• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3D microgel with extensively adjustable stiffness and homogeneous microstructure for metastasis analysis of solid tumor

    2023-11-21 03:04:28XionnZhengYingHouQingZhngYjingZhengZengnnWuXuejiZhngJinMingLin
    Chinese Chemical Letters 2023年11期

    Xionn Zheng,Ying Hou,Qing Zhng,Yjing Zheng,Zengnn Wu,Xueji Zhng,c,?,Jin-Ming Lin,?

    a Laboratory of Bioengineering and Sensing Technology,Research Center for Bioengineering and Sensing Technology,School of Chemistry & Biological Engineering,University of Science and Technology Beijing,Beijing 100083,China

    b Beijing Key Laboratory of Microanalytical Methods and Instrumentation,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology(Ministry of Education),Department of Chemistry,Tsinghua University,Beijing 100084,China

    c School of Biomedical Engineering,Health Science Centre,Shenzhen University,Shenzhen 518060,China

    Keywords:Extracellular matrix stiffness Composite hydrogel Polylactic acid (PLA)Nanofibers Metastasis analysis Breast cancer

    ABSTRACT 3D microgels with various mechanical properties have been important platforms tumor metastasis analysis,and widely adjustable stiffness is crucial for deeper researches.Herein,by mixing biodegradable polylactic acid (PLA) nanofibers in the modified alginate with different concentrations of Ca2+,we significantly enhance the stiffness range of microgels while retaining the pore size,which provides bionic microenvironment for tumor analysis.As a proof of concept,we simulated the mechanical characteristics of breast tumors by encapsulating cells in 3D microgels with diverse stiffness,and analyzed cellular behaviors of two typical breast cancer cell lines: MCF-7 and SUM-159.Results showed that with the addition of 2.0% (w/v) PLA short nanofibers,the Young’s modulus of modified alginate increased more than three-fold.Besides preserving high survival and proliferation rates,both cells also displayed stronger migration ability in soft microgel spheres,where RT-qPCR analysis revealed the underlying changes at the genetic level.This systematic study demonstrated our method is powerful for creating widely adjustable 3D mechanical microenvironment,and the results of cellular behavior analysis shows its promising application prospects in tumorigenesis and progression.

    In physiological or pathological conditions,extracellular matrix(ECM) undergoes complex and diverse changes in structural and mechanical properties to support critical interactions with cells.Including stiffness,shear stress,stretching,ligand density,composition,and topography,have been confirmed to regulate cell behaviors.Particularly,tissue stiffening,an unique phenomenon of cancer progression,has attracted plentiful researches on specific cell behaviors in 2D planar systems [1–4].However,as cells are surrounded by 3D ECM nichesinvivo,the dimensionality shift may directly cause differences in ligand distribution,cell adhesion mode and cell stiffness-sensing,which would definitely affect cell behaviors [5,6].For instance,in context of pathological diseases,cell metastasis is always accelerated by the increasing stiffness of traditional 2D substrates,while observations on 3D ECM mimics may be contradictory [7].Thus,3D ECM has been shown to be necessary to further explore the ability of artificial platforms,specifically in cell mechanical sensing.

    To date,the fabrication of diverse 3D models has been achieved by many methods,such as cell spheroid culture,3D bioprinting,tissue-engineering scaffolds with customizable properties,hydrogels,cell sheets,bioreactors with dynamic loading,and microfluidics [8].Among them,microfluidics show the advantages of high throughput,stability and automation,making it possible to obtain a great quantity of samples with consistent spatial distribution and structures using low amounts of reagents [9–12].In terms of materials,hydrogels combine the unique properties of softness,low immunogenicity and tunable mechanical characteristics [13–15].Thus,monodisperse microgels produced with these elements not only offer exquisite control on homogeneous internal structures,but also shows the advantage in ECM physical features simulation [16].Additionally,the limited size of microgels can avoid cells inactivation at internal positions caused by deficient oxygen and nutrients [17].

