• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt overlayer for direct oxidation of CH4 to CH3OH

    2023-11-21 03:04:38HoyuLiWeiPeiXioweiYngSiZhouJijunZho
    Chinese Chemical Letters 2023年11期

    Hoyu Li,Wei Pei,Xiowei Yng,Si Zhou,Jijun Zho

    a Key Laboratory of Materials Modification by Laser,Ion and Electron Beams (Dalian University of Technology),Ministry of Education,Dalian 116024,China

    b College of Physics Science and Technology,Yangzhou University,Yangzhou 225009,China

    Keywords:CH4 conversion Pt(111) overlayer d-band center

    ABSTRACT Highly selective conversion of methane (CH4) to methanol (CH3OH) is an emerging attractive but challenging process for future development of hydrogen economy,which requires efficient catalysts.Herein,we systematically explore the catalytic properties of Pt(111) overlayer on transition metal oxides (TMOs)for CH4 conversion by first principles calculations.The Pt(111) monolayer supported by Ce-terminated CeO2(111) substrate exhibits high activity and selectivity for CH4 conversion to CH3OH,with the kinetic barrier of rate-limiting step of 1.05 eV.Intriguingly,the surface activity of Pt overlayer is governed by its d-band center relative to the energy of bonding states of adsorbed molecules,which in turn depends on the number of charge transfer between Pt(111) monolayer and underlying TMOs substrates.These results provide useful insights in the design of metal overlayers as catalysts with high-ultra performance and atomic utilization.

    Natural gas has been widely used as a clean energy source in industrial manufactures and daily routine [1,2].Methane (CH4) is the main ingredient of natural gas and has harmful effects on the environment due to its strong greenhouse effect [3–5].Therefore,there is an urgent need for conversion of CH4to high-value products or liquid fuels,which is crucial for storage and transportation of CH4.At present,the catalytic CH4conversion is mainly based on thermocatalysis [6,7],photocatalysis [8,9],electrocatalysis and enzymecatalysis [10–15].Among them,the thermocatalysis approach has been widely used in industry because of its relatively low cost and high efficiency [6,7].The dissociation of CH4molecule is a key step for CH4conversion,and one of the most suitable catalysts are group-VIIIB transition metals,especially Pt-based nanoparticles,nanoshells,and single atoms [16,17].

    The previous studies have reported that platinum has decent catalytic performances for CH4conversion to produce hydrogen [18,19].Rategarpanahetal.demonstrated that the addition of a small amount of Pt to the Ni-Cu nanoalloys supported on MgO·Al2O3powders can considerably promote the CH4activation,in which the CH4conversion rate increases from 70% to 80%,and the H2formation rate increases from ~1.35 mol g-1min-1to~1.55 mol g-1min-1[19].Moreover,Hosseinietal.[20] reported that the Fe2O3@CeO2core-shell structure loaded with Pt nanoparticles achieves about 80% conversion rate in the dry reforming of methane (DRM),leading to the production of COx-free (<2 ppm)H2in the oxidation step by steam with a cyclically stable yield(10.8 mmol/g catalyst-oxygen carrier).Comparing with nanoparticles,dispersed Pt single atom or few atoms exhibits outstanding capabilities for CH4conversion [21–26].For instance,Yanetal.[22] reported that Pt single atoms supported on Mn2O3owns excellent catalytic activity for CH4oxidation with 90% conversion rate at 603°C.Gaoetal.[26] showed that Pt single atoms supported on La2O3precursor with carbon species (Pt1/LP) have improved activity for CH4conversion with regard to Pt nanoparticles.When Pt1/LP was supported on CeO2surface obtained by using precipitation method,the CH4conversion rate can be further enhanced to 82%.

    It is known that single-atom catalysis faces the problem of low density of active sites (<1 wt%) on the substrate,which limits the catalysis of complicated or multi-electron reactions [27].Atomically thin layers of transition metals combine the advantages of nanoparticle and single-atom catalysts,providing a large number of active sites as well as maximizing the atomic utilization [28].Furthermore,the synergistic effect between metal overlayers and the underlying substrates can boost the surficial activities [29–32].So far,Pt overlayers supported on various transition metal oxides(TiO2,ZrO2,CeO2and so on) have been synthesized in laboratory[33–41].Yangetal.predicted that Pt monolayer on V2C MXene exhibits high activity for oxygen reduction reaction owing to the strong metal-support interaction [30].Later,Lietal.successfully synthesized Pt nanolayers with a single or double atomic layer thickness on Mo2TiC2TxMXene,which can catalyze non-oxidative coupling of CH4to ethane/ethylene [42].These results shed light in the extraordinary catalytic properties of atomically thin Pt overlayers.However,the principles for tuning the activity of Pt overlayers and the role of different substrates await being understood.

