• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tungsten oxide nanowires and polyaniline hybrid film-based electrochromic device with multicolor display and enhanced capacitance

    2023-11-21 03:04:38YananChenJiaoLeiYanlingZhaiZhijunZhuWeitaiWuXiaoquanLu
    Chinese Chemical Letters 2023年11期

    Yanan Chen,Jiao Lei,Yanling Zhai,Zhijun Zhu,Weitai Wu,Xiaoquan Lu

    a Institute of Molecular Metrology,College of Chemistry and Chemical Engineering,Qingdao University,Qingdao 266071,China

    b Institute of Hybrid Materials,National Center of International Research for Hybrid Materials Technology,National Base of International Science &Technology Cooperation,College of Materials Science and Engineering,Qingdao University,Qingdao 266071,China

    c State Key Laboratory of Physical Chemistry of Solid Surfaces,Xiamen University,Xiamen 361005,China

    Keywords:W18O49/PANI Electrochromism Multifunctional devices Multicolor Energy storage

    ABSTRACT Electrochromic devices (ECDs) have exhibited promising applications in the fields of energy-saving intelligent buildings and next-generation displays because of their simple structure,low power consumption,and multicolor displays.W18O49/polyaniline (PANI) hybrid films are prepared and assembled to ECDs.Compared with pure PANI and W18O49 films,the hybrid film exhibits superior electrochemical and electrochromic performance,including high optical modulation (70.2%),large areal capacity (79.6 mF/cm2),and good capacitance retention.The excellent electrochemical and electrochromic performance is ascribed to the formation of the donor (PANI)-acceptor (W18O49) pair,the porous structure in the nanowires,and the large surface area,which enhance electron delocalization of the W18O49/PANI,improve the ion diffusion rate,and increase the charge storage sites.Furthermore,benefitting from the outstanding optical,electrical,and multifunctional properties,the W18O49/PANI hybrid film-based ECD platform is expected to play an important role in electrochromism and energy storage.

    With the increasing energy demand and environmental pollution,more and more attention has been paid to the green economy,so the issue of efficient energy storage and energy conservation has gradually become the primary concern [1–3].In recent years,ECD with bifunctional properties of electrochromism and energy storage has been developed as an excellent technology to meet the above requirements for a green world [4,5].ECDs can achieve reversible color changes and dynamic regulation of light transmission,absorption,and reflectivity through low voltage control (usually <4 V) [6–9],which have broad application prospects in smart windows,static displays,automotive anti-glare rearview mirrors,electronic paper,and energy storage fields [10,11].

    Moreover,the development of electrochromic materials in energy storage devices has attracted widespread attention [12–14].The most studied electrochromic materials mainly include transition metal oxides (e.g.,WO3,NiO,V2O5,and Nb2O5),Prussian blue [15–19],and organic materials such as viologen compounds,PANI,polypyrrole [20,21].For example,Prussian blue film incorporated with an aluminum (Al) electrode integrated bi-functional electrochromic and energy storage ability into one device [22].Nevertheless,monotonous color change,slow switching speed,and low capacity greatly limit the application of devices constructed from one electrochromic material.The ECDs with inorganic/organic hybrid films that combine the advantages of conducting conjugated polymers and transition oxides have gained much recent research interest.For instance,Cai and co-workers reported TiO2/PANI nanocomposites displayed remarkable improvement in transmittance modulation and cycling stability compared with PANI film [23].Similarly,Shietal.developed WO3/poly(3,4-ethylenedioxythiophene) (PEDOT) core@shell hybrid nanorod arrays,which exhibited promising electrochromic performance of much shorter switching time and enhanced optical contrast because of a synergistic effect between the WO3nanocore and the PEDOT nanoshell [24].However,the wide application of these devices is limited by their inadequate energy storage capacity.Hence,developing a novel hybrid film-based ECD with excellent electrochromic properties and high capacitance is of great significance,which provides a valuable technical application direction for the next generation of smart windows and power supply.

    It is well known that WO3-xas a typical cathodic material has excellent properties of high cycle stability [25,26],and good optical contrast,but it has the disadvantages of monotonous color and long switching time.As an anodic electrochromic material,PANI has the advantages of adjustable electrical conductivity and multicolor switching but always possesses poor durability [27,28].The hybrid material of WO3-xand PANI is expected to give full play to the advantages of the two materials,which would work as electrochromic devices with higher stability and a multicolor display[29].More importantly,both WO3-xand PANI are suitable electrode materials to construct electrochromic energy storage devices[15,30],because of their pseudocapacitive properties [16,20,31,32].

    Herein,W18O49/PANI hybrid film is constructed through the electropolymerization of the PANI layer on solvothermal synthesized W18O49film.Compared with the pure PANI film,the hybrid film exhibits richer color,a wide optical modulation range,improve switching speed,and excellent durability.Moreover,the incorporation of the W18O49for hybrid film leads to remarkable improvements in energy storage capacity,which is mainly attributed to the synergistic effect between W18O49and PANI,the porous space of the W18O49/PANI boosting the fast ion diffusion and providing the charge-transfer reactions with large surface area.The as-synthesized W18O49/PANI hybrid film shows great potential in electrochromic and energy storage applications.