    However,the microgels still present some limitations in the simulation of tumor stiffness due to their nature of high water content and flexibility [18].To achieve high stiffness,simply increasing the weight concentration is not feasible,as it leads to a simultaneous change in porosity and viscosity,which brings out challenges including microflow shearing and microchip clogging[19].Moreover,while the mechanical properties can be altered by the amount,type of crosslinking ions or methods,stiffness changes on orders-of-magnitude is hardly achieved [20].To solve this problem,nanofibers have shown the prospect in simulation of increased collagenous fibrils in hardened tissue [21].For example,Joshietal.have successfully combinedβ-TCP incorporated PLA nanofibers with gelatin for biomimetic bone tissue engineering,the compressive stress was amplified about 8-fold [22].It showed the nanofiber-hydrogel hybrids contained widely adjustable mechanical properties,which could fit the stiffness of some specific or diseased tissue.

    Herein,we present an innovative strategy to reinforce 3D microgel constructs by formulating composite hydrogel composed of modified alginate and different amount of micron-scale polylactide (PLA) nanofibers for solid carcinoma engineering (Scheme 1).The modified alginate with PVGLIG (proline-valine-glycine-leucineisoleucine-glycine) and RGD (arginine-glycine-aspartate) peptides provided corresponding sites for cell migration and adhesion.By adding microscale PLA nanofibers uniformly by ultrasound,the composite microgels with increased stiffness showed the similar pore size,proving that we have created a 3D mechanical matrix platform with univariate variables.Following this strategy,solid breast tumors within the pathological breast stiffness range (2–20 kPa) were successfully simulated by using different composite gel ratios and two breast cancer cells with different invasive abilities,epithelial phenotype breast cancer cells MCF-7 and more aggressive mesenchymal SUM-159 [23].Obviously,high proliferation and invasion ability of both cell types in soft matrix were observed.Furthermore,RT-qPCR analysis revealed the underlying changes at the genetic level.In this study,the proposed 3D microgel with homogeneous microstructure and adjustable stiffness effectively simulates the mechanical microenvironment of solid breast tumors,and demonstrates the advantagesin-vitrosimulation and tissue engineering.

    Scheme 1.The synthesis process of microgels and the illustration of cell behavioral differences regulated by the variable stiffness in microgels.

    Firstly,PLA nanofibers with well-controlled diameters were fabricated by electrospinning process (Fig.1a).Prior to use,morphology of nanofibers should be thoroughly characterized.As shown in Fig.1b,the SEM micrograph of PLA fibers had random orientation and uniform width after electrospinning,and the average width was about 0.52± 0.12 μm,which fitted the Gaussian distribution (Fig.S1 in Supporting information).However,the fibers produced by electrospinning directly are always with irregular length in the tens or hundreds of microns,which might clog the outlets of microchips and hinder the uniform generation of microscale microgels.The homogeneous PLA nanofibers that shorter than the diameter of microgels are urgently needed to avoid the large agglomeration.Thus,the electrospun PLA nanofibers were aminolyzed in 5% ethylenediamine to obtain the micro-short scale,in order to disperse it uniformly in hydrogels [24].And relevant experiments were optimized to discovery the influence of aminolysis time on the degree of fiber breakage.In Fig.S2 (Supporting information),PLA nanofibers became shorter and thicker as the increasing time of ammonolysis.For the 3 h ammonolysis (Fig.1c),the PLA nanofibers were decomposed into micrometer-scale lengths,which had been suitable for making uniformly sized microgel spheres (Fig.1d).Therefore,the 3 h ammonolysis PLA fibers with an average width and length of 0.8062± 0.1966 μm (Fig.1e)and 5.9048± 2.1419 μm (Fig.1f) could be employed in the composite hydrogels.And to guarantee the composite hydrogels biocompatible and stability,RGD and PVGLIG (MMP sensitive sequence)were introduced efficiently on alginate in response to cell adhesion and migration (Fig.S3 in Supporting information).

