• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni3S2@NiFePx electrode with dual-anion-modulated layer for efficient and stable oxygen evolution

    2023-11-21 03:04:42XijieChenKeqingXuJinhnLiXioWngTeteZhoFngmingLiuMengYuFngyiCheng
    Chinese Chemical Letters 2023年11期

    Xijie Chen,Keqing Xu,Jinhn Li,Xio Wng,Tete Zho,Fngming Liu,Meng Yu,?,Fngyi Cheng,b,?

    a Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),Engineering Research Center of High-efficiency Energy Storage (Ministry of Education),College of Chemistry,Nankai University,Tianjin 300071,China

    b Haihe Laboratory of Sustainable Chemical Transformations,Tianjin 300192,China

    Keywords:Oxygen evolution reaction Anion-modulated layer Electrochemical reconstruction Phosphide Sulfide Membrane electrode assembly

    ABSTRACT The rational construction of high-performance and stable electrocatalyst for oxygen evolution reaction(OER) is a prerequisite for efficient water electrolysis.Herein,we develop a broccoli-like Ni3S2@NiFePx(Ni3S2@NFP) catalyst on nickel foam (NF) via a sequential two-step layer-by-layer assembly electrodeposition method.X-ray diffraction,in situ Raman and Fourier-transform infrared spectra have mutually validated the element segregation and phase refusion during OER condition.The reconstruction of double layer Ni3S2@NFP facilitates the formation of the active (oxy)hydroxides,which is modulated by the dual anionic layer with mixed sulfate and phosphate ions.As a result,the obtained Ni3S2@NFP electrode exhibits low overpotential (329 mV) and long-term durability (~500 h) for OER at current density of 500 mA/cm2.Moreover,the self-supported Ni3S2@NFP can act as an efficient and durable anode in alkaline anion exchange membrane water electrolysis device (AEMWE).This work provides a facile and scaled-up strategy to construct self-supported electrocatalyst and emphasizes the crucial role of anions in pre-catalyst reconstruction and enhancing OER performance.

    Green hydrogen production by water electrolysis coupled with renewable electricity has been considered as one of the prospective proposals to tackle global energy crisis and environmental pollution [1–3].Among the mainstream of water electrolysis technologies,alkaline exchange membrane water electrolysis (AEMWE) has received intensive attention considering the compact membrane electrode assembly,high energy conversion efficiency and availability of inexpensive transition metal (Fe,Co,Ni,etc.) based electrodes [4–6].However,the sluggish kinetic of anodic oxygen evolution reaction (OER) and poor electrode sustainability seriously impact electrolytic efficiency [7,8],leading to additional power consumption and limited lifetime.Thus,exploiting highly active and robust OER electrodes is pivotal for scalable hydrogen productionviawater electrolysis.

    Earth abundant nickel-iron-based catalysts,including oxides[9–11],(oxy)hydroxides [12,13],phosphides [14–16],chalcogenides(sulfides [17,18] and selenides [19,20]),borides [21,22],etc.,have been considered as promising non-precious options.Among these,self-supported electrode with uniform amorphous phosphide on porous substrate is considered to be a potential OER electrocatalyst [23].However,the possible structural stress and/or voids [24],leaching of active sites [25] and abundant bubbles breakage [26] at large current density lead to the degradation of OER performance for long-term operation,which is a stumbling block on the road to industrialization.In a bid to overcome this challenge,a modified layer is demanded on nickel-iron-based phosphide.Nickel sulfide,e.g.,Ni3S2,has been found to undergo self-activation andinsitutransform into oxysulfide,which can enhance the electrocatalytic activity and stabilityviaelectronic structure optimization [27].Consequently,Ni3S2maybe a judicious choice to modify nickel-iron-based phosphide.

    In this research,we fabricate the Ni3S2@NiFePx(Ni3S2@NFP)self-supported electrode by sequential electrodeposition method.Benefiting from the rough broccoli-like morphology,the Ni3S2@NFP has stronger local electric field strength on the top edge,which improves local concentration of adsorbed hydroxide ions.Furthermore,elemental mapping and line scanning reveal the element segregation and phase refusion of double layer Ni3S2@NFP,leading to the generation of Ni(Fe)OOH layer on the surface with dual anion inserted.During this process,theinsituformed anion-rich modified layer will not only accelerates proton transfer progress,but enhances the catalytic stability by inhibiting the dissolution of the metal active sites.Therefore,the obtained Ni3S2@NFP electrode achieves 500 mA/cm2at low overpotential of 329 mV and remains highly stable for 500 h in traditional three electrode system.The overall water splitting performance is further evaluated in AEMWE device using Ni3S2@NFP as anode.These results provide a novel perspective to understand thein situstructural reconstruction and anionic regulation effect of electrocatalysts in OER progress.

