of heteroatoms into carbon materials can adjust the electronic structure to improve the electrochemical performance of SCs,such as N-doped CNFs [30] and P-doped CNFs [31].The hybridization of CNFs with TMS or TMO is an attractive strategy to construct the highly active materials to achieve excellent capacitive performance,such as NiO nanoparticles with N doped CNFs [32];CNFs wrapped NiS nanoparticles [33] and hollow Co3O4embedded CNFs [34].Therefore,the design of one-dimensional hybrid by coupling PBAderived bimetallic selenides with heteroatom N doping carbon is necessary to be explored as highly pseudocapacitive materials for SCs.

    Herein,we prepared the nickel-cobalt selenides coupled with nitrogen-doped carbon nanofibers (NiCoSe4-NCNFs)viathe selenization and carbonization of the electrospun NiCo PBA/polyacrylonitrile (PAN) nanofibers.The NiCoSe4nanoparticles and N-doped CNFs are the dominant pseudocapacitive materials.Due to the synergistic effect of porous 1D structure and the hybridization of bimetallic selenides with NCNFs,NiCoSe4-NCNFs exhibit excellent capacitive behaviors for SCs in 1 mol/L KOH,such as the high specific capacitance (1257 F/g),good rate capability (78%)and cyclic stability (82.9%).This work presents an effective design concept for constructing 1D bimetallic selenides with heteroatomdoped CNFs as promising pseudocapacitive materials for SCs.

    Fig.1a shows the schematic illustration of NiCoSe4-NCNFs by electrospinning,thermal activation and selenization approaches.The homogeneity of the polymer dispersion is an important factor to electrospun the uniformly distributed 1D nanofibers.The average size of NiCo-PBA is about 200 nm (Fig.S1 in Supporting information).The homogeneous dispersion of NiCo-PBA/PAN is obtained due to their good dispersibility in dimethylformamide(DMF).The well-aligned 1D nanofibers are obtained without forming the beads.The polymer is decomposed to ammonia gas at 800°C,which acts as the nitrogen source to construct the NCNFs.Finally,the NiCoSe4-NCNFs are obtained after the carbonization and selenization of NiCo-PBA/PAN nanofibers.

    Fig.1.(a) Schematic illustration of the preparation process of NiCoSe4-NCNFs.SEM images of (b) NiCo-NCNFs and (c) NiCoSe4-NCNFs.TEM images of (d) NiCo-NCNFs and (e) NiCoSe4-NCNFs.(f) HR-TEM image and (g) elemental mapping of NiCoSe4-NCNFs.

    The morphological structure of NiCoSe4-NCNFs is characterized by scanning electron microscopy (SEM).NiCo-PBA/PAN nanofibers exhibit raised surface,which is different from pristine PAN nanofibers (Fig.S2 in Supporting information).After the carbonization at 800 °C,the polymer nanofibers are decomposed into NCNFs (Fig.S2c) and NiCo-NCNFs (Fig.1b).NiCo-NCNFs show the cracked and collapsed structure of PBA nanocubes by the reduction of metal ions.Especially,the formation of metal selenides for NiCoSe4-NCNFs results in the rough surface morphology and the stable decoration of nanoparticles on or beneath the NCNFs surfaces (Fig.1c).

    As confirmed by transmission electron microscopy (TEM),NiCo-PBA nanocubes are evenly wrapped in PAN nanofibers for NiCo-PBA/PAN,which is different from the smooth surface of PAN nanofibers (Fig.S3 in Supporting information).The raised bump and rough surface are caused by embedding the PBA nanocubes beneath the surface of PAN nanofibers.After carbonization at 800 °C,the transparent phenomena for NiCo-NCNFs disappears attributing to the formation of small-sized NiCo species and nitrogen-doped carbon nanofibers (Fig.1d).The increased diameter of NiCoSe4-NCNFs is attributed to the formation of metal selenides on or beneath the surface of nanofibers (Fig.1e).The increased surface roughness and porosity of nanofibers are conductive to provide abundant pathways for fast ion diffusion.Furthermore,the high-resolution TEM image of NiCoSe4-NCNFs shows the interplanar spacing of 0.263 and 0.208 nm,corresponding to the (210)and (220) planes of NiCoSe4(Fig.1f),respectively.The energydispersive X-ray spectra (EDX) confirms the existence of Ni,Co,Se,N and C elements in Fig.S4 (Supporting information).The distribution of Ni,Co,Se,N and C elements is well-matched with the outline of NiCoSe4-NCNFs (Fig.1g),implying the successful construction of heteroatom N doping and the formation of metal selenides.