    The fabrication of W18O49/PANI film involves a two-step process(Fig.1a).First,W18O49nanowires were synthesized on fluorinedoped SnO2(FTO) glass substrate by solvothermal method.Secondly,the W18O49was coated by the PANI through an electrochemical deposition of aniline.Field emission scanning electron microscope (FE-SEM) image reveals that the W18O49nanowires(Fig.S1 in Supporting information) are of an average length of several micrometers and a width of 10–20 nm in Fig.1b,which provides a porous spatial structure for ion transport.The inset shows the microscopy picture of the synthesized W18O49film (Fig.S1),which is nearly transparent.After the electrochemical polymerization of PANI on the surface of the W18O49film,a green PANI layer[31] made of short rod cross-linked curd was deposited (Fig.1c),indicating the successful fabrication of W18O49/PANI film.Fig.S2(Supporting information) shows the FE-SEM images of the FTO substrates before and after electrochemically polymerization of short rod-shaped PANI.

    Fig.1.(a) Schematic illustration of the fabrication of the W18O49/PANI film.(b,c)SEM image of W18O49 and W18O49/PANI film (the inset is the photograph of the corresponding film).(d) The XRD pattern of W18O49 on the FTO glass.(e) The N 1s XPS of W18O49,PANI,and W18O49/PANI.

    The element distribution images in Fig.S3 (Supporting information) show that W,N,and C are uniformly distributed throughout the film.X-ray diffraction (XRD) patterns in Fig.1d show the sharp diffraction peaks of W18O49at 23.50°,26.23°,35.34°,and 48.00°,confirming the successful preparation of monoclinic W18O49(JCPDS No.84–1516) [31].X-ray photoelectron spectroscopy (XPS) is used to study the surface state of film.The peaks at 35.42/37.55 and 33.97/35.95 eV are ascribed to the binding energies of W6+and W5+in W18O49(Fig.S4 in Supporting information),respectively,indicating the mixed valence of W [26].Moreover,N,O,W,and C can be found in the XPS spectrum of the as-prepared W18O49/PANI hybrid film (Fig.S5 in Supporting information),indicating the coexistence of W18O49and PANI.In contrast,no characteristic N 1s peak is observed in the W18O49film (Fig.S6 in Supporting information).As shown in Fig.1e,the N 1s broad band at 399.57 eV of W18O49/PANI film can be deconvoluted into three N species at 398.88,399.5,and 401.04 eV[33,34],which are assigned to quinoline phenyl structure (-N=),benzene structure (-NH-),and quaternary ammonium structure(N+) [27,33,35],respectively,and these peaks can also be found in the N 1s XPS spectrum of the PANI film.The similar phenomenon can be observed in the W 4f spectrum of the W18O49/PANI film(Fig.S7 in Supporting information).All these results demonstrate the successful synthesis of W18O49/PANI hybrid film.

    Fig.S8 (Supporting information) shows the current density profiles of the electrodepositing PANI film onto FTO and W18O49substrates.A larger current density on FTO was observed due to the better conductivity of the FTO substrate than W18O49.As the thickness of PANI increases,the color change of the W18O49/PANI hybrid film is more obvious.As shown in Fig.S10 (Supporting information),when the deposition time was increased to 400 s,no significant improvement in the color change of the hybrid film can be seen.Therefore,a deposition time of 300 s is selected for further study and discussion.

    The CV curves of the PANI and the W18O49/PANI hybrid films in 1 mol/L AlCl3aqueous solution between -0.6 V and 1.0 V are presented in Fig.2a.The hybrid film exhibits good pseudocapacitive behavior [36–38] with two pairs of redox peaks of PANI marked with blue triangles.The two peaks marked with red triangles in Fig.2a represent the characteristic redox reaction [15,39] of W18O49from -0.1 V to -0.6 V (Fig.S11 in Supporting information),which is only found in the W18O49/PANI hybrid film.The redox reaction of W18O49/PANI film involves the intercalation and extraction processes of chlorine anion (Cl–) and aluminum ion (Al3+)[21,35,40-42],which is fully explained in Fig.S12a (Supporting information).It means that both W18O49and PANI components in the hybrid film exhibit individual electrochemical activities,and they can simultaneously switch to colored/bleached states under positive/negative voltage applications.

    Fig.2.Energy storage performances and cycle stability are characterized by electrochemical measurements.(a) Cyclic voltammetry curves for PANI and W18O49/PANI hybrid thin film between -0.6 V and 1.0 V at 40 mV/s in 1 mol/L AlCl3 aqueous solution.(b) The areal capacitance of the three films at different current densities of 1.0,0.8,0.5,0.2,and 0.1 mA/cm2.(c) The chronoamperometry (CA) curves of W18O49/PANI hybrid film at the alternant potential of -0.6 V and 1.0 V (vs.Ag/AgCl,each for 10 s) in 1 mol/L AlCl3 aqueous solution.(d) The energy storage cycle stability of the W18O49/PANI film at a current density of 1.0 mA/cm2.