    As schematically presented in Fig.1a,Ni3S2@NFP electrocatalyst was fabricated by a sequential two-step layer-by-layer assembly electrodeposition method on conductive nickel foam (NF)substrate.The morphology and structural characters of NF,NFP,Ni3S2@NFP electrodes were examined by scanning electron microscopy (SEM).Compared to the glazed surface of NF (Fig.1b),electrodeposited NFP (Fig.1c and Figs.S1a-c in Supporting information) and Ni3S2(Figs.S2a-c in Supporting information) exhibit dense nanoparticle morphology.By increasing the deposition time of Ni3S2on NFP surface,broccoli-like nanoparticles gradually grow (Fig.S3 in Supporting information and Fig.1d),displaying a rougher surface.According to energy-dispersive spectrometry(EDS) mappings of NFP (Fig.S1d in Supporting information) and Ni3S2@NFP (Fig.S4 and Table S1 in Supporting information),Fe and P content decreased and S element appeared on the surface of Ni3S2@NFP after the secondary deposition,which indicates the existence of top Ni3S2layer.To further confirm the successful preparation of double layer,cross-section image of Ni3S2@NFP (Figs.1e and f) and elemental line scanning (Fig.1g) were performed,which verifies the successful assembly of Ni3S2on the top of NFP layer and the thickness of the whole coating is about 0.95 μm.The transmission electron microscopy (TEM) images of NFP and Ni3S2were also collected in Figs.S5 and S6 (Supporting information),respectively.Given the unique morphology,simulations were then performed to explore the morphology-dependent electric field enhancement effect.Results show that the local electric field on the top of broccoli-like nanoparticle with increased curvature (Fig.1i)is stronger than the monolayer catalyst assembled with compact nanoparticles (Fig.1h),which may promote the adsorption of hydroxide ions and thereby facilitate surface reconstruction [18,28].Moreover,the phase was examined by X-ray diffraction (XRD) patterns in Fig.1j.The characteristic peaks of Ni3S2are observed in Ni3S2@NFP,while no diffraction signals for NFP can be recognized considering the relatively poor crystallinity [29,30].

    Fig.1.(a) Schematic illustration of the synthesis route for Ni3S2@NFP electrocatalyst.NFP stands for amorphous nickel-iron-based phosphide and NP stands for nickel-based phosphide.SEM images of (b) NF,(c) NFP and (d) Ni3S2@NFP.(e) Cross-section SEM image,(f) EDS mapping and (g) elemental line scanning of Ni3S2@NFP.Simulation results of electric field intensity for the electrodes consisting of (h) compact (representing NFP and Ni3S2) and (i) broccoli-like (representing Ni3S2@NFP) nanoparticles.(j) XRD patterns of NFP and Ni3S2@NFP.

    The deposition time for top Ni3S2and bottom NFP was optimized and the results were shown in Fig.S7 (Supporting information).The optimal Ni3S2@NFP catalyst exhibits superior OER performance with low overpotentials of 235 and 329 mV at 10 and 500 mA/cmgeo2in contrast to NFP (251 and 370 mV),Ni3S2@NP(344 and 592 mV),NP (342 and 656 mV),Ni3S2(359 and 691 mV)and bare NF substrate (369 and 791 mV) (Fig.2a and Fig.S9 in Supporting information).The corresponding Tafel slop values of Ni3S2@NFP (41.6 mV/dec) and NFP (49.8 mV/dec) are significantly lower than Ni3S2@NP (74.3 mV/dec),NP (81.8 mV/dec) and Ni3S2(100.0 mV/dec) (Fig.2b),which demonstrates that the incorporation of iron accelerates the kinetics of electrochemical reaction and changes rate-determining step from the first electron transfer process to the second electron transfer process.Meanwhile,theCdlvalues of double layer Ni3S2@NFP (5.53 mF/cm2) and Ni3S2@NP (6.00 mF/cm2) are higher than NFP (3.46 mF/cm2),NP(4.33 mF/cm2),Ni3S2(3.79 mF/cm2) and NF (2.78 mF/cm2),implying more active sites owing to the sequential two-step electrodeposition method (Fig.2d and Fig.S10 in Supporting information).Electrochemical impedance spectroscopy (EIS) was also carried out to further obtain the electron transfer resistance and reaction kinetics during OER process (Fig.2e and Fig.S11 in Supporting information).The Ni3S2@NFP displays the lowestRctof 2.01Ω,confirming the smallest resistivity on electrode/electrolyte interface and rapid electron charge kinetics.The calculated electrochemical activation energy of Ni3S2@NFP is 29.49 kJ/mol (Fig.S12 in Supporting information),indicating the high intrinsic catalytic activity.

    Fig.2.(a) The LSV curves of different electrodes in 1.0 mol/L KOH with 95% iR-compensation and (b) the corresponding Tafel slopes.(c) The overpotentials at 10 and 500 mA/cm2,along with the Tafel slopes of the catalysts in (a).(d) Double-layer capacitances and (e) Nyquist plots of the catalysts measured at 1.47 V.(f) The accelerated duration test of Ni3S2@NFP with 50 mV/s scan rate.(g) Chronopotentiometry curves of Ni3S2@NFP and NFP at 500 mA/cm2.(h) Inductively coupled plasma-optical emission spectrometry (ICP-OES) results of the electrolyte after OER chronopotentiometry test.The detailed data are listed in Table S3 (Supporting information).