    The structure and crystallinity of NiCoSe4-NCNFs were confirmed by X-ray diffraction (XRD) in Fig.2a.The peak at 27° for NCNFs corresponds to the (002) plane of graphitic carbon [35],and the intensity is decreased for NiCoSe4-NCNFs due to the formation metal compounds.Meanwhile,the diffraction peaks of NiCo-NCNFs correspond to the typical planes of NiCo alloys [36].The peaks at 33.7°,37.1° and 43.4° for NiCoSe4-NCNFs are related to the (210),(211),and (220) planes of NiCoSe4(JCPDS No.29–1417).This result proves the successful construction of metal selenides during the activation treatment.The formation of defective sites after N doping and selenization was confirmed by Raman spectra in Fig.S5 (Supporting information),and a larger ID/IG ratio of NiCoSe4-NCNFs than that of NiCo-NCNFs and NCNFs implying more exposed surface area and active site for fast faradic reaction.

    Fig.2.(a) XRD patterns of NCNFs,NiCo-NCNFs,NiCoSe4-NCNFs.High-resolution XPS spectra of NiCoSe4-NCNFs,(b) Co 2p,(c) Ni 2p and (d) N 1s.

    The chemical composition of NiCoSe4-NCNFs was probed by X-ray photoelectron spectroscopy (XPS).NiCoSe4-NCNFs are composed of Ni,Co,Se,N and C elements (Fig.S6 and Table S1 in Supporting information).The deconvoluted peaks of Co 2p at 777.3 and 779.9 eV correspond to Co3+and Co2+of Co 2p3/2,and the peaks at 792.2 and 796.4 eV ascribe to the Co3+and Co2+of Co 2p1/2,accompanying the related satellite peaks (Fig.2b),respectively [37].The deconvoluted Ni 2p spectra show two peaks at 852.1 and 869.2 eV for Ni2+and two peaks at 854.7 and 871.8 eV for Ni3+in Fig.2c,respectively [38].For Se 3d spectra in Fig.S7(Supporting information),the peaks at 54.1,54.8 and 57.9 eV correspond to Se 3d5/2,Se 3d3/2and the oxidation state of selenides.The existent oxygen groups for NiCoSe4-NCNFs can be attributed to the surface oxidation by exposing sample under air conditions[39,40].In comparsion,the oxygen content for NiCoSe4-NCNFs is much lower than that of NiCo-NCNFs implying a high electrical conductivity for NiCoSe4-NCNFs,which is favorable for improving the capacitive performance.During the thermal activation process,the diffusion of electrons is from the metallic Ni/Co center to the non-metallic Se center to improve the synergistic effect in NiCoSe4composites [41].The formation of pyridinic-N and pyrrolic-N bond in implyies the successful incorporation of N into carbon (Fig.2d),which is further confirmed by C 1s spectra in Fig.S8 (Supporting information).The pyridinic and pyrrolic N have been proven as effective active sites for fast faradic reactions [42].The formation of NiCo selenides and N-doped carbon are favorable for improving the capacitive performance of NiCoSe4-NCNFs [43].