    Herein we explore the catalytic behavior of Pt monolayer on transition metal oxides TiO2,ZrO2and CeO2for CH4conversion by first principles calculations.Among them,Pt monolayer supported on metal-terminated CeO2enables direct conversion of CH4to methanol (CH3OH) and suppresses coke formation.The surficial activities of Pt monolayer sensitively depend on the type of substrate,which regulates the d-band center of Pt monolayer.The kinetic barrier of reaction is linearly correlated with the energy difference between d-band center of Pt monolayer and bonding states of adsorbed molecules,which serves as a key descriptor for precise design of novel catalysts for liquid fuel storage.

    Density functional theory (DFT) calculations were performed by using the Viennaabinitiosimulation package (VASP) [43],with the projector augmented wave potentials [44],and the generalized gradient approximation parameterized by Perdew,Burke and Ernzerhof (GGA-PBE) for the exchange and correlation functional[45].The plane wave basis set with an energy cutoff 500 eV was used.The Brillouin zone was sampled by a 3×3×1 Monkhorst-Packk-point mesh.All structures were optimized using a convergence criterion of 10-4eV and 0.02 eV/?A for total energy and force thresholds,respectively.The DFT-D3 dispersion correction scheme of Grimme was adopted to describe the van der Waals interactions in these layered systems [46].Kinetic barriers and transition states for CH4conversion were simulated using the climbingimage nudged elastic band (CI-NEB) method implemented in VASP[47].An effective Hubbard parameterUeff=U-J=5 eV was used for Ce atoms to consider the strong on-site Coulombic interaction of the Ce 4f orbital [48].The number of charge transfer between Pt monolayer and underlying substrates was evaluated using the Bader charge analysis [49].The electronic structures were calculated by DS-PAW program [50].

    For the growth of Pt nanofilms in the experiment,transition metal oxides have been widely utilized as substrates [34–42].Here we considered Pt monolayer on the O-terminated rutile TiO2(110)and metal-terminated cubic ZrO2(100) surfaces,which have been synthesized in laboratory [35–40].For the model of Pt on TiO2(hereafter noted as Pt/TiO2),the supercell consists of 4×2 unit cells of rutile TiO2(110),with lattice vectors ofu=5a1-a2andv=2a1-5a2for Pt(111) monolayer.For Pt/ZrO2,we adopted the supercell comprising Pt(111) monolayer (u=2a1+a2andv=a2)on 3×4 unit cells of cubic ZrO2(110).We also considered cubic CeO2as a possible substrate,which has been widely used to support nanofilms,nanoparticles and single atoms for catalysis [51,52].According to the previous experimental characterization,the surface of CeO2sensitively depends on the growth condition [53,54].In the oxidative atmosphere,CeO2tends to form the O-terminated surface,while Ce-termination or a mixture of Oand Ce-termination may occur for CeO2prepared in the reductive atmosphere [54,55].Moreover,the CeO2(111) surface is non-polar perpendicular to the surface,exhibiting outstanding stability and well-defined geometrical structures compared with the other lowindex surfaces [55,56].Therefore,we constructed Pt(111) monolayer on the O-terminated and Ce-terminated CeO2(111) to explore the substrate effect.The supercell of Pt/CeO2includes 3×3 unit cells of Pt(111) monolayer and 4×4 unit cells of CeO2(111)substrate.The lattice of Pt overlayer is stretched or compressed to match that of the substrate,resulting in lattice mismatch of 0.54%-3.21%.To elucidate the strain effect on the electronic structure and catalytic property of Pt overlayer,we perform test calculations on Pt(111) monolayer by applying a biaxial stretch strain ranging from 0% to 3.5%.The d-band center is lifted by 0.24 eV toward Fermi level and the adsorption energy of CH3?species is weakened by 0.08 eV.Therefore,the strain on Pt overlayer induced by substrates may have a minor effect on the catalytic properties.

    The structures of Pt overlayer on cubic ZrO2(100),cubic CeO2(111) and rutile TiO2(110) are shown in Fig.1.The detailed structure parameters are presented in Table 1.The interlayer distance ranges from 1.73 ?A to 2.35 ?A,which shows the typical covalent interaction between Pt(111) monolayer and underlying TMOs substrates.These interfacial covalent interactions can also be characterized by the differential charge densities,showing the electron accumulation at the interfacial region (Figs.1e-h).It is worth noting that Pt monolayer grown on TiO2exhibits a relatively large deformation with a vertical buckling of 1.51 ?A for the Pt monolayer.On the other three substrates,Pt monolayer undergoes slight deformation with small vertical buckling of 0.27~0.42 ?A.The optimized Pt-Pt bond lengths of Pt/TiO2,Pt/ZrO2,Pt/CeO2(Ce) and Pt/CeO2(O) are in the range of 2.47–2.78,2.64–2.78,2.78–2.98 and 2.71–2.90 ?A,respectively,comparable with that of Pt(111) surface(2.78 ?A).