    The W18O49/PANI hybrid film shows much enhanced exchange current density at around -0.5 and -0.2 V (peak C,C′ in Fig.2a)than that of PANI film,because of the redox behavior of W18O49.Moreover,the relative current density of the hybrid film at -0.3 and 0.3 V (peak A,A′ in Fig.2a and Fig.S12a) are much higher than that of PANI film (peak A and A′ in Fig.S13a in Supporting information),which further demonstrates the formation of the donor (PANI)-acceptor (W18O49) pair.The fine structure can be well maintained in its CV curve even at a scan rate as high as 100 mV/s,demonstrating that a large number of active sites in the hybrid film can be efficiently oxidized/reduced due to the fast charge transfer of W18O49nanowires and the synergistic effect between W18O49nanowires and PANI.The surface of the W18O49nanowires is relatively rough,which provides a large active specific surface area for the electrochemical reaction process.Fig.S12b(Supporting information) shows the relationship between the anodic and cathodic peak current densities of W18O49/PANI versus the square root of the scanning rate.An approximately linear relationship can be found,indicating that the entire reaction process is diffusion-controlled.

    The capacitive performance is investigated with the galvanostatic charge/discharge (GCD) test.W18O49,PANI,and W18O49/PANI hybrid electrodes are charged and discharged at different current densities respectively (Fig.S12c in Supporting information).The discharge time of the W18O49/PANI film is much longer than that of the individual W18O49and PANI films,indicating the superior capacitance properties of W18O49/PANI film,which may be attributed to the synergistic effect between W18O49and PANI.Firstly,the porous structure in the hybrid film provides excess active area,allowing more doped electrons ions to enter the W18O49/PANI thus enhancing the charge storage capacity.Secondly,due to the formation of donor-acceptor pair between PANI and W18O49,PANI chains could locally donate more electrons to W18O49[24],which further accelerates the electron migration and improve the ion diffusion efficiency.

    The areal-specific capacitance (C) of a single electrode is calculated according to the following Eq.1 [43,44]:

    whereQis the average charge,Ais the effective area referring to the geometric area of the electrochromic electrode,andΔUis the voltage window (excluding the IR drop) [45].Based on the GCD test,the value ofQcan be obtained by the following Eq.2:

    The areal capacitance values of the W18O49/PANI film are 79.56,79.09,75.23,72.66,and 71.02 mF/cm2at different current densities of 0.1,0.2,0.5,0.8,1 mA/cm2,respectively (Fig.2b),which is much larger than those of the other two films.The capacitance value of the W18O49/PANI film is much higher than the sum of individual W18O49and PANI films (Fig.2b),which can be mostly ascribed to the synergistic effect between PANI and W18O49,further strengthening the energy storage ability.The increase in areal capacitance may be due to the increase in surface roughness of the electrode,which could boost ion diffusion and charge transfer.By using the well-characterized mediator (potassium ferricyanide),the surface roughness factors (the ratio of an electrochemical active area over the geometric area) of pure W18O49,pure PANI and W18O49/PANI were calculated to be 0.52,1.27,1.22,respectively.The actual surface area of W18O49/PANI film is calculated according to the Randles-Sevcik equation [46,47].The surface roughness factor of the W18O49/PANI film (1.22) is less than that of PANI (1.27),as well as the sum of individual W18O49and PANI,while the capacitance value of the W18O49/PANI film is much higher than the sum of individual W18O49and PANI films (Fig.2b).Therefore,the remarkable areal capacitance improvement of the W18O49for the hybrid film is mainly attributed to the synergistic effect between W18O49and PANI,in other words,the formation of the donor(PANI)-acceptor (W18O49) pair.

    Moreover,the similar pattern of the charging and discharging curves,combined with the areal charging and discharging capacities of 80.1 and 79.6 mF/cm2(Fig.S12c) reveal the good capacitive property [31] of W18O49/PANI.Afterward,we tested if a thicker PANI in W18O49/PANI brings a better capacitive behavior.When the deposition time continues to increase to 400 s,the areal capacitance is slightly lower,as shown in Fig.S12d (Supporting information),which may be due to the larger electrode impedance of W18O49/PANI (400 s) and is not conducive to improving the capacitive performance [21].To further evaluate the electrochemical performance of the hybrid film,its stability is one of the most critical parameters.The CA measurements are carried out to study the stability of the films [9].As shown in Fig.2c,the hybrid film exhibits a slightly low current density than that of PANI film (Fig.S13b in Supporting information) at the beginning of the test,which is ascribed to the higher surface conductivity of the PANI film.On the other hand,the hybrid film affords much-enhanced stability than the PANI film after 3200 s cycling time,which could be ascribed to the strong contact between W18O49and the FTO substrate.Moreover,the electrochemical stability is greatly enhanced after PANI is coated on the rough surface of W18O49.In contrast,as the PANI layer degrades in an acidic environment and loses most of its performance,the current density of PANI gradually decreases.Similarly,the original capacity of the hybrid film still maintains 80%after 100 cycles (Fig.2d),which is superior to the performance of PANI films (Fig.S13c in Supporting information).This demonstrates the great capacitance reproducibility of the W18O49/PANI hybrid film,showing excellent application potential in electrochromic capacitors.