    The electrochemical behaviors of NiCoSe4-NCNFs were measured by cyclic voltammetry (CV) in 1 mol/L KOH by a threeelectrode configuration in Fig.3a.NiCoSe4-NCNFs own apparent redox peaks and large current density at 50 mV/s,indicating a highly reversible pseudocapacitive performance.As the scan rate increased from 5 mV/s to 100 mV/s,the symmetrical CV curves for NiCoSe4-NCNFs indicate the reversible redox reaction during the charge/discharge process (Fig.S9 in Supporting information).Meanwhile,NiCoSe4-NCNFs show higher redox peaks than that of NiCo-NCNFs,resulting from the formation of metal selenides as the dominant active sites for fast faradic reactions.The corresponding redox reaction during the charge-discharge process for NiCoSe4is typically presented as follows [44]:

    Fig.3.(a) CV curves at 50 mV/s,(b) GCD curves at 1 A/g,(c) rate capability,(d) cyclic stability and (e) Nyquist plots of NCNFs,NiCo-NCNFs and NiCoSe4-NCNFs.(f) The calculated b values by plotting log(sweep rate) vs.log(peak current).(g) The capacitive and diffusive contribution of NiCoSe4-NCNFs at different scan rates.(h) The geometryoptimized structure of CN-NiCoSe?before and after OH adsorbed at the active sites.

    Galvanostatic charge/discharge (GCD) curves were further carried out at various current densities,and the distorted symmetric GCD curves for NiCoSe4-NCNFs at 1 A/g imply their pseudocapacitive behavior in Fig.3b.The calculated specific capacitance of NiCoSe4-NCNFs (1257 F/g) is 2.1 and 7.9 times higher than that of NiCo-NCNFs (585 F/g) and NCNFs (168 F/g),respectively.The specific capacitance of NiCoSe4-NCNFs maintains a value of 980 F/g with a rate capability of 78% from 1 A/g to 20 A/g (Fig.S10 in Supporting information),which is larger than that of NiCo-NCNFs(70.8%) and NCNFs (55.6%) in Fig.3c.The stability of pseudocapacitive NiCoSe4-NCNFs is confirmed by GCD curves at 5 A/g for 5000 cycles in Fig.3d.The capacitance retention is 82.9% for NiCoSe4-NCNFs,which is much larger than that of NiCo-NCNFs (60.2%).The slow decay in specific capacitance for NiCoSe4-NCNFs can be ascribed to the effective accommodation of electrons on the active surface where the fast reversible redox reaction occurs.The excellent long-term stability of NiCoSe4-NCNFs is further confirmed by CV test for 5000 cycles at 100 mV/s (Fig.S11 in Supporting information).The kinetic behavior of NiCoSe4-NCNFs is evaluated by electrochemical impedance spectroscopy (EIS) in Fig.3e.And the equivalent series resistance (ESR) is obtained by the intercept of Nyquist plot in the high frequency,arising from the electrolyte resistance.The charge transfer resistance (Rct) for NiCoSe4-NCNFs(1.36Ω) is smaller than NiCo-NCNFs (3.2Ω) and NCNFs (2.14Ω).This result demonstrates that NiCoSe4-NCNFs have fast kinetic behaviors at the electrode/electrolyte interface due to the strong interfacial connection between NiCoSe4and NCNFs.

    The electrochemical reaction kinetics of NiCoSe4-NCNFs are studied by Dunn’s methods [45],and the charge storage mechanism can be divided into the capacitive and diffusive dominant process.Especially,the occurrence of faradic reaction at the electrode surface means that the capacitive contribution is dominant,and the diffusive contribution is dominant whereas the faradic reaction occurs inside the bulk electrode [46,47].Thebvalues of 0.5 and 1.0 imply the diffusion-controlled and capacitive-controlled processes as the related dominant charge storage mechanism.The capacitive contribution of NiCoSe4-NCNFs is studied by the redox peak current (i) with the related scan rate (v) [48].Thebvalue is 0.66 and 0.64 for the anodic and cathodic peaks of NiCoSe4-NCNFs in Fig.3f,indicating the dominant capacitive-controlled process.At 5 mV/s,the percentage of capacitive contribution for NiCoSe4-NCNFs is about 60.5%,which is dramatically increased to 86.2% at 100 mV/s (Fig.3g and Fig.S12 in Supporting information).As further confirmed by Trasatti’s method,the capacitive contribution is calculated to 62.3% for NiCoSe4-NCNFs by maximum surface capacitance divided by maximum total capacitance in Fig.S13 (Supporting information).These evidences confirm that the diffusive restriction can be hindered by coupling pseudocapacitive metal selenides with NCNFs.The capacitive-controlled mechanism for NiCoSe4-NCNFs with fast reversible faradic reactions is suitable for application in the high-power energy system.The charge storage mechanism of NiCoSe4-NCNFs was further elucidated by density function theory (DFT) calculation.The more negative energy of OH adsorption (Eads) predicts stronger binding at the active sites.TheEadsvalue of the simulated CN-NiCoSe?(-1.89 eV) is more negative than that of CN-NiCo?(-1.78 eV) and CN?(-0.75 eV) in Fig.3h and Fig.S14 (Supporting information),respectively.The simulated CN-NiCoSe?model would be the most dominant active site for reversible and fast charge transfer.