    Table 1The key parameters of Pt/TMOs hybrid systems including lattice mismatch (δ),interlayer distance (d),vertical buckling of Pt monolayer (ΔdPt),Pt-Pt bond length(hPt-Pt),formation energy per Pt atom in Pt monolayer (Eform),charge transfer between Pt monolayer and the substrate (CT),the d-band center of Pt monolayer (εd).

    Fig.1.Geometrical structures of Pt/TMOs hybrid systems.Atomic structures of Pt/TMOs (a-d) and corresponding differential charge density distributions (e-h).White lines labeled the lattice.The Pt,O,Ti,Zr,and Ce atoms are shown by dark blue,pink,green,purple and blue balls,respectively.

    To characterize the thermostabilities of Pt/TMOs hybrid systems,we calculated their formation energy per Pt atom (Eform),as follows (Eq.1):

    whereEtotal,EPtML,andEsubdenote the total energy of the Pt/TMOs system,Pt monolayer and TMOs substrate,respectively;NPtis the number of Pt atoms.As a result,the formation energy of these Pt/TMOs hydride systems range from -0.66 eV/atom to-2.76 eV/atom,signifying the strong bonding interaction between Pt monolayer and underlying TMOs substrates.It is worth noting that theEformof Pt/CeO2(Ce) is -2.04 eV,which was competitive to or much lower than that of experiment-prepared Pt/TiO2(Eform=-1.24 eV) and Pt/ZrO2(Eform=-2.76 eV).According the Bader charge analysis [49],charge transfer is from Pt monolayer to TiO2substrate (0.17 e per Pt atom),whereas Pt monolayer gain electrons from the other substrates (0.02–0.34 e per Pt atom)(Table 1).Figs.1e-h depicts the two-dimensional charge distribution between Pt monolayer and substrates.The interfacial charge transfer is correlated to the electronegativity of atoms.The electronegativities of Ti,Zr,Ce,O and Pt are 1.54,1.33,1.12,3.34 and 2.28,respectively.For Pt/ZrO2and Pt/CeO2(Ce) systems,due to the high electronegativity of Pt compared with Zr and Ce,Pt atoms of Pt/ZrO2and Pt/CeO2(Ce) gains some electrons (0.34 and 0.33 e per Pt atom) from the underlying Zr and Ce,respectively.For Pt/TiO2,the electronegativity of O exceeds electronegativity of Pt,and hence each Pt atom loses electrons of 0.17 e.In the Pt/CeO2(O)system,due to the electronegativity of Ce is less than electronegativity of Ti,Ce atoms affords more electrons to O atoms,which leads to the charge transfer from O to Pt atoms.

    A lot of experimental and theoretical studies have indicated that the Pt-based nanomaterials can achieve a decent chemical activity for CH4activation and unique selectivity for yielding CH3OH product [57,58].We investigate the catalytic process of CH4activation and conversion with H2O on the Pt/TMOs hybrid systems as well as the bulk-phase Pt(111) surface for reference.According to the previous studies [59],the pathway of CH4reaction with H2O to yield CH3OH mainly includes three relevant processes(Eqs.2 and 3):

    where?represents an adsorption site on the catalyst surface.Alternatively,the CH3?intermediate can be further dehydrogenatedviaEq.5:

    which provides the opportunity to form olefin.

    Fig.2 shows the reaction energy (ΔH) for each reaction step,where positive (negative) numbers represent endothermic(exothermic) reaction.For Eq.2,Pt/TiO2,Pt/CeO2(Ce) and Pt/CeO2(O) have reaction energies of -1.26 eV,-0.61 eV and -1.54 eV,respectively.In contrast,CH4dehydrogenation is unfavorable on Pt/ZrO2with a reaction energy of 1.11 eV.The reaction energies for Eqs.4 and 5 determine the tendency of CH3?to combine with OH?to form CH3OH or to be further dehydrogenated.The results show that CH3?prefers to react with OH?to yield CH3OH product on Pt/TiO2,Pt/ZrO2as well as Pt(111) surface,while Pt/CeO2with strong chemical activity can dehydrogenate CH3?to CH2?intermediate.In contrast to other systems,the reaction energies of two Eqs.4 and 5 on the Pt/CeO2(Ce) system are both close to 0.The kinetic barrier dominates selectivity,as will be discussed later.We examined the reaction Eq.3 to check whether OH?can be produced by dissociation of H2O on these systems.

    Fig.2.Kinetic process of CH4 conversion and H2O dissociation.Energy diagrams of(a) CH4 activation and (b) H2O dissociation on Pt/TMOs.The reaction heat (ΔH),kinetic barriers (Ea),and the corresponding structure configurations are given in insets.Histogram of reaction energies and kinetic barriers for (c) CH4 →CH3?+H?,(d) H2O →OH?+H?,(e) CH3?+OH?→CH3OH and (f) CH3?→CH2?+H?processes on various Pt/TMOs systems and bulk-phase Pt(111).