    The W18O49/PANI film turns from dark blue to green,yellow,and light blue,during the potential range from 1.0 V to -0.6 V(Fig.3a),indicating the large optical modulation range of the hybrid film.Compared with the PANI film (Fig.S14),the W18O49/PANI film displays richer colors,which is ascribed to the diverse absorption characteristics of the W18O49and PANI at different voltages.The transmittance of W18O49/PANI film at 300~1400 nm gradually increases when the applied voltage is from 1.0 V to-0.6 V (Fig.3b),involving the process of Cl-extraction and Al3+intercalation [20,31].The transmittance modulation (ΔT) of the W18O49/PANI film is calculated to be 70.2% (652 nm),comparable to the PANI film (63.3%,Fig.S15a in Supporting information).Moreover,the W18O49/PANI film has a wider optical modulation range from 800~1050 nm,which has excellently higherΔT(~44.2%) in comparison to the PANI film.The bleached/colored switching process of the W18O49/PANI film is determined by alternately applying a voltage at 1.0 V for 25 s followed by -0.6 V for 25 s on the film,whereasinsitumonitoring is conducted of its transmittances at 652 nm.The dynamic switching of W18O49/PANI(Fig.3c) for 400 s,in which the W18O49/PANI film exhibitsΔTof 64.2% at 652 nm is higher than that of the PANI film measured (53.0%,Fig.S15b in Supporting information),indicates that W18O49/PANI electrochromic film has good reversibility and cycling stability.Fig.3d and Fig.S15c (Supporting information) show the reversible electrochromic switching behaviors of the W18O49/PANI and PANI films.Faster switching time in the bleached process(6.3 s) is achieved from the hybrid film,compared to the PANI film(13.3 s),which is ascribed to the layer of W18O49nanowires providing large porous space and thus making ion diffusion easier,as well as the synergistic effect of the W18O49/PANI.While the coloration time of PANI and W18O49/PANI films are 3.7 and 6.9 s,respectively.Because of the instability of PANI in the colored state,its colored time is slightly shorter than that of the hybrid film.Besides,the donor-acceptor pair between PANI and W18O49can further enhance the electron transfer rate and has a positive effect on the ion diffusion efficiency and color switching speed of W18O49/PANI.

    Fig.3.(a) The photographs of the W18O49/PANI film (1×4.5 cm2) at different voltages,scale bar: 1 cm.(b) The transmittance spectra of the W18O49/PANI film under different voltages.(c) The dynamic test of the W18O49/PANI film at 652 nm in the potential window between -0.6 and 1.0 V for 400 s.(d) Transmittance at 652 nm versus time for electrochromic switching of W18O49/PANI film.

    The schematic diagram of a prototype device demonstrates the potential of this novel W18O49/PANI ECD (Fig.4a).Aluminum (Al)is chosen as the anode to construct the W18O49/PANI ECD,which has a strong reducing ability and easily loses electrons [22].Fig.4b shows the visually distinguished color change of the ECD,from light blue to light green,green,blue,and dark blue at the voltages from 0.2 V to 2.2 V,where a deeper color means a higher charging extent [22],indicating a function of the capacitive levelvisualization of ECD-based energy storage device [21].In addition,the optical transmission spectrum of the W18O49/PANI ECD under different applied voltages was also tested (Fig.S16 in Supporting information),which shows the good optical modulation(ΔT=50.0% at 532 nm) of the W18O49/PANI ECD.The CV curves of the device from 2.2 V to 0.2 V at different scan rates are presented in Fig.4c,as the scan speed increases,the response current density of the W18O49/PANI ECD also increases,demonstrating the excellent kinetics and reversibility of the interfacial Faradaic redox reaction [21].The CV curve potential window range of the ECD is enlarged due to the two electrodes system and the internal resistance of the device [6,22].As depicted in Fig.S17a (Supporting information),the GCD curves of the device at different current densities under the voltage window of 2.2~0.2 V show nonlinear characteristics,which may be due to the redox reaction [21] of W18O49or PANI.According to the Eqs.1 and 2 described above,the areal capacitances of W18O49/PANI ECD are 46.15,45.16,43.78,43.20,42.83,and 42.36 mF/cm2,respectively.The charge capacity of the W18O49/PANI ECD is far superior to that of the pure W18O49ECD and PANI ECD (Fig.S17b in Supporting information),which shows that the hybrid film ECD has excellent application strength in energy storage.

    Fig.4.(a) Schematic structure of the W18O49/PANI ECD.(b) The photographs of the W18O49/PANI ECD in different states under indicated potentials,scale bar: 1 cm.(c)The CV curves of the W18O49/PANI ECD between 0.2 V and 2.2 V.

    Previous reports have demonstrated that Al with strong reducing power exhibits large negative potentials and can be used to establish a large potential gradient for the rapid discharge process using electrochromic electrodes [22,48].Electron transfer can occur when W18O49/PANI film is connected to a metallic Al electrode due to the potential difference between W18O49/PANI with Al,which could produce a current that exhibits battery-like characteristics [15,42].Meanwhile,the transferred electrons induce spontaneous discoloration of the W18O49/PANI,enabling the device to function without an external power supply.The color of the device changes from the initial dark green to light yellow and finally to light blue as shown in Fig.S18 (Supporting information),which reflects the energy-saving property of W18O49/PANI ECD.Afterward,the as-prepared W18O49/PANI ECD can be charged by an external bias,accompanied by the color recovery from light blue to dark blue;a deeper color means a higher charging degree.In this sense,the energy storage level of the W18O49/PANI ECD can be indicated through the color state.