    The electrochemical performance of the assembled NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors was tested in 1 mol/L Na2SO4with the enlarged potential window of 1.5 V.Fig.4a shows the CV curves of the symmetric supercapacitor at 50 mV/s under different potentials,and the potential window of 1.5 V is finally chosen because of the appearance of electrolyte decomposition at 1.6 V.Fig.4b shows the CV curves of NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors at scan rates from 5 mV/s to 100 mV/s.The distorted rectangular shape of CV curves implies the good reversibility of NiCoSe4-NCNFs.The specific capacitance is 81 F/g at 0.5 A/g and the capacitance retention is about 58% from 0.5 A/g to 5 A/g in Fig.4c,which are both higher than those of NiCo-NCNFs (Fig.S15 in Supporting information).The ESR for NiCoSe4-NCNFs||NiCoSe4-NCNFs arises from the contact interface between electrode and electrolyte (Fig.S16 in Supporting information),and the calculatedRctvalue is 23.5Ω.The Ragone diagram of NiCoSe4-NCNFs||NiCoSe4-NCNFs is calculated from the GCD curves in Fig.4d and the maximum energy density can be delivered to 58.6 Wh/kg with the power density of 864 W/kg.

    Fig.4.(a) CV curves of NiCoSe4-NCNFs||NiCoSe4-NCNFs supercapacitors at 50 mV/s under different potentials.(b) CV,(c) GCD curves at 1.5 V and (d) Ragone plot of NiCoSe4-NCNFs||NiCoSe4-NCNFs.

    Herein,NiCoSe4-NCNFs were prepared by electrospinning,carbonization and selenization.The rough surface and crosslinked structure are helpful for electrolyte ion diffusion and increase the active surface area.Meanwhile,the surface chemistry is modified by forming metal selenides and heteroatoms N doping into CNFs.Due to the synergistic effect of morphological structure and chemical composition,NiCoSe4-NCNFs show excellent capacitive behavior of SCs.The charge storage mechanism of NiCoSe4-NCNFs is demonstrated by Dunn’s method and DFT calculation.This work provides a guideline for constructing the coupling of the PBAderived material with carbon nanofibers for high performance of SCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The work is supported by the Science and Technology Foundation of Guizhou Provincial Department of Education,China (No.KY[2018]147).X.Yu also thanks the Six Talent Peaks Project of Jiangsu Province (No.XCL-103) and “High-End Talent Project” of Yangzhou University.We also acknowledge the technical support at the Testing Center of Yangzhou University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108152.