    To further evaluate the catalytic performance of each system,we calculated the kinetic barriers for Eqs.2–5.Figs.2a and b show the schematic diagrams of CH4dehydrogenation and H2O dissociation on Pt/CeO2(Ce) and Pt/TiO2,respectively.The values of kinetic barriers are represented by bars in Figs.2c-f.Fig.3a shows the complete reaction pathways of Pt/CeO2(Ce) and the corresponding adsorption conformation.The detailed information of other systems is shown in Fig.3b.The transition states of Eqs.2–5 were represented as TS1,TS2,TS3 and TS4,respectively.The kinetic barriers of Pt/TiO2are 1.65,0.77,1.63 and 1.25 eV for TS1,TS2,TS3 and TS4,respectively.TS2 has a much smaller kinetic barrier than those of other reactive steps.Too easy decomposition of H2O may occupy the active sites and leads to inactivation of catalyst.The kinetic barriers of Pt/ZrO2are 1.49,1.96,1.21 and 1.58 eV for TS1,TS2,TS3 and TS4,respectively.The high kinetic barrier of H2O dissociation results in low activity for Pt/ZrO2,due to the deficiency of OH?for CH3OH production.The kinetic barriers of the Pt/CeO2(Ce)system are 1.05,0.91,0.68 and 1.37 eV for TS1,TS2,TS3 and TS4,respectively.The rate-determining step (RDS) of Pt/CeO2(Ce) system is TS1 with kinetic barrier of 1.05 eV,while the RDS of bulk-phase Pt(111) is TS3 with larger kinetic barrier of 1.53 eV.Therefore,the CH4to CH3OH conversion is easier to achieve on Pt/CeO2(Ce) than that on bulk Pt.On the other hand,the kinetic TS2,TS3 and TS4,respectively,which indicates that CH3dehydrogenation to CH2?is more favorable than the formation of CH3OH.To gain a clear understanding of the product selectivity of Pt/CeO2(O),we further consider the following dehydrogenation processes (Eqs.6 and 7):

    Fig.3.The reaction pathway of CH4 conversion.(a) The reaction pathway of CH4 conversion on Pt/CeO2 (Ce),and the corresponding structure configurations are given in insets.(b) The reaction pathway of CH4 conversion on other Pt/TMOs systems and bulk-phase Pt(111) surface.The color number is the kinetic barrier for each reaction step.

    The transition states of Eqs.6–8 were represented as TS5,TS6 and TS7.As shown in Fig.4,the kinetic barriers of the above processes on Pt/CeO2(O) are 0.03,0.90 and 1.12 eV for TS5,TS6 and TS7,respectively.The CH2?intermediate prefers further dehydrogenation to generate CH?,rather than the coupling with another CH2?to form C2H4?.The CH?species may be further dehydrogenated to produce C?,which would occupy the active site and poison the catalysts [60].Therefore,Pt monolayers on various substrates exhibit different catalytic behavior.Pt/CeO2(Ce) has higher activity for CH4conversion to CH3OH,while Pt/CeO2(O) may be over-reactive and suffer from coke and deactivation.

    Fig.4.The further dehydrogenation processes on Pt/CeO2 (O).The colored number is the kinetic barrier for each reaction step.

    To further elucidate the substrate effects,we examined the electronic structures of Pt monolayer on various substrates.We calculated the density of states (DOS) for each system after CH4adsorption and compared it with the DOS of free gas phase CH4.Figs.5a-d show the DOS of Pt/TMOs.The d-band center of the Pt monolayer is calculated using the following equation (Eq.9) [61]:

    whereD(E) is the DOS of the d-band of the Pt monolayer at a given energyE,the integral is taken up to the Fermi level (shifted to zero).The d-band center of the Pt monolayer is indicated by the blue dashed line in Figs.5a-d.Due to the interfacial charge transfer,the Pt monolayers grown on different substrates have different d-band centers.It is worth noting that the variation of d-band center of Pt monolayer is not only related to the amount of charge transfer,but also depends on the DOS distribution of the substrate.Specifically,the DOS of ZrO2is mainly distributed at -2~-7 eV,which leads to the d-band center of Pt monolayer far away from the Fermi level (Fig.5b).The DOS of CeO2(O) is mainly distributed at -1.5~-5 eV,which leads to the d-band center of Pt monolayer closer to the Fermi level (Fig.5d).

    Fig.5.The orbital interaction of CH4 adsorbed on Pt/TMOs.(a-d) Local density of states (DOS) of (from left to right) gas-phase and adsorbed CH4 molecule,and Pt/TMOs.(e) Differential charge density between Pt overlayer and CH4.(f) The relationship between the kinetic barriers (Ea) and Δε.