    To further demonstrate the battery function of the W18O49/PANI electrochromic device,Mg is selected to construct the battery instead of Al to obtain a larger potential [49–52] output a red lightemitting diode LED (~1.8 V) can be lit up when the W18O49/PANI and Al electrodes are connected.The pictures of LED at different time are presented in Fig.S19a (Supporting information).Compared with the LED lightened by the PANI-Mg pair (Fig.S19b in Supporting information),it can be found that the energy delivered by the W18O49/PANI-Mg battery can continuously light up a red LED for more than 2 h.In contrast,the PANI-Mg system can only light up the LED for a short time,demonstrating excellent capacitance characteristics of the W18O49/PANI hybrid device.

    In conclusion,the W18O49/PANI hybrid film-based multicolored ECD is successfully proposed.Because of the individual electrochromic characteristics of PANI and W18O49,the color of the hybrid film exhibits richer color than that of PANI.Due to the formation of the donor-acceptor system (PANI-W18O49) as well as the synergistic effect,the W18O49/PANI hybrid film exhibits excellent electrochemical stability,good optical modulation,high areal specific capacitance,and excellent capacitance retention,which shows a profound impact on the development of multifunctional ECDs and promises their potential applications in energy-efficient technologies.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Scientific Foundation of China (No.21804074),China Postdoctoral Science Foundation (No.2020T130331),and the Open Funds of the State Key Laboratory of Physical Chemistry of Solid Surfaces (No.202023).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108305.