    午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 99久久精品国产亚洲精品| 国产色爽女视频免费观看| 搞女人的毛片| 精品人妻1区二区| 国产私拍福利视频在线观看| 51午夜福利影视在线观看| 最近在线观看免费完整版| 亚洲精品乱码久久久v下载方式| 国产亚洲精品av在线| 亚洲一区二区三区色噜噜| 男女做爰动态图高潮gif福利片| 噜噜噜噜噜久久久久久91| 亚洲av免费高清在线观看| 国产成人啪精品午夜网站| 熟妇人妻久久中文字幕3abv| 亚洲国产精品sss在线观看| 少妇的逼好多水| 久久久久国内视频| 中文在线观看免费www的网站| 国产精品一区二区三区四区免费观看 | 毛片女人毛片| 欧洲精品卡2卡3卡4卡5卡区| 免费av不卡在线播放| 亚洲精品成人久久久久久| 综合色av麻豆| 桃色一区二区三区在线观看| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 亚洲国产欧美人成| 日本撒尿小便嘘嘘汇集6| 成人美女网站在线观看视频| 午夜福利在线观看免费完整高清在 | 国产高清有码在线观看视频| 如何舔出高潮| 网址你懂的国产日韩在线| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 69人妻影院| 欧美一区二区亚洲| 最近最新免费中文字幕在线| 成人性生交大片免费视频hd| 一本精品99久久精品77| 在线观看免费视频日本深夜| 精品乱码久久久久久99久播| 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 午夜福利欧美成人| 国产精品av视频在线免费观看| 午夜福利免费观看在线| 欧美xxxx性猛交bbbb| 脱女人内裤的视频| 国产乱人视频| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 色综合婷婷激情| 在线观看av片永久免费下载| 一个人免费在线观看的高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲av中文字字幕乱码综合| 午夜免费成人在线视频| 69人妻影院| 极品教师在线视频| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 女人十人毛片免费观看3o分钟| aaaaa片日本免费| 精品久久久久久久人妻蜜臀av| 三级国产精品欧美在线观看| 精品久久久久久久久av| 两人在一起打扑克的视频| 色综合婷婷激情| 此物有八面人人有两片| www日本黄色视频网| 在线免费观看的www视频| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美+亚洲+日韩+国产| 国产精品三级大全| 国产欧美日韩精品亚洲av| 欧美+亚洲+日韩+国产| 成人特级av手机在线观看| 好男人在线观看高清免费视频| 九色国产91popny在线| 免费av不卡在线播放| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 真人一进一出gif抽搐免费| 精品人妻一区二区三区麻豆 | a级毛片免费高清观看在线播放| 一进一出抽搐动态| 熟妇人妻久久中文字幕3abv| 日韩欧美一区二区三区在线观看| 一本久久中文字幕| 久久久久久久久中文| 成人国产一区最新在线观看| 亚洲狠狠婷婷综合久久图片| 免费黄网站久久成人精品 | 久久久色成人| 国产午夜精品论理片| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 99视频精品全部免费 在线| 久久精品国产清高在天天线| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 日本 av在线| 中国美女看黄片| 精品久久久久久久久久久久久| 亚洲电影在线观看av| 久久人人爽人人爽人人片va | 波野结衣二区三区在线| 九色成人免费人妻av| 无人区码免费观看不卡| 亚洲欧美日韩东京热| 欧美bdsm另类| 成年人黄色毛片网站| 人妻丰满熟妇av一区二区三区| 悠悠久久av| 亚洲无线在线观看| 成年女人毛片免费观看观看9| 欧美精品啪啪一区二区三区| 深夜精品福利| 久久久国产成人精品二区| 黄色一级大片看看| 国产高清视频在线观看网站| 美女 人体艺术 gogo| 老鸭窝网址在线观看| 国产一区二区激情短视频| 日韩有码中文字幕| 人妻制服诱惑在线中文字幕| avwww免费| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕 | 简卡轻食公司| 久久精品国产亚洲av涩爱 | av黄色大香蕉| 不卡一级毛片| 欧美一区二区亚洲| 最近最新中文字幕大全电影3| 亚洲中文字幕一区二区三区有码在线看| 99在线人妻在线中文字幕| 