    Except OER activity,long-term stability is also an indispensable criterion to evaluate the catalyst performance.Accelerated duration test (Fig.2f) and chronopotentiometry measurement of Ni3S2@NFP(Fig.2g) were then performed to assess the electrode stability.In Fig.2f,the catalytic performance of Ni3S2@NFP slightly improves in first 250 cycles,which can be attributed to the catalyst selfactivation under oxidation condition.After that,no obvious decay is observed within 5000 cycles.However,the noticeable decline of NFP is displayed in Fig.S13 (Supporting information).In addition,Ni3S2@NFP electrode displays a slight increase of 30 mV after 500 h operation with a low degradation rate of 60 μV/h at 500 mA/cm2in Fig.2g,while NFP electrode increased ~180 mV after only ~400 h with a degradation rate of 450 μV/h.Inductively coupled plasmaoptical emission spectrometer (ICP-OES) was applied to analyze the difference of stability between Ni3S2@NFP and NFP by testing the dissolution of metal contents in electrolyte (Fig.2h).The Ni and Fe concentrations in the electrolyte for Ni3S2@NFP after chronopotentiometry test are both lower than those for single layer NFP,which proves the protective effect of surface deposited Ni3S2.The OER performance and stability comparison of Ni3S2@NFP with those reported in the literature are presented in Fig.S14 and Table S5 (Supporting information).

    We then conducted systematical characterizations to further explore the origin of high OER performance for Ni3S2@NFP.After OER,the morphology evolution (Fig.3a and Fig.S15 in Supporting information),visibly intensified superficial Fe,P signals (Fig.S16 and Table S4 in Supporting information) and more even distribution of elements along the fracture surface (Figs.3b-d) confirm element segregation and phase refusion between the double layer of Ni3S2@NFP.To this end,X-ray photoelectron spectroscopy(XPS) measurements were performed to analyze the chemical composition and elemental state of catalyst surface before and after chronopotentiometry test.The Ni 2p spectra (Fig.3e) of Ni3S2@NFP after OER presents characteristic peaks at 873.3 eV (Ni 2p1/2) and 855.8 eV (Ni 2p3/2),along with two satellite peaks at 879.2 eV and 861.4 eV [23,31].After peak deconvolution,the area ratio of Ni3+/Ni2+is around 1.06,higher than that of Ni3S2(0.48) before OER.Similarly,Fe 2p spectra (Fig.3f) can be divided into two subpeaks at 726.3 eV for Fe 2p1/2and 712.7 eV for Fe 2p3/2[32],displaying a higher area ratio of Fe3+/Fe2+(2.19) than NFP (0.63).These indicate that the metal cations in Ni3S2@NFP are oxidized to higher valence states duringinsitureconstruction and act as the real active sites for OER.Furthermore,compared with Ni 2p3/2,Fe 2p3/2peak shows a preferential tendency towards higher binding energy after reaction,illustrating that the presence of iron site is conducive to the adsorption of reactant OH-and promoting the formation of?OO-intermediate,while nickel site may responsible for the subsequent O2release [33,34],which is consistent with Tafel slope results.The XPS spectra of Ni3S2@NFP after chronopotentiometry test were also presented in Fig.S18 (Supporting information) for reference.As depicted in Fig.3g,the original peak of M-P (where M stands for metal) disappears after reaction,implying most of P ions bonding with metal ions are oxidized to phosphate and transfer to the catalyst surface [31].However,only partial S ions in M-S are oxidized to sulfate (Fig.3h)and the remaining S may still exist as metal sulfides to inhibit the leaching of metal ions,due to their small solubility-product constants (Ksp) [17,18].In parallel,according to the XRD pattern (Fig.3i),the characteristic peaks of Ni3S2disappear and Ni3S2@NFP becomes amorphous due to reconstruction after chronopotentiometry test [29,35].

    Fig.3.(a) The top-view and (b) cross-section SEM images of Ni3S2@NFP electrode after OER test.(c) EDS mapping and (d) elemental line scanning of the Ni3S2@NFP fracture surface.High resolution XPS spectra of (e) Ni 2p,(f) Fe 2p,(g) P 2p,(h) S 2p for Ni3S2@NFP,NFP and Ni3S2.(i) XRD patterns of Ni3S2@NFP on Ni foam before and after electrolysis.