    The activity of Pt overlayer is closely related to its d-band center modulated by the presence of substrate.Figs.5a-d show the energy level of CH4upon adsorbing on the Pt overlayer.For Pt/CeO2(O),the anti-bonding (σ?) orbital level of CH4exhibits a notable shift to the Fermi level owing to the charge transfer from Pt overlayer to CH4.The Bader charge analysis shows that CH4gains 0.23 e from d orbital of Pt/CeO2(O),while only about 0.02 e charge transfer occurred for the other three systems.The injection of electrons increases the polarization of CH4molecule,elongating the CH bond length to 1.09~1.18 ?A and weakening the C-H bond.Fig.5e depicts the two-dimensional charge distribution between Pt monolayer and CH4.Fig.5f displays a linear relationship between the activation energy of C-H bond and the d-band center of Pt overlayer relative toσ?of CH4?(Δε).Roughly speaking,a lowerΔεvalue indicates more charge transfer from d-band center of Pt overlayer to the anti-bonding orbital of adsorbate,thus resulting in a lower activation energy for C-H bond cleavage in both CH4and CH3?species.Therefore,the energy difference between d-band center of Pt overlayer and the anti-bonding orbital of adsorbate is a possible descriptor to predict the activation energy of C-H bond,which guides the rational selection of proper substrates to tune the catalytic performance of metal overlayers for certain reactions.

    In summary,we investigate the geometrical and electronic structures of Pt monolayer supported on various metal oxide surfaces and exploit them for CH4conversion based on first principles calculations.Monolayer Pt on Ce-terminated CeO2(111) surface is a potential catalyst for CH4conversion to CH3OH with high activity and selectivity.The relationship between chemical activity and electronic structure was established for supported Pt monolayer hybrid systems.The reaction occurs more readily with smallerΔε.Moreover,the substrate with more density of states distributed near the Fermi level induces larger changes of the d-band center of Pt monolayer.These computational results provide useful insights for the design of high-efficiency metal overlayers for direct and selective CH4conversion.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.11974068,91961204,and 12004065),the Fundamental Research Funds for the Central Universities of China (No.DUT20LAB110),the Liaoning Provincial Natural Science Foundation of China (No.2019JH3/30100002),and Key Research and Development Project of Liaoning Province (No.2020JH2/10500003).The authors gratefully acknowledge the computer resources provided by the Supercomputing Center of Dalian University of Technology and Shanghai Supercomputer Center.We gratefully acknowledge HZWTECH for providing computation facilities.