三级毛片av免费| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 亚洲精品久久国产高清桃花| 中文字幕av在线有码专区| 亚洲乱码一区二区免费版| а√天堂www在线а√下载| 丰满人妻熟妇乱又伦精品不卡| 成人特级黄色片久久久久久久| 亚洲综合色惰| 日韩 亚洲 欧美在线| 成人永久免费在线观看视频| 国产欧美日韩一区二区三| 欧美成狂野欧美在线观看| 国产av麻豆久久久久久久| 最好的美女福利视频网| 毛片一级片免费看久久久久 | 成人精品一区二区免费| 最新中文字幕久久久久| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 丰满的人妻完整版| 亚洲国产精品成人综合色| 天天躁日日操中文字幕| 国产成人欧美在线观看| 中文字幕高清在线视频| 国产高潮美女av| 久久亚洲精品不卡| 欧美性感艳星| 成人av在线播放网站| 又爽又黄a免费视频| 一个人看视频在线观看www免费| 亚洲专区中文字幕在线| 桃色一区二区三区在线观看| 69人妻影院| 精品无人区乱码1区二区| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 美女高潮喷水抽搐中文字幕| 亚洲成人久久爱视频| 久久人妻av系列| 白带黄色成豆腐渣| 色哟哟·www| 91麻豆av在线| 日韩免费av在线播放| а√天堂www在线а√下载| 国产色爽女视频免费观看| 精品人妻1区二区| 欧美xxxx黑人xx丫x性爽| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 国产人妻一区二区三区在| 特级一级黄色大片| 成年女人永久免费观看视频| 免费在线观看成人毛片| 欧美日本视频| 色噜噜av男人的天堂激情| 欧美乱妇无乱码| 好看av亚洲va欧美ⅴa在| 波多野结衣高清无吗| 人妻丰满熟妇av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 欧美午夜高清在线| 久久天躁狠狠躁夜夜2o2o| 天堂影院成人在线观看| 老熟妇乱子伦视频在线观看| 99久久精品热视频| 99riav亚洲国产免费| 国产成人欧美在线观看| 国产精品电影一区二区三区| 身体一侧抽搐| 亚洲av成人av| 免费观看的影片在线观看| 久久精品国产亚洲av天美| 日韩国内少妇激情av| 精品人妻视频免费看| 国内毛片毛片毛片毛片毛片| 欧美xxxx性猛交bbbb| 亚洲中文日韩欧美视频| 此物有八面人人有两片| 亚洲狠狠婷婷综合久久图片| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 好男人在线观看高清免费视频| 内射极品少妇av片p| 精品午夜福利在线看| 亚洲第一欧美日韩一区二区三区| 久久精品人妻少妇| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 久久精品国产亚洲av天美| 亚洲av成人不卡在线观看播放网| www.www免费av| 国产午夜精品论理片| 亚洲av免费在线观看| 一级av片app| 身体一侧抽搐| 99riav亚洲国产免费| 国产成+人综合+亚洲专区| 国产成年人精品一区二区| 免费看日本二区| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 丁香六月欧美| 一进一出好大好爽视频| 亚洲av电影不卡..在线观看| 午夜免费成人在线视频| 熟女人妻精品中文字幕| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 色在线成人网| 久久6这里有精品| 十八禁国产超污无遮挡网站| 欧美bdsm另类| 午夜福利在线观看吧| 久久久精品大字幕| 草草在线视频免费看| 一级黄片播放器| 女同久久另类99精品国产91| 老鸭窝网址在线观看| 91九色精品人成在线观看| 欧美黑人欧美精品刺激| 人妻久久中文字幕网| 久久精品人妻少妇| 搡老妇女老女人老熟妇| 精品99又大又爽又粗少妇毛片 | 美女免费视频网站| 久久久久性生活片| 欧美一区二区精品小视频在线| 色播亚洲综合网| 中文资源天堂在线| 丰满乱子伦码专区| 国产色婷婷99| 色吧在线观看| 免费看日本二区| 国产乱人视频| 国产人妻一区二区三区在| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 99热精品在线国产| 国产精品一区二区三区四区久久| 亚洲美女搞黄在线观看 | 国产精品一区二区性色av| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 亚洲av美国av| 亚洲天堂国产精品一区在线| 又粗又爽又猛毛片免费看| 亚洲av第一区精品v没综合| 日韩欧美国产在线观看| 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 