    To monitor the surface dynamic evolution of electrocatalysts during OER,insituRaman and Fourier-transform infrared (FTIR)analyses are proceeded.As presented in Fig.4a,the typical bands of Ni3S2at 302,322,350 cm-1could be detected at open circuit potential (OCP) [36,37].When the potential increased,these peaks became weaker and then completely disappeared at 1.5 Vvs.RHE.Meanwhile,the peak belonging to NiII-O at around 519 cm-1[38] can be observed at 1.1 Vvs.RHE and then be substituted by a pair of bands at 474 cm-1and 556 cm-1from 1.4 Vvs.RHE,which are attributed to NiIII-O vibrations inγ-NiOOH [39,40].The broad peak between 850 and 1150 cm-1is ascribed to?OO-[41].In addition,two weak peaks at 490 cm-1,1095 cm-1and one peak at 981 cm-1are assigned to the P-O [42] and S-O [43] bonds of the adsorbed phosphate and sulfate,respectively.These confirm that Ni3S2@NFP finally transforms into the Ni(Fe)OOH with phosphate and sulfate layer,in which Ni(Fe)OOH is deemed as the main active site.By contrast,the NiIII-O vibration peaks at 1.4 Vvs.RHE are weaker for monolayer NFP (Fig.4b) and no noticeable NiIII-O characteristic peak can be observed below 1.5 Vvs.RHE for Ni3S2(Fig.4c),indicating that higher voltage is demanded to trigger the reconstruction.To summarize,two factors facilitate the rapid reconstruction of Ni3S2@NFP: on one hand,the broccoli-like morphology enhances the local electric field,which benefits the adsorption of OH-and thereby promotes surface hydroxylation;on the other hand,the oxidation and leaching of anions for Ni3S2@NFP are significant to promote electrode reconstruction (Fig.S8 in Supporting information),as compared to NiFe alloy and Ni(OH)2@NiFe(OH)xin Fig.S19 (Supporting information).These two inducements synergistically facilitate the formation of high-valence metal active sites.Furthermore,since the signals of anions from Raman spectra are inconspicuous,insituFTIR measurements were then conducted.As depicted in Fig.4d,the recorded peaks intensity of HOH (~1650 cm-1) vibration [44] and surface-adsorbed hydroxide(OHad) (~1220 cm-1) [45] increases with raising applied potential.The clear adsorption signal of PO43-(~1011 cm-1) [46] and SO42-(~1150 cm-1) [47] emerges at 1.40 V and 1.52 Vvs.RHE,respectively.TheinsituFTIR analyses of NFP and Ni3S2are also presented in Fig.S20 (Supporting information).Combined with the characterizations and electrochemical tests,the dynamic reconstruction behavior andinsitugenerated anionic layer on the surface is indispensable to enhance OER activity and stability (Fig.4e).In addition,the Ni3S2@NFP electrode also presents super-hydrophilicity,as confirmed by the water/bubble contact-angle measurements in Figs.S21–S23 (Supporting information),which makes it a potential anode in AEMWE for efficient alkaline water electrolysis.

    Fig.4.The in situ Raman spectra of (a) Ni3S2@NFP,(b) NFP and (c) Ni3S2.(d) In situ FTIR of Ni3S2@NFP in 1.0 mol/L KOH.(e) Schematic illustration of the layered structure of Ni3S2@NFP after dynamic reconstruction.

    The assembly and operation diagram of AEMWE device are presented in Figs.5a and b,respectively.According to the polarization curves (Fig.5c),the Ni3S2@NFP-based AEMWE exhibits high current density of 500 mA/cm2at an applied cell voltage of 1.84 V.Compared to bare NF,the AEMWE with Ni3S2@NFP anode has higher current density and lower charge transfer resistance under similar operation voltage (Figs.5c and d).The stability of the Ni3S2@NFP-based AEMWE was confirmed in 10 h test at 500 mA/cm2,where the cell voltage remained largely unchanged(Fig.5e),implying the potential for practical hydrogen production.

    Fig.5.(a) The schematic diagram and optical picture of AEMWE device.(b) The assembly parts.(c) Polarization curves of Ni3S2@NFP-based AEMWE at 50 °C in 1.0 mol/L KOH.(d) Nyquist plots at 1.50 V.(e) Stability test at 500 mA/cm2.

    In summary,we have fabricated the broccoli-like Ni3S2@NFP electrocatalystviaa facile and scalable electrodeposition route under room temperature.The as-prepared Ni3S2@NFP electrode possesses high OER activity with a low overpotential of 329 mV and excellent long-term stability of 500 h at 500 mA/cm2.The outstanding OER performance of Ni3S2@NFP could be attributed to the following features: (1) Increased surface roughness and enhanced top electric field strength owing to the broccoli-like morphology;(2) facilitated oxidation and generation of Ni(Fe)OOH active sites;(3) enhanced stability stemming from theinsitugenerated surface dual-anionic layer;(4) rapid mass transport between electrode/electrolyte interface considering the super-hydrophilic surface.The catalytic performance of Ni3S2@NFP is further assessed in AEMWE system as the anode.This work opens up the possibility to judiciously engineer the electrocatalyst by promotinginsituself-reconstruction during OER in AEMWE devices for cost-effective green hydrogen production.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China (NSFC,Nos.21925503,22102076),the Ministry of Science and Technology of the People’s Republic of China (MOST,No.2022YFA1504001),the Ministry of Education of the People’s Republic of China (MOE,No.B12015) and the Fundamental Research Funds for the Central Universities.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108713.