    国产亚洲av片在线观看秒播厂| 纯流量卡能插随身wifi吗| 香蕉精品网在线| 日韩电影二区| 国产成人91sexporn| 成人影院久久| 国产片特级美女逼逼视频| 亚洲美女搞黄在线观看| 亚洲色图av天堂| av播播在线观看一区| 国国产精品蜜臀av免费| av不卡在线播放| 高清在线视频一区二区三区| www.av在线官网国产| 街头女战士在线观看网站| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 久久久久精品久久久久真实原创| 久久韩国三级中文字幕| 九九爱精品视频在线观看| 国产在线视频一区二区| 26uuu在线亚洲综合色| 国产综合精华液| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 在线观看av片永久免费下载| 大码成人一级视频| av不卡在线播放| 观看免费一级毛片| 日本-黄色视频高清免费观看| 亚洲综合色惰| 中文字幕精品免费在线观看视频 | 免费人妻精品一区二区三区视频| 国产视频首页在线观看| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩东京热| 免费人妻精品一区二区三区视频| 超碰av人人做人人爽久久| 久久精品国产亚洲网站| 在线播放无遮挡| 中文字幕av成人在线电影| 日韩av免费高清视频| 热99国产精品久久久久久7| 老师上课跳d突然被开到最大视频| 夫妻性生交免费视频一级片| 日日撸夜夜添| 2021少妇久久久久久久久久久| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 99久久精品热视频| 亚洲精品国产av成人精品| 中文在线观看免费www的网站| 免费大片黄手机在线观看| 国产av码专区亚洲av| 免费黄色在线免费观看| 久久人人爽av亚洲精品天堂 | 简卡轻食公司| 三级国产精品片| 亚洲精品乱码久久久v下载方式| 国产精品麻豆人妻色哟哟久久| 人人妻人人看人人澡| 久久久久久久久久久免费av| 亚洲av日韩在线播放| 深夜a级毛片| 爱豆传媒免费全集在线观看| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| av在线app专区| 高清午夜精品一区二区三区| 色吧在线观看| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 蜜臀久久99精品久久宅男| 激情 狠狠 欧美| 麻豆乱淫一区二区| 一级毛片电影观看| 国产精品一二三区在线看| 亚洲国产精品999| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 国产欧美日韩一区二区三区在线 | 国产在线男女| 久久精品人妻少妇| 欧美日韩视频高清一区二区三区二| 啦啦啦啦在线视频资源| 女性生殖器流出的白浆| 亚洲自偷自拍三级| 午夜激情福利司机影院| 99re6热这里在线精品视频| 免费观看a级毛片全部| 一二三四中文在线观看免费高清| 一个人免费看片子| 亚洲精品自拍成人| 免费观看性生交大片5| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 美女国产视频在线观看| 亚洲四区av| 免费人成在线观看视频色| 久久热精品热| 亚洲色图综合在线观看| 又爽又黄a免费视频| 精品熟女少妇av免费看| av一本久久久久| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 一本—道久久a久久精品蜜桃钙片| 大码成人一级视频| 国产精品一区二区三区四区免费观看| 内射极品少妇av片p| 人体艺术视频欧美日本| 日韩av在线免费看完整版不卡| av播播在线观看一区| 亚洲av电影在线观看一区二区三区| 色视频www国产| 一个人看视频在线观看www免费| 五月伊人婷婷丁香| 婷婷色综合www| 亚洲丝袜综合中文字幕| 自拍偷自拍亚洲精品老妇| 天美传媒精品一区二区| 新久久久久国产一级毛片| 国产成人精品久久久久久| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 亚洲精品日本国产第一区| 另类亚洲欧美激情| 日韩不卡一区二区三区视频在线| 老司机影院成人| 欧美变态另类bdsm刘玥| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 99国产精品免费福利视频| 日韩不卡一区二区三区视频在线| 久久久久精品性色| 99re6热这里在线精品视频| 亚洲一区二区三区欧美精品| 免费大片18禁| av黄色大香蕉| 午夜福利在线在线| 久久国产亚洲av麻豆专区| 日日啪夜夜爽| 亚洲精品亚洲一区二区| 国精品久久久久久国模美| 精品人妻一区二区三区麻豆| 人妻夜夜爽99麻豆av| 99九九线精品视频在线观看视频| 中文字幕免费在线视频6| 全区人妻精品视频| 超碰av人人做人人爽久久| 丝瓜视频免费看黄片| 大话2 男鬼变身卡| 久久久久久久精品精品| 国产成人精品一,二区| 亚洲av国产av综合av卡| 97热精品久久久久久| 男人添女人高潮全过程视频| 免费观看a级毛片全部| 亚洲综合精品二区| 欧美变态另类bdsm刘玥| 精品久久久久久电影网| 国产人妻一区二区三区在| 高清视频免费观看一区二区| 各种免费的搞黄视频| 亚洲欧美中文字幕日韩二区| 少妇高潮的动态图| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 亚洲av日韩在线播放| 国产精品女同一区二区软件| 精品亚洲成国产av| 欧美日韩视频精品一区| 国产精品嫩草影院av在线观看| 国产精品国产av在线观看| 欧美日韩精品成人综合77777| 国产在视频线精品| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产精品久久久久久精品电影小说 | 2022亚洲国产成人精品| 国产精品人妻久久久影院| 丰满乱子伦码专区| 日韩欧美 国产精品| 视频区图区小说| 久久青草综合色| 老师上课跳d突然被开到最大视频| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 国产色婷婷99| 久久久久精品久久久久真实原创| 99热全是精品| 精品国产一区二区三区久久久樱花 | 国产精品女同一区二区软件| 日韩视频在线欧美| 亚洲欧美成人综合另类久久久| 麻豆成人午夜福利视频| 久久久久久久久久久免费av| 亚洲av电影在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 