    Fig.1.The synthesis and characterization of PLA nanofibers.(a) Schematic diagram for the fabrication of PLA nanofibers and PLA nanofiber reinforced alginate microgels.SEM images of (b) PLA nanofibers and (c) aminolyzed micron-length PLA nanofibers.Scale bars represent 10 μm and 5 μm,respectively.(d) PLA nanofiber reinforced alginate microgels for cell encapsulation,red arrows point out the PLA nanofibers.Scale bar: 100 μm.(e) Width and (f) length distribution of aminolyzed micro-short PLA nanofibers.Fitting performed assuming normal distribution,mean values ± SD: d=0.8062± 0.1966 μm,L=5.9048± 2.1419 μm,both n=100.

    Next,we fabricated the microfluidic device to produce cellloaded alginate/PLA hydrogel spheroids by flow-focusing (Fig.S4 in Supporting information) [25].And the height and length of all microchannels were around 100 μm and 200 μm.Subsequently,the conditions of the continuous phases were optimized by fixing the velocity of dispersed phase.As shown in Videos S1–S4 (Supporting information),when the flow rate of the continuous phase was speeder than 600 μL/h,the dispersed phase at a rate of 40 μL/h could be cut into microgel spheres.To conform to the size requirement (~200 μm),we ultimately chose two continuous phases at the flow rate of 600 μL/h.The obtained microgels were collected in 20% 1H,1H,2H,2H-perfluoro-1-octanol for demulsification.

    Subsequently,to simulate varying degrees of stiffening in breast cancer,different amounts of PLA nanofibers added in the compound gels should be explored.And the three groups in Table S1 (Supporting information) were finally selected.As shown in Fig.2a and Fig.S5 (Supporting information),the viscosity modulus of 2.0% alginate with different concentrations of Ca2+were far below the elastic modulus,indicating the Young’s modulus was mainly affected by the modulus of elasticity.After the corresponding experimental groups that added different amounts of PLA,the viscous modulus of the composite hydrogel still kept the same trend,while the elastic modulus was greatly increased,thereby raising the overall stiffness about 1.54,1.88,3.17 times,up to 2.02± 0.25 kPa,7.45± 0.49 kPa and 16.76± 1.18 kPa,respectively.Meanwhile,the swelling phenomenon during long-term culture also is a crucial feature,and the swelling ratio which reflected microgels cross-linking density was determined by the hydrodynamic diameter calculation of the microgel formulation in oil or water.As shown in Fig.2b and Fig.S6 (Supporting information),the sizes of pure alginate groups are swelled from 204.73±4.19 μm,209.39± 4.10 μm,207.80± 3.84 μm to 233.57± 5.10 μm,224.14± 4.51 μm,214.25± 5.49 μm.Microgels cross-linking with only 10 mmol/L Ca2+swelled the most remarkable with 14.09%increasing.After adding PLA,the stability of the gel was further improved.The particle sizes are swelled from 222.64± 7.34 μm,216.89± 6.82 μm,209.89± 12.65 μm to 238.88± 11.73 μm,221.25±11.87 μm,211.72± 6.41 μm,showing the swelling rates of three gel formulations were reduced to 7.29%,2.01%,and 0.87%,respectively.Simultaneously,SEM images in Fig.2c and Fig.S7 (Supporting information) demonstrated the homogeneity of pore size of three formulas,which were about 23.21± 7.71 μm,24.47± 4.50 μm and 20.18± 8.50 μm,respectively.Statistical results showed that changing the cross-linking state within a certain range Ca2+concentration would not affect the pore size of gels obviously,thus avoiding the influence in nutrients or the metabolic waste transport.Besides,the distribution of PLA micron nanofibers and the morphology of the cells encapsulated in different gel could be clearly observed from SEM images in Fig.S8 (Supporting information).

    Fig.2.Performance characterizations of microgels.(a) Modulus of 2.0% Alginate with different Ca2+ concentration and with PLA nanofibers.N=3,E’=elastic component,E’’=viscous component,G?=Young’s modulus.(b) Swelling performance of different formulations.The microgels generated in oil and soaked in water for 24 h for diameter recording.(c) SEM images of three composite hydrogel formulations,scale bar: 100 μm.

    We proceeded to explore the role of stiffness on cell viability and proliferation in tumor microenvironments simulated by microgels.As shown in Fig.S9 (Supporting information),activity of MCF-7 and SUM-159 cells maintained no significant difference for all three conditions