    精华霜和精华液先用哪个| 亚洲高清免费不卡视频| 肉色欧美久久久久久久蜜桃 | 少妇的逼水好多| av国产精品久久久久影院| 亚洲精品aⅴ在线观看| 成人综合一区亚洲| 亚洲aⅴ乱码一区二区在线播放| 国产免费一级a男人的天堂| 国产精品蜜桃在线观看| 边亲边吃奶的免费视频| 国产亚洲av片在线观看秒播厂| 欧美日韩国产mv在线观看视频 | 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 18+在线观看网站| 日本黄色片子视频| 晚上一个人看的免费电影| 国产亚洲午夜精品一区二区久久 | 亚洲精品国产色婷婷电影| 欧美日韩综合久久久久久| 成人美女网站在线观看视频| 在线免费十八禁| 我的女老师完整版在线观看| 欧美xxⅹ黑人| 香蕉精品网在线| 激情五月婷婷亚洲| 国产黄频视频在线观看| 伦理电影大哥的女人| 丝瓜视频免费看黄片| 一本色道久久久久久精品综合| 91狼人影院| 久久久久久久精品精品| 美女高潮的动态| 欧美日韩精品成人综合77777| 久久亚洲国产成人精品v| 尤物成人国产欧美一区二区三区| 亚洲欧美中文字幕日韩二区| 最近最新中文字幕免费大全7| 十八禁网站网址无遮挡 | 中文字幕人妻熟人妻熟丝袜美| 成人漫画全彩无遮挡| 亚洲欧美一区二区三区黑人 | 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 香蕉精品网在线| 国产成人免费观看mmmm| av在线亚洲专区| av卡一久久| 男女啪啪激烈高潮av片| 中文字幕久久专区| 欧美日韩国产mv在线观看视频 | 国产有黄有色有爽视频| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 日本黄大片高清| 国产在线一区二区三区精| 欧美少妇被猛烈插入视频| 亚洲欧美成人精品一区二区| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| 香蕉精品网在线| 99热网站在线观看| 一级片'在线观看视频| 一级毛片aaaaaa免费看小| 高清午夜精品一区二区三区| 在线播放无遮挡| 久久久久久久精品精品| 波多野结衣巨乳人妻| 一级毛片 在线播放| 欧美高清性xxxxhd video| 五月玫瑰六月丁香| av专区在线播放| 国产精品国产三级国产专区5o| 亚洲熟女精品中文字幕| 久久人人爽人人片av| eeuss影院久久| 精品一区二区三卡| 亚洲精品乱码久久久久久按摩| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 交换朋友夫妻互换小说| 日韩一区二区三区影片| 国产男女内射视频| 国内精品美女久久久久久| 国产精品一二三区在线看| 日韩强制内射视频| 亚洲欧美成人精品一区二区| 69av精品久久久久久| 亚洲精品乱码久久久久久按摩| 天堂网av新在线| 国内精品宾馆在线| 少妇人妻一区二区三区视频| 99re6热这里在线精品视频| 国产精品久久久久久精品电影小说 | av在线蜜桃| 国产中年淑女户外野战色| 成人漫画全彩无遮挡| 国产精品一区二区三区四区免费观看| 毛片女人毛片| 超碰av人人做人人爽久久| 亚洲精品亚洲一区二区| 看十八女毛片水多多多| 国产爽快片一区二区三区| 一级毛片电影观看| 亚洲,欧美,日韩| 热re99久久精品国产66热6| 大话2 男鬼变身卡| 黄色欧美视频在线观看| 热re99久久精品国产66热6| 好男人视频免费观看在线| 久久久久久久午夜电影| 最新中文字幕久久久久| 午夜福利高清视频| 一级爰片在线观看| 亚洲av免费高清在线观看| 丝袜美腿在线中文| 国产一区亚洲一区在线观看| 日韩av在线免费看完整版不卡| 日韩欧美一区视频在线观看 | 一区二区三区四区激情视频| 少妇人妻 视频| 22中文网久久字幕| 大话2 男鬼变身卡| 亚洲最大成人中文| 亚洲人成网站高清观看| 乱系列少妇在线播放| 日韩成人av中文字幕在线观看| 国产精品一及| 一级毛片黄色毛片免费观看视频| 成人午夜精彩视频在线观看| 狂野欧美激情性bbbbbb| 天美传媒精品一区二区| 日韩制服骚丝袜av| 国内精品美女久久久久久| 91狼人影院| 国产爽快片一区二区三区| 精品99又大又爽又粗少妇毛片| 久久97久久精品| 丰满人妻一区二区三区视频av| 欧美精品一区二区大全| 99re6热这里在线精品视频| 丝瓜视频免费看黄片| 亚洲av在线观看美女高潮| 黄色怎么调成土黄色| 各种免费的搞黄视频| 亚洲精品久久久久久婷婷小说| www.av在线官网国产| 国产精品麻豆人妻色哟哟久久| 