久久久久久九九精品二区国产| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| av国产免费在线观看| 色婷婷久久久亚洲欧美| 波野结衣二区三区在线| 偷拍熟女少妇极品色| 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 久久这里有精品视频免费| 精品国产三级普通话版| 亚洲精品成人av观看孕妇| 亚洲成色77777| 久久ye,这里只有精品| av在线app专区| 在线观看免费日韩欧美大片 | 久久久久久久精品精品| 小蜜桃在线观看免费完整版高清| 亚洲国产av新网站| 免费看av在线观看网站| 亚洲av日韩在线播放| 亚洲,一卡二卡三卡| 联通29元200g的流量卡| 亚洲欧洲国产日韩| 亚洲精品中文字幕在线视频 | 亚洲精品久久久久久婷婷小说| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 777米奇影视久久| 国产精品蜜桃在线观看| 这个男人来自地球电影免费观看 | 色视频在线一区二区三区| 少妇精品久久久久久久| 日本午夜av视频| 国产人妻一区二区三区在| 黄色日韩在线| 校园人妻丝袜中文字幕| 国产在线男女| 日日撸夜夜添| 亚洲不卡免费看| 亚洲av中文av极速乱| 嫩草影院入口| 久久久久国产网址| 偷拍熟女少妇极品色| 黄色欧美视频在线观看| 色吧在线观看| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 永久免费av网站大全| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 蜜桃在线观看..| 亚洲精品中文字幕在线视频 | 狂野欧美激情性xxxx在线观看| 亚洲成人一二三区av| 欧美激情极品国产一区二区三区 | 精品午夜福利在线看| 日韩亚洲欧美综合| 联通29元200g的流量卡| 日韩av在线免费看完整版不卡| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品古装| 少妇高潮的动态图| 日本vs欧美在线观看视频 | 少妇熟女欧美另类| 亚洲最大成人中文| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 国产乱人视频| 黄色怎么调成土黄色| 亚洲人成网站在线播| 色5月婷婷丁香| 大香蕉97超碰在线| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 久久鲁丝午夜福利片| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久久精品电影小说 | 女性生殖器流出的白浆| 激情五月婷婷亚洲| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 久久午夜福利片| 亚洲av中文字字幕乱码综合| 亚洲欧美成人综合另类久久久| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| 亚洲内射少妇av| 韩国av在线不卡| 99re6热这里在线精品视频| 一区二区av电影网| 99久久综合免费| 黄色欧美视频在线观看| 免费高清在线观看视频在线观看| 国精品久久久久久国模美| 国产色爽女视频免费观看| 中文字幕av成人在线电影| 国产高清有码在线观看视频| 伊人久久国产一区二区| 午夜福利高清视频| 久久综合国产亚洲精品| 极品少妇高潮喷水抽搐| 中文字幕av成人在线电影| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 国产精品成人在线| 国模一区二区三区四区视频| 久久久精品免费免费高清| 亚洲成人中文字幕在线播放| 国产精品久久久久久精品电影小说 | 激情 狠狠 欧美| 久久这里有精品视频免费| 国产精品无大码| 亚洲精品国产色婷婷电影| 九九久久精品国产亚洲av麻豆| videossex国产| 精品亚洲成a人片在线观看 | 久久人人爽av亚洲精品天堂 | 我的女老师完整版在线观看| 国产片特级美女逼逼视频| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 最近的中文字幕免费完整| 三级经典国产精品| 欧美精品国产亚洲| 成人二区视频| 夜夜看夜夜爽夜夜摸| 99九九线精品视频在线观看视频| 乱码一卡2卡4卡精品| 国产精品国产三级专区第一集| 99久久综合免费| 赤兔流量卡办理| 亚洲一区二区三区欧美精品| 中文天堂在线官网| 国产精品精品国产色婷婷| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 99热这里只有是精品在线观看| 国产一区二区三区综合在线观看 | 欧美精品一区二区大全| 嫩草影院新地址| 99热这里只有是精品50| av播播在线观看一区| 亚洲欧美清纯卡通| 国产毛片在线视频| 亚洲精品色激情综合| 国产精品久久久久久久久免| 国产免费一级a男人的天堂| 高清不卡的av网站| 国产欧美日韩精品一区二区| 精品国产乱码久久久久久小说| 精品人妻熟女av久视频| 男人舔奶头视频| 国产黄色视频一区二区在线观看| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站 | 日韩欧美精品免费久久| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 日本免费在线观看一区| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 黄色视频在线播放观看不卡| 国产极品天堂在线| 美女视频免费永久观看网站| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 中文字幕人妻熟人妻熟丝袜美| 高清日韩中文字幕在线| 黄色欧美视频在线观看| 久久久精品94久久精品| 日韩成人伦理影院| 国产黄片视频在线免费观看| 成人亚洲精品一区在线观看 | 在线精品无人区一区二区三 | 亚洲电影在线观看av| 亚洲欧美清纯卡通| 欧美精品一区二区大全| 国产乱来视频区| 街头女战士在线观看网站| 成人二区视频| 日本wwww免费看| av在线app专区| 亚洲精品乱久久久久久| 青春草视频在线免费观看| 久久人人爽人人爽人人片va| 成人午夜精彩视频在线观看| 欧美国产精品一级二级三级 | 自拍偷自拍亚洲精品老妇| 妹子高潮喷水视频| 少妇人妻 视频| 高清在线视频一区二区三区| 欧美精品国产亚洲| 日韩在线高清观看一区二区三区| 校园人妻丝袜中文字幕| 