亚洲精品一区av在线观看| 1024手机看黄色片| 午夜福利在线观看免费完整高清在 | 亚洲第一欧美日韩一区二区三区| 中文字幕av成人在线电影| 91久久精品国产一区二区成人| 中文字幕av在线有码专区| 五月玫瑰六月丁香| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 又爽又黄无遮挡网站| 久久精品人妻少妇| 一进一出抽搐动态| 久久热精品热| 可以在线观看的亚洲视频| 亚洲 欧美 日韩 在线 免费| www.www免费av| 伦理电影大哥的女人| 国产一区二区三区在线臀色熟女| 麻豆一二三区av精品| 99热只有精品国产| 国产综合懂色| 波多野结衣高清无吗| 一边摸一边抽搐一进一小说| 一本综合久久免费| 露出奶头的视频| 日日夜夜操网爽| 丰满的人妻完整版| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 日日干狠狠操夜夜爽| 日日摸夜夜添夜夜添av毛片 | 欧美成人性av电影在线观看| 中文字幕久久专区| 国产免费av片在线观看野外av| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| 国产精品98久久久久久宅男小说| 亚洲av熟女| 欧美最黄视频在线播放免费| 无遮挡黄片免费观看| 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 成人无遮挡网站| 一个人看的www免费观看视频| 女人十人毛片免费观看3o分钟| 国产免费男女视频| 两个人视频免费观看高清| 内射极品少妇av片p| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区三区| 深爱激情五月婷婷| av女优亚洲男人天堂| 国产精品国产高清国产av| а√天堂www在线а√下载| 成人永久免费在线观看视频| 最近中文字幕高清免费大全6 | 国产精品99久久久久久久久| 少妇裸体淫交视频免费看高清| 在线播放无遮挡| 欧美色欧美亚洲另类二区| 我的老师免费观看完整版| 青草久久国产| 熟女电影av网| 美女cb高潮喷水在线观看| 在线观看免费视频日本深夜| 免费观看的影片在线观看| 一区二区三区激情视频| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 午夜免费激情av| 亚洲中文字幕日韩| 精品欧美国产一区二区三| 精品国产亚洲在线| 男女视频在线观看网站免费| 欧美最新免费一区二区三区 | 国产亚洲精品综合一区在线观看| 偷拍熟女少妇极品色| 国产精品电影一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产成人av教育| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区精品| 亚洲 国产 在线| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 非洲黑人性xxxx精品又粗又长| 国产精品影院久久| 欧美丝袜亚洲另类 | 精品久久国产蜜桃| netflix在线观看网站| 午夜福利免费观看在线| 久久久久久久久久成人| 色播亚洲综合网| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 日本一二三区视频观看| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| av中文乱码字幕在线| 又爽又黄无遮挡网站| 18禁黄网站禁片免费观看直播| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 亚洲三级黄色毛片| 舔av片在线| 成人永久免费在线观看视频| 色播亚洲综合网| 一级黄色大片毛片| 真人一进一出gif抽搐免费| 悠悠久久av| 51国产日韩欧美| 日本五十路高清| 欧美丝袜亚洲另类 | а√天堂www在线а√下载| 国产毛片a区久久久久| 男女视频在线观看网站免费| 亚洲精品在线美女| 少妇人妻精品综合一区二区 | 国产亚洲av嫩草精品影院| 国产极品精品免费视频能看的| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 国产日本99.免费观看| 村上凉子中文字幕在线| 成熟少妇高潮喷水视频| 宅男免费午夜| 免费观看精品视频网站| 欧美性猛交╳xxx乱大交人| 日本熟妇午夜| 最后的刺客免费高清国语| 999久久久精品免费观看国产| 欧美一区二区精品小视频在线| 午夜激情欧美在线| 亚洲成人中文字幕在线播放| 99久久成人亚洲精品观看| 88av欧美| 国产亚洲精品综合一区在线观看| а√天堂www在线а√下载| 国产精品1区2区在线观看.| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产 | 观看美女的网站| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 9191精品国产免费久久| 精品久久国产蜜桃| 国产在线男女| 亚洲七黄色美女视频| 在线a可以看的网站| 好男人在线观看高清免费视频| 国产三级中文精品| 色av中文字幕| 亚洲自偷自拍三级| 免费av观看视频| 女人十人毛片免费观看3o分钟| 国产精品亚洲一级av第二区| 18禁黄网站禁片午夜丰满| 久久国产乱子伦精品免费另类| 日韩欧美在线二视频| 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| av国产免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟妇熟女久久| 搞女人的毛片| 十八禁人妻一区二区| 欧美一区二区精品小视频在线| 夜夜夜夜夜久久久久| 午夜a级毛片| 亚洲在线自拍视频| 我要看日韩黄色一级片| 亚洲经典国产精华液单 | 久久国产精品影院| 色精品久久人妻99蜜桃| 亚洲av二区三区四区| 夜夜爽天天搞| 永久网站在线| 最新在线观看一区二区三区| 丰满的人妻完整版| 精品久久久久久久人妻蜜臀av| 69人妻影院| 亚洲中文字幕日韩| 欧美色欧美亚洲另类二区| 亚洲片人在线观看| 窝窝影院91人妻| 超碰av人人做人人爽久久| 波野结衣二区三区在线| 精品人妻熟女av久视频| 91av网一区二区| 久久人妻av系列| 国产一区二区三区在线臀色熟女| 一个人看的www免费观看视频| 久9热在线精品视频| 精品久久久久久,| 久久精品国产亚洲av天美| 99在线人妻在线中文字幕| 搞女人的毛片| 毛片女人毛片| 无遮挡黄片免费观看| 亚洲欧美激情综合另类| av中文乱码字幕在线| 成年女人毛片免费观看观看9| 色吧在线观看| 搡老熟女国产l中国老女人| 国产精品久久视频播放| 嫩草影视91久久| 蜜桃久久精品国产亚洲av| 亚洲熟妇熟女久久| 亚洲国产精品合色在线| 久久久国产成人免费| 97人妻精品一区二区三区麻豆| 十八禁国产超污无遮挡网站| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久久电影| 最新在线观看一区二区三区| 黄片小视频在线播放| 国产精品不卡视频一区二区 | 亚洲国产高清在线一区二区三| 免费在线观看成人毛片| 一进一出好大好爽视频| 亚洲成av人片在线播放无| 中国美女看黄片| 久久欧美精品欧美久久欧美| 高清在线国产一区| 精品久久国产蜜桃| 亚洲色图av天堂| 国产成人aa在线观看| 亚洲片人在线观看| 小蜜桃在线观看免费完整版高清| 欧美成人a在线观看| 日韩人妻高清精品专区| 欧美高清性xxxxhd video| 色哟哟·www| 看十八女毛片水多多多| 久久久久久久精品吃奶| 亚洲中文字幕日韩| 日韩有码中文字幕| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆 | 最近最新中文字幕大全电影3| 国产91精品成人一区二区三区| av黄色大香蕉| 99热只有精品国产| 成人精品一区二区免费| 一级毛片久久久久久久久女| 内射极品少妇av片p| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 国产精品久久视频播放| 女同久久另类99精品国产91| 亚洲欧美清纯卡通| 国产一区二区三区视频了| 男人和女人高潮做爰伦理| 亚洲中文字幕一区二区三区有码在线看| 国产精品嫩草影院av在线观看 | 欧美高清成人免费视频www| av在线天堂中文字幕| 99国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 成年版毛片免费区| 99riav亚洲国产免费| 身体一侧抽搐| 日韩 亚洲 欧美在线| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 日韩欧美国产在线观看| 天堂动漫精品| 免费av观看视频| 欧美成人性av电影在线观看| 一级黄色大片毛片| 99在线视频只有这里精品首页| 国产精品影院久久| 欧洲精品卡2卡3卡4卡5卡区| 听说在线观看完整版免费高清| 精品一区二区三区视频在线观看免费| 欧美成人免费av一区二区三区| 国产黄a三级三级三级人| 国产精品野战在线观看| 俄罗斯特黄特色一大片| 国语自产精品视频在线第100页| 麻豆国产av国片精品| 男女下面进入的视频免费午夜| 在线国产一区二区在线| 午夜福利视频1000在线观看| 婷婷色综合大香蕉| 少妇的逼水好多| 一区二区三区免费毛片| 精品久久久久久,| 美女被艹到高潮喷水动态| 成人无遮挡网站| 深夜a级毛片| 精品国内亚洲2022精品成人| 99久久无色码亚洲精品果冻| 日本五十路高清| 怎么达到女性高潮| 亚洲精华国产精华精| 色在线成人网| av专区在线播放| 在线观看午夜福利视频| av中文乱码字幕在线| 日韩大尺度精品在线看网址|