韩国av在线不卡| 天天躁日日操中文字幕| 精品视频人人做人人爽| 久久人人爽人人片av| 欧美丝袜亚洲另类| 91久久精品国产一区二区三区| 久久久亚洲精品成人影院| 国产欧美亚洲国产| 国产大屁股一区二区在线视频| 亚洲国产色片| 一级二级三级毛片免费看| 街头女战士在线观看网站| 久久亚洲国产成人精品v| 久久久久久久国产电影| 免费黄色在线免费观看| 欧美bdsm另类| 少妇高潮的动态图| 亚洲天堂国产精品一区在线| 人妻少妇偷人精品九色| 噜噜噜噜噜久久久久久91| 日韩精品有码人妻一区| 欧美+日韩+精品| 水蜜桃什么品种好| 九色成人免费人妻av| 免费观看在线日韩| 亚洲精品乱码久久久久久按摩| 久久久久久九九精品二区国产| 亚洲精华国产精华液的使用体验| 香蕉精品网在线| 日韩亚洲欧美综合| 美女xxoo啪啪120秒动态图| 深夜a级毛片| 久久久久久久亚洲中文字幕| 麻豆乱淫一区二区| 婷婷色综合www| 草草在线视频免费看| 婷婷色麻豆天堂久久| 哪个播放器可以免费观看大片| 亚洲精品日韩在线中文字幕| 久久久久久久久久人人人人人人| 久久久久久久亚洲中文字幕| 亚洲成人一二三区av| 直男gayav资源| 91精品国产九色| 久久99热6这里只有精品| 大香蕉97超碰在线| 青春草亚洲视频在线观看| 亚洲,一卡二卡三卡| 国产一区二区亚洲精品在线观看| 爱豆传媒免费全集在线观看| 亚洲熟女精品中文字幕| 纵有疾风起免费观看全集完整版| 一个人看的www免费观看视频| 大又大粗又爽又黄少妇毛片口| 免费看av在线观看网站| 天天躁日日操中文字幕| 精品久久久久久久久av| 亚洲综合色惰| 欧美亚洲 丝袜 人妻 在线| 99热这里只有是精品50| 男人爽女人下面视频在线观看| 一级毛片久久久久久久久女| 又大又黄又爽视频免费| 成年女人看的毛片在线观看| 一个人看视频在线观看www免费| 真实男女啪啪啪动态图| 欧美极品一区二区三区四区| 精品少妇久久久久久888优播| 国产精品人妻久久久影院| 亚洲熟女精品中文字幕| 成人毛片60女人毛片免费| 看黄色毛片网站| 美女高潮的动态| 国产黄色视频一区二区在线观看| 丝袜美腿在线中文| 久久久久久久午夜电影| 一边亲一边摸免费视频| 日韩中字成人| 少妇人妻 视频| 美女主播在线视频| 国产精品无大码| 日本与韩国留学比较| 天堂中文最新版在线下载 | 80岁老熟妇乱子伦牲交| 啦啦啦啦在线视频资源| 日韩一区二区三区影片| 免费在线观看成人毛片| 国产精品熟女久久久久浪| 国模一区二区三区四区视频| 午夜激情福利司机影院| 一本一本综合久久| 啦啦啦中文免费视频观看日本| 91久久精品电影网| 国产探花在线观看一区二区| 国产精品伦人一区二区| 国产男人的电影天堂91| 全区人妻精品视频| 日韩成人伦理影院| 别揉我奶头 嗯啊视频| 欧美xxxx性猛交bbbb| 久久99热6这里只有精品| 国产 精品1| 日本一二三区视频观看| 欧美一区二区亚洲| 视频中文字幕在线观看| 69av精品久久久久久| 97在线视频观看| 精品久久久精品久久久| 免费少妇av软件| 国产精品蜜桃在线观看| 亚洲精品国产成人久久av| 综合色av麻豆| 成人漫画全彩无遮挡| 日韩不卡一区二区三区视频在线| 九九久久精品国产亚洲av麻豆| 只有这里有精品99| 久久久亚洲精品成人影院| 男的添女的下面高潮视频| 中文天堂在线官网| 国产高潮美女av| 欧美日韩一区二区视频在线观看视频在线 | 亚洲天堂av无毛| 只有这里有精品99| 亚洲熟女精品中文字幕| 国产精品国产三级专区第一集| 夜夜看夜夜爽夜夜摸| 国产精品国产三级专区第一集| 久久99精品国语久久久| 国产亚洲5aaaaa淫片| 蜜臀久久99精品久久宅男| 天堂中文最新版在线下载 | 色5月婷婷丁香| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| 日韩一区二区三区影片| 久久久久国产精品人妻一区二区| 在线观看人妻少妇| 亚洲不卡免费看| 中文字幕免费在线视频6| 欧美丝袜亚洲另类| 国产成人aa在线观看| 一本一本综合久久| 国产精品久久久久久精品电影小说 | 一级爰片在线观看| 别揉我奶头 嗯啊视频| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区四那| 欧美潮喷喷水| 国产老妇女一区| 亚洲经典国产精华液单| 国产精品国产三级专区第一集| 只有这里有精品99| 精华霜和精华液先用哪个| 夫妻午夜视频| 青春草亚洲视频在线观看| 青春草亚洲视频在线观看| 深爱激情五月婷婷| 18禁在线播放成人免费| 一个人观看的视频www高清免费观看| av国产精品久久久久影院| 免费观看性生交大片5| 好男人视频免费观看在线| 99热这里只有是精品在线观看| 国产91av在线免费观看| 亚洲国产成人一精品久久久| 伊人久久国产一区二区| 丝袜喷水一区| 中文字幕人妻熟人妻熟丝袜美| a级一级毛片免费在线观看| 成年女人在线观看亚洲视频 | 大陆偷拍与自拍| 麻豆成人av视频| 男女边摸边吃奶| 亚洲精品乱码久久久久久按摩| 亚洲精品亚洲一区二区| 亚洲av欧美aⅴ国产| 国产免费一级a男人的天堂| 午夜日本视频在线| 在线观看一区二区三区| 久久鲁丝午夜福利片| 国产精品.