免费av不卡在线播放| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 久久久久久久亚洲中文字幕| 免费av中文字幕在线| 午夜免费男女啪啪视频观看| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 女性被躁到高潮视频| 中文字幕av成人在线电影| 久久久久性生活片| av国产免费在线观看| 亚洲不卡免费看| 色吧在线观看| 亚洲av中文字字幕乱码综合| 午夜免费鲁丝| 国产高清不卡午夜福利| 麻豆成人午夜福利视频| 久久99蜜桃精品久久| 特大巨黑吊av在线直播| 亚洲av.av天堂| 成人美女网站在线观看视频| 久久久精品94久久精品| 日韩国内少妇激情av| 深爱激情五月婷婷| 国产在线免费精品| av国产久精品久网站免费入址| 欧美三级亚洲精品| 亚洲精品第二区| 国产黄频视频在线观看| 亚洲精品国产av蜜桃| 七月丁香在线播放| 久久婷婷青草| 校园人妻丝袜中文字幕| 欧美区成人在线视频| 久久久久久久国产电影| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| videossex国产| 日日摸夜夜添夜夜添av毛片| 视频区图区小说| 色婷婷av一区二区三区视频| 精品99又大又爽又粗少妇毛片| 久久久成人免费电影| 欧美一级a爱片免费观看看| 国产亚洲午夜精品一区二区久久| 欧美+日韩+精品| 大片免费播放器 马上看| 国产成人精品久久久久久| 一级黄片播放器| 五月伊人婷婷丁香| 99热这里只有是精品50| 国产精品精品国产色婷婷| 国产精品.久久久| 毛片女人毛片| 亚洲精品,欧美精品| 免费黄网站久久成人精品| 18禁裸乳无遮挡动漫免费视频| 久热这里只有精品99| 一级毛片久久久久久久久女| 久久久久久久久久人人人人人人| 麻豆成人午夜福利视频| 亚洲熟女精品中文字幕| 丝袜喷水一区| 国产男女内射视频| 联通29元200g的流量卡| 午夜福利在线在线| xxx大片免费视频| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 亚洲国产色片| 黑丝袜美女国产一区| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 亚洲国产欧美在线一区| 成人二区视频| 精品视频人人做人人爽| 久久久久久久久大av| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 大片免费播放器 马上看| 99国产精品免费福利视频| 国产精品爽爽va在线观看网站| 精品久久久噜噜| 最近最新中文字幕免费大全7| 国产久久久一区二区三区| 精品人妻视频免费看| 免费在线观看成人毛片| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 男的添女的下面高潮视频| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 一区二区三区精品91| 麻豆乱淫一区二区| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 国产人妻一区二区三区在| 日韩欧美 国产精品| 乱系列少妇在线播放| 日韩人妻高清精品专区| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 在线 av 中文字幕| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 高清午夜精品一区二区三区| 最后的刺客免费高清国语| 国产高清不卡午夜福利| 六月丁香七月| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91 | 青春草视频在线免费观看| 777米奇影视久久| 日韩视频在线欧美| 五月玫瑰六月丁香| 99热这里只有是精品50| 97超视频在线观看视频| 国产大屁股一区二区在线视频| 亚洲综合色惰| 亚洲av在线观看美女高潮| 99久久精品热视频| 午夜精品国产一区二区电影| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 亚州av有码| 青春草视频在线免费观看| 欧美另类一区| 国产精品不卡视频一区二区| 超碰av人人做人人爽久久| 国产探花极品一区二区| 午夜福利视频精品| 欧美日韩综合久久久久久| 精品久久久精品久久久| 国产免费福利视频在线观看| a 毛片基地| 午夜福利在线在线| 国产一级毛片在线| 欧美日韩精品成人综合77777| 亚洲图色成人| 亚洲精品乱久久久久久| 秋霞伦理黄片| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 美女内射精品一级片tv| 精品国产露脸久久av麻豆| 一本一本综合久久| 亚洲精品视频女| 国产精品伦人一区二区| 亚洲天堂av无毛| 蜜桃久久精品国产亚洲av| 色吧在线观看| av专区在线播放| 欧美一区二区亚洲| 欧美激情极品国产一区二区三区 | 久久99精品国语久久久| 国产精品一二三区在线看| 亚洲欧洲国产日韩| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 国产探花极品一区二区| 毛片一级片免费看久久久久| 亚洲av日韩在线播放| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 久久国产精品男人的天堂亚洲 | 性色avwww在线观看| 亚洲欧美一区二区三区黑人 | 99久国产av精品国产电影| 中文字幕av成人在线电影| 成年免费大片在线观看| 黄片wwwwww| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 久久综合国产亚洲精品| 秋霞伦理黄片| 丰满乱子伦码专区| 18+在线观看网站| 搡老乐熟女国产| 免费看光身美女| 91精品伊人久久大香线蕉| 全区人妻精品视频| 精品一区二区三区视频在线| 全区人妻精品视频| 成年人午夜在线观看视频| 午夜福利高清视频| 国产视频内射| 久久久午夜欧美精品| 少妇 在线观看| 国产精品国产三级专区第一集| 麻豆乱淫一区二区| 日本午夜av视频| 直男gayav资源| xxx大片免费视频| 免费看不卡的av| 欧美zozozo另类| 日本免费在线观看一区| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 免费观看a级毛片全部| 老师上课跳d突然被开到最大视频| 国产精品免费大片| 久久久久久久久久成人|