    成人国产一区最新在线观看| 久久精品综合一区二区三区| 波多野结衣高清无吗| 午夜福利在线在线| 舔av片在线| 毛片女人毛片| 天堂影院成人在线观看| 日本熟妇午夜| 日韩欧美精品v在线| 露出奶头的视频| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 国产精品人妻久久久久久| 国产精品一区二区性色av| av欧美777| 露出奶头的视频| 一本一本综合久久| 精品人妻一区二区三区麻豆 | 国产欧美日韩精品亚洲av| 自拍偷自拍亚洲精品老妇| 欧美+亚洲+日韩+国产| 精品日产1卡2卡| 中文字幕人妻熟人妻熟丝袜美| 国产午夜精品论理片| 12—13女人毛片做爰片一| 最好的美女福利视频网| 波多野结衣高清作品| 超碰av人人做人人爽久久| 久久午夜福利片| 亚洲成人久久爱视频| 直男gayav资源| 久久久久久久久久成人| 欧美+日韩+精品| 国产爱豆传媒在线观看| 久久人人精品亚洲av| 一二三四社区在线视频社区8| av视频在线观看入口| 欧美色视频一区免费| 成年女人毛片免费观看观看9| 欧美极品一区二区三区四区| 国产欧美日韩精品一区二区| 一本综合久久免费| 欧美xxxx性猛交bbbb| 色综合欧美亚洲国产小说| 日本一本二区三区精品| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久久电影| 一区二区三区高清视频在线| 欧美在线黄色| 一二三四社区在线视频社区8| 亚洲av免费在线观看| 十八禁网站免费在线| 亚洲片人在线观看| 国产私拍福利视频在线观看| 床上黄色一级片| 一级毛片久久久久久久久女| 岛国在线免费视频观看| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 中文字幕av成人在线电影| 丰满人妻一区二区三区视频av| a级毛片a级免费在线| а√天堂www在线а√下载| 国产真实伦视频高清在线观看 | av中文乱码字幕在线| eeuss影院久久| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线| 亚洲av免费高清在线观看| 国产高清三级在线| 久久香蕉精品热| 最新中文字幕久久久久| www.999成人在线观看| 亚洲五月天丁香| 在线免费观看不下载黄p国产 | 十八禁国产超污无遮挡网站| 成人永久免费在线观看视频| 精品国产亚洲在线| 最好的美女福利视频网| 国产精品一区二区三区四区久久| 嫩草影院精品99| 桃红色精品国产亚洲av| 免费在线观看成人毛片| 老女人水多毛片| 午夜免费男女啪啪视频观看 | 一区二区三区免费毛片| 熟女人妻精品中文字幕| 亚洲欧美精品综合久久99| 国产精品电影一区二区三区| 婷婷精品国产亚洲av| 村上凉子中文字幕在线| 亚州av有码| 免费大片18禁| 亚洲成av人片免费观看| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 亚洲国产精品999在线| 9191精品国产免费久久| 亚洲av中文字字幕乱码综合| 国产精品一区二区三区四区免费观看 | 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 久久99热6这里只有精品| 尤物成人国产欧美一区二区三区| 日本一本二区三区精品| 老熟妇乱子伦视频在线观看| 午夜免费成人在线视频| 日韩欧美精品v在线| 宅男免费午夜| 免费观看人在逋| 国产黄色小视频在线观看| 午夜福利高清视频| 他把我摸到了高潮在线观看| 舔av片在线| 一级av片app| 少妇熟女aⅴ在线视频| 国产主播在线观看一区二区| 精品久久久久久久末码| 亚洲人成网站高清观看| 一进一出抽搐gif免费好疼| 美女高潮喷水抽搐中文字幕| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 亚洲国产精品成人综合色| 免费在线观看亚洲国产| 级片在线观看| 欧美日韩国产亚洲二区| 欧美不卡视频在线免费观看| 又粗又爽又猛毛片免费看| 午夜a级毛片| 久久久久久久午夜电影| 午夜福利在线观看吧| 一本一本综合久久| 最新中文字幕久久久久| 哪里可以看免费的av片| 最近中文字幕高清免费大全6 | 熟女电影av网| 一级a爱片免费观看的视频| 日本精品一区二区三区蜜桃| 乱人视频在线观看| 51国产日韩欧美| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| 久久精品久久久久久噜噜老黄 | 变态另类成人亚洲欧美熟女| 91午夜精品亚洲一区二区三区 | 欧美一区二区国产精品久久精品| 国产精品自产拍在线观看55亚洲| 亚洲国产色片| 熟女人妻精品中文字幕| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 黄片小视频在线播放| 少妇丰满av| 天堂√8在线中文| 久久6这里有精品| 男人和女人高潮做爰伦理| 国产大屁股一区二区在线视频| 国产精品自产拍在线观看55亚洲| 深爱激情五月婷婷| 久久6这里有精品| 一级a爱片免费观看的视频| 免费电影在线观看免费观看| av视频在线观看入口| 午夜精品在线福利| 国产综合懂色| 久久国产精品影院| 日日摸夜夜添夜夜添小说| 成人精品一区二区免费| 国产精品1区2区在线观看.