久久久| 五月开心婷婷网| 日本色播在线视频| 精品久久久久久电影网| 色吧在线观看| 亚洲欧洲日产国产| 国产高清有码在线观看视频| 一区二区三区乱码不卡18| 97热精品久久久久久| 亚洲av不卡在线观看| 丝袜喷水一区| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 成人亚洲精品一区在线观看 | 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 黄色日韩在线| 国产白丝娇喘喷水9色精品| 亚洲成色77777| 日本免费在线观看一区| 永久网站在线| 亚洲怡红院男人天堂| 高清av免费在线| 一级a做视频免费观看| 亚洲av一区综合| 色播亚洲综合网| 亚洲真实伦在线观看| 一本色道久久久久久精品综合| 日日撸夜夜添| 久久久成人免费电影| 久久99热这里只有精品18| 卡戴珊不雅视频在线播放| 亚洲综合精品二区| 国产精品嫩草影院av在线观看| 午夜爱爱视频在线播放| 婷婷色av中文字幕| 国产精品麻豆人妻色哟哟久久| 一级爰片在线观看| av天堂中文字幕网| 亚洲精品亚洲一区二区| 日韩不卡一区二区三区视频在线| 国产成人91sexporn| 精品一区在线观看国产| 91在线精品国自产拍蜜月| 亚洲精品久久午夜乱码| 国产在视频线精品| 国产大屁股一区二区在线视频| 国产精品人妻久久久久久| 亚洲av二区三区四区| 免费观看av网站的网址| 22中文网久久字幕| 久久久午夜欧美精品| 91aial.com中文字幕在线观看| 亚洲怡红院男人天堂| 精品国产三级普通话版| 成人国产av品久久久| 能在线免费看毛片的网站| 久久午夜福利片| 青春草国产在线视频| 丝瓜视频免费看黄片| 免费少妇av软件| 涩涩av久久男人的天堂| 久久鲁丝午夜福利片| 少妇人妻一区二区三区视频| 亚洲国产欧美在线一区| 一二三四中文在线观看免费高清| 狂野欧美白嫩少妇大欣赏| 国产亚洲av片在线观看秒播厂| 人人妻人人看人人澡| av天堂中文字幕网| 亚洲熟女精品中文字幕| 国产成人精品婷婷| 亚洲欧美日韩卡通动漫| 免费黄网站久久成人精品| 高清视频免费观看一区二区| 在线天堂最新版资源| 亚洲成人中文字幕在线播放| 久久久国产一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲av成人精品一区久久| 成年版毛片免费区| 街头女战士在线观看网站| 中文精品一卡2卡3卡4更新| 色视频在线一区二区三区| 国产老妇伦熟女老妇高清| 久久久久久久久久久丰满| 另类亚洲欧美激情| 人体艺术视频欧美日本| av在线观看视频网站免费| 午夜免费鲁丝| 韩国av在线不卡| 欧美97在线视频| 在线看a的网站| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 成人美女网站在线观看视频| 人人妻人人澡人人爽人人夜夜| 最近最新中文字幕免费大全7| 久久人人爽av亚洲精品天堂 | 国产成人午夜福利电影在线观看| 国产精品久久久久久久电影| 26uuu在线亚洲综合色| 亚洲色图综合在线观看| 伊人久久国产一区二区| 尾随美女入室| 一个人看的www免费观看视频| 肉色欧美久久久久久久蜜桃 | 人妻制服诱惑在线中文字幕| 精品少妇黑人巨大在线播放| 国产毛片a区久久久久| 高清午夜精品一区二区三区| 国产免费一级a男人的天堂| 一级毛片黄色毛片免费观看视频| 18+在线观看网站| 国产欧美日韩精品一区二区| 日本一本二区三区精品| 内射极品少妇av片p| 极品少妇高潮喷水抽搐| 亚洲精品中文字幕在线视频 | 毛片一级片免费看久久久久| 久久久久精品性色| 中国美白少妇内射xxxbb| av网站免费在线观看视频| 日韩三级伦理在线观看| 亚洲国产最新在线播放| 18禁动态无遮挡网站| 插逼视频在线观看| 久久久久精品久久久久真实原创| 久久人人爽av亚洲精品天堂 | 99久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 