| 热99在线观看视频| АⅤ资源中文在线天堂| 亚洲国产色片| 成人一区二区视频在线观看| 午夜福利在线观看免费完整高清在 | 亚洲av不卡在线观看| 亚洲色图av天堂| 国产午夜福利久久久久久| 草草在线视频免费看| 性插视频无遮挡在线免费观看| 亚洲欧美日韩卡通动漫| 午夜免费激情av| 成年人黄色毛片网站| 国产亚洲欧美在线一区二区| 2021天堂中文幕一二区在线观| av在线观看视频网站免费| 亚洲av免费在线观看| 一个人观看的视频www高清免费观看| 亚洲五月婷婷丁香| 国产亚洲av嫩草精品影院| 久久久国产成人精品二区| 国产免费男女视频| 国产免费一级a男人的天堂| 国产精品免费一区二区三区在线| 人妻夜夜爽99麻豆av| 国产在视频线在精品| 午夜免费男女啪啪视频观看 | 久久精品影院6| or卡值多少钱| 18禁裸乳无遮挡免费网站照片| 欧美日韩福利视频一区二区| www.www免费av| 禁无遮挡网站| 黄色丝袜av网址大全| 国产中年淑女户外野战色| 国产在线精品亚洲第一网站| 91狼人影院| 精品人妻偷拍中文字幕| 亚洲精品粉嫩美女一区| 日本精品一区二区三区蜜桃| 黄片小视频在线播放| 久久天躁狠狠躁夜夜2o2o| 中国美女看黄片| 1024手机看黄色片| 免费人成在线观看视频色| 色综合婷婷激情| 午夜精品一区二区三区免费看| 男人狂女人下面高潮的视频| 男女那种视频在线观看| 亚洲最大成人中文| 成人三级黄色视频| 国产国拍精品亚洲av在线观看| 搡女人真爽免费视频火全软件 | 日韩成人在线观看一区二区三区| 精品国产亚洲在线| 精品福利观看| 国产毛片a区久久久久| 午夜免费成人在线视频| 深夜a级毛片| 床上黄色一级片| 男人的好看免费观看在线视频| 国产亚洲av嫩草精品影院| 欧美色欧美亚洲另类二区| 乱码一卡2卡4卡精品| 黄色日韩在线| 男女做爰动态图高潮gif福利片| 国产高清视频在线播放一区| 一进一出抽搐gif免费好疼| 午夜福利18| 久久这里只有精品中国| 久久久久久久午夜电影| 18禁裸乳无遮挡免费网站照片| 成人无遮挡网站| 久久99热6这里只有精品| 又爽又黄a免费视频| 国产精品不卡视频一区二区 | 国产精品野战在线观看| 一个人看视频在线观看www免费| 日本熟妇午夜| 国产av在哪里看| 男女下面进入的视频免费午夜| 我的女老师完整版在线观看| 变态另类丝袜制服| 老鸭窝网址在线观看| 亚洲成a人片在线一区二区| 男人的好看免费观看在线视频| 免费人成在线观看视频色| 久久精品国产亚洲av天美| 波野结衣二区三区在线| www.色视频.com| 99riav亚洲国产免费| 欧美中文日本在线观看视频| 熟妇人妻久久中文字幕3abv| 婷婷精品国产亚洲av在线| 床上黄色一级片| 能在线免费观看的黄片| 欧美日本视频| 好男人电影高清在线观看| 自拍偷自拍亚洲精品老妇| 88av欧美| 欧美日韩乱码在线| 日韩亚洲欧美综合| 国产v大片淫在线免费观看| 国产精品99久久久久久久久| 国产乱人视频| 色噜噜av男人的天堂激情| 久久精品综合一区二区三区| 日韩av在线大香蕉| 能在线免费观看的黄片| 午夜免费男女啪啪视频观看 | 欧美区成人在线视频| 午夜福利在线在线| 草草在线视频免费看| 淫秽高清视频在线观看| 亚洲人成电影免费在线| 精品99又大又爽又粗少妇毛片 | 极品教师在线免费播放| 黄色视频,在线免费观看| 亚洲国产欧洲综合997久久,| 最近中文字幕高清免费大全6 | 99热精品在线国产| 熟女电影av网| 男女做爰动态图高潮gif福利片| 国产成人福利小说| 中文字幕精品亚洲无线码一区| 亚洲成a人片在线一区二区| 亚洲三级黄色毛片| 身体一侧抽搐| 亚洲性夜色夜夜综合| 日韩高清综合在线| 麻豆一二三区av精品| 久久国产乱子伦精品免费另类| 香蕉av资源在线| 一本一本综合久久| 亚洲在线自拍视频| 人妻夜夜爽99麻豆av| 淫秽高清视频在线观看| 久久草成人影院| 亚洲经典国产精华液单 | 亚洲激情在线av| 亚洲成av人片免费观看| 国产成人a区在线观看| 少妇高潮的动态图| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 美女高潮的动态| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 很黄的视频免费| 亚洲av五月六月丁香网| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| 91午夜精品亚洲一区二区三区 | 婷婷六月久久综合丁香| 一个人免费在线观看的高清视频| www.www免费av| 精品久久久久久久人妻蜜臀av| 亚洲无线观看免费| 午夜a级毛片| 精品欧美国产一区二区三| 赤兔流量卡办理| 午夜福利欧美成人| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 亚洲一区二区三区不卡视频| 成人毛片a级毛片在线播放| 综合色av麻豆| 夜夜夜夜夜久久久久| 欧美极品一区二区三区四区| 757午夜福利合集在线观看| 麻豆久久精品国产亚洲av| 成人特级av手机在线观看| 国产日本99.免费观看| 好看av亚洲va欧美ⅴa在| 中文字幕人成人乱码亚洲影| 69人妻影院| 精品人妻一区二区三区麻豆 | 免费看光身美女| 久久这里只有精品中国| 在现免费观看毛片| 亚洲国产日韩欧美精品在线观看| 一个人看的www免费观看视频| 亚洲欧美日韩高清在线视频| 一个人看的www免费观看视频| 亚洲电影在线观看av| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| 国产探花在线观看一区二区| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 国产高清视频在线播放一区| 久久中文看片网| 97热精品久久久久久| 少妇的逼水好多| 日韩中字成人| 一本久久中文字幕| 免费一级毛片在线播放高清视频| 1000部很黄的大片| 亚洲熟妇熟女久久| 欧美成人一区二区免费高清观看| 免费观看的影片在线观看| 国产在视频线在精品| 变态另类成人亚洲欧美熟女| 午夜福利欧美成人| 久久精品影院6| 日本一二三区视频观看| 久久国产精品人妻蜜桃| 看免费av毛片| 在线观看免费视频日本深夜| 自拍偷自拍亚洲精品老妇| 精品午夜福利在线看| 97热精品久久久久久| 国产久久久一区二区三区| 人妻制服诱惑在线中文字幕| 精品久久久久久,| 岛国在线免费视频观看| 色综合欧美亚洲国产小说| 黄色丝袜av网址大全| 成人精品一区二区免费| 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 51国产日韩欧美| .