国内精品美女久久久久久| 五月伊人婷婷丁香| 久久影院123| 在现免费观看毛片| 老师上课跳d突然被开到最大视频| 中文资源天堂在线| 国产免费一级a男人的天堂| 欧美性猛交╳xxx乱大交人| 少妇 在线观看| 精品视频人人做人人爽| 国产欧美亚洲国产| 欧美精品人与动牲交sv欧美| 日本wwww免费看| 午夜免费鲁丝| 国产中年淑女户外野战色| 国产毛片a区久久久久| 深夜a级毛片| 欧美性感艳星| 青春草国产在线视频| 成人综合一区亚洲| 国产 一区精品| 一级a做视频免费观看| 日韩免费高清中文字幕av| 久久久久久久国产电影| 欧美老熟妇乱子伦牲交| 亚洲成人av在线免费| 美女脱内裤让男人舔精品视频| 亚洲国产精品999| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 国产欧美日韩精品一区二区| 亚洲国产日韩一区二区| 成年版毛片免费区| 国产成人免费观看mmmm| 婷婷色综合www| 成年女人在线观看亚洲视频 | 丰满乱子伦码专区| 久久久久网色| 久久久久久久亚洲中文字幕| 精品国产露脸久久av麻豆| 亚洲欧洲日产国产| 最近的中文字幕免费完整| 免费黄频网站在线观看国产| 全区人妻精品视频| 久久久国产一区二区| 午夜爱爱视频在线播放| 一个人看视频在线观看www免费| 国产精品偷伦视频观看了| 免费观看性生交大片5| a级毛色黄片| av在线亚洲专区| av免费观看日本| 亚洲高清免费不卡视频| 亚洲图色成人| 夜夜爽夜夜爽视频| 欧美bdsm另类| 欧美激情在线99| 伊人久久国产一区二区| 亚洲色图av天堂| 亚洲自拍偷在线| 99久国产av精品国产电影| 青春草视频在线免费观看| 日韩伦理黄色片| 亚洲国产精品成人综合色| 国产日韩欧美亚洲二区| 精品人妻熟女av久视频| 免费大片黄手机在线观看| 七月丁香在线播放| 欧美成人精品欧美一级黄| h日本视频在线播放| 一级毛片久久久久久久久女| 建设人人有责人人尽责人人享有的 | 日本免费在线观看一区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久大av| 欧美 日韩 精品 国产| 中国美白少妇内射xxxbb| 国产国拍精品亚洲av在线观看| 欧美xxxx性猛交bbbb| 免费av观看视频| 久久人人爽人人爽人人片va| 久久久色成人| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频 | 中文在线观看免费www的网站| 街头女战士在线观看网站| 免费观看无遮挡的男女| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 亚洲丝袜综合中文字幕| 国产精品成人在线| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 久久久久久伊人网av| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 少妇裸体淫交视频免费看高清| 国产 一区 欧美 日韩| 美女国产视频在线观看| 51国产日韩欧美| 成年版毛片免费区| 在线观看免费高清a一片| 久久久久久久久久久免费av| 在线观看免费高清a一片| 亚洲经典国产精华液单| 亚洲高清免费不卡视频| av福利片在线观看| 一区二区三区乱码不卡18| 人体艺术视频欧美日本| 国产在视频线精品| 欧美日韩一区二区视频在线观看视频在线 | 成人国产麻豆网| 久久久久久久国产电影| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 亚洲av.av天堂| 亚洲在线观看片| 亚洲国产欧美在线一区| 男人添女人高潮全过程视频| 久久久久久国产a免费观看| 久久久欧美国产精品| 成人特级av手机在线观看| 一级爰片在线观看| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 99热这里只有是精品50| 国产精品人妻久久久影院| 又爽又黄无遮挡网站| 亚洲国产高清在线一区二区三| 日本一二三区视频观看| 欧美人与善性xxx| 国产成年人精品一区二区| 午夜精品一区二区三区免费看| 日韩伦理黄色片| 亚洲成人久久爱视频| 亚洲精品视频女| 精品久久久精品久久久| 特级一级黄色大片| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 国产精品无大码| 热99国产精品久久久久久7| 欧美xxⅹ黑人| 丝袜美腿在线中文| 中文资源天堂在线|