国产精品久久| 一二三四社区在线视频社区8| 岛国在线免费视频观看| 久久久精品大字幕| 成人国产一区最新在线观看| 丰满的人妻完整版| a在线观看视频网站| 日本撒尿小便嘘嘘汇集6| 十八禁国产超污无遮挡网站| 久久香蕉精品热| 一进一出好大好爽视频| 丰满的人妻完整版| av视频在线观看入口| 99久国产av精品| 亚洲va日本ⅴa欧美va伊人久久| 国产黄片美女视频| 3wmmmm亚洲av在线观看| 一级毛片久久久久久久久女| 在线免费观看不下载黄p国产 | 亚洲黑人精品在线| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看 | 亚洲中文日韩欧美视频| 久久久久久久久久成人| 自拍偷自拍亚洲精品老妇| 欧美性猛交╳xxx乱大交人| x7x7x7水蜜桃| 中文字幕av在线有码专区| 男人舔奶头视频| 啪啪无遮挡十八禁网站| 直男gayav资源| 大型黄色视频在线免费观看| 久久久久久久久大av| 99久久无色码亚洲精品果冻| 婷婷丁香在线五月| 国产综合懂色| 三级国产精品欧美在线观看| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 午夜免费男女啪啪视频观看 | 国产高潮美女av| 欧美一区二区国产精品久久精品| 欧美xxxx黑人xx丫x性爽| 尤物成人国产欧美一区二区三区| 欧美潮喷喷水| 亚洲专区中文字幕在线| 国产精品av视频在线免费观看| 长腿黑丝高跟| 成人av在线播放网站| 在线观看舔阴道视频| 国产精品久久久久久久电影| 亚洲av成人av| 免费在线观看亚洲国产| 中文字幕高清在线视频| 波野结衣二区三区在线| 亚洲自偷自拍三级| 成人性生交大片免费视频hd| 99久久精品一区二区三区| 91久久精品电影网| 国产一区二区三区在线臀色熟女| 午夜老司机福利剧场| 精品一区二区三区av网在线观看| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 亚洲精品一区av在线观看| 露出奶头的视频| 成年女人永久免费观看视频| 99久久精品国产亚洲精品| 人妻丰满熟妇av一区二区三区| 波野结衣二区三区在线| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 久久久久久久亚洲中文字幕 | av欧美777| 欧美精品国产亚洲| 欧美丝袜亚洲另类 | 精品人妻偷拍中文字幕| 精品乱码久久久久久99久播| 露出奶头的视频| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 亚洲综合色惰| 别揉我奶头~嗯~啊~动态视频| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看| 人人妻,人人澡人人爽秒播| 五月玫瑰六月丁香| 免费看日本二区| 91久久精品电影网| 亚洲七黄色美女视频| 两人在一起打扑克的视频| 美女被艹到高潮喷水动态| 日本与韩国留学比较| 男人和女人高潮做爰伦理| 成人永久免费在线观看视频| 免费电影在线观看免费观看| 非洲黑人性xxxx精品又粗又长| 久久人妻av系列| 757午夜福利合集在线观看| 99国产精品一区二区三区| 精品久久久久久,| 高清毛片免费观看视频网站| netflix在线观看网站| 成人国产一区最新在线观看| 亚洲熟妇熟女久久| 亚洲成人久久爱视频| 又紧又爽又黄一区二区| 亚洲国产欧美人成| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 3wmmmm亚洲av在线观看| 成熟少妇高潮喷水视频| 无遮挡黄片免费观看| 国产亚洲精品久久久com| 欧美精品啪啪一区二区三区| 长腿黑丝高跟| 直男gayav资源| 深夜a级毛片| 非洲黑人性xxxx精品又粗又长| 欧美最新免费一区二区三区 | 成人无遮挡网站| 窝窝影院91人妻| av在线蜜桃| 51午夜福利影视在线观看| 亚洲人成网站高清观看| 亚洲片人在线观看| 午夜激情福利司机影院| 成年女人看的毛片在线观看| 久久6这里有精品| 在线观看舔阴道视频| 黄片小视频在线播放| 精品久久久久久久久久久久久| 丁香欧美五月| 在线看三级毛片| 波多野结衣高清无吗| 无人区码免费观看不卡| 午夜福利在线在线| 国内精品久久久久久久电影| 此物有八面人人有两片| 在线免费观看不下载黄p国产 | 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 国产高清视频在线播放一区| 欧美色视频一区免费| 国产午夜福利久久久久久| 亚洲人与动物交配视频| 午夜影院日韩av| 一级av片app| 久久精品久久久久久噜噜老黄 | 亚洲国产精品成人综合色| 亚洲av五月六月丁香网| 日本 欧美在线| 国产亚洲精品久久久久久毛片| 欧美成人性av电影在线观看| 国产色婷婷99| 色在线成人网| 观看美女的网站| 午夜a级毛片| 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影| 国产精品自产拍在线观看55亚洲| 99在线视频只有这里精品首页| 丰满人妻熟妇乱又伦精品不卡| 少妇高潮的动态图| 有码 亚洲区| 精品日产1卡2卡| 精华霜和精华液先用哪个| 十八禁人妻一区二区| 在线看三级毛片| 在线a可以看的网站| 国产欧美日韩一区二区三| 免费大片18禁| 夜夜躁狠狠躁天天躁| 伦理电影大哥的女人| 深夜精品福利| 欧美黄色淫秽网站| 久久草成人影院| 99热精品在线国产| 丰满人妻一区二区三区视频av| 亚洲av一区综合| 久久国产精品人妻蜜桃| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| .国产精品久久| 一个人观看的视频www高清免费观看| 久久久久性生活片| 夜夜看夜夜爽夜夜摸| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| 黄色日韩在线| 久久精品综合一区二区三区| 国产成人啪精品午夜网站| 国产伦一二天堂av在线观看| 十八禁网站免费在线| 色尼玛亚洲综合影院| 午夜a级毛片| 国产精品永久免费网站| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 欧美午夜高清在线| 此物有八面人人有两片| 一本一本综合久久| 亚洲av成人不卡在线观看播放网| 男插女下体视频免费在线播放| 久久伊人香网站| 国产午夜精品久久久久久一区二区三区 | 久久精品国产清高在天天线| 美女cb高潮喷水在线观看| 中文资源天堂在线| 美女免费视频网站| 老司机午夜十八禁免费视频| 国产乱人伦免费视频| 亚洲av电影在线进入| www.熟女人妻精品国产| 搡老岳熟女国产| 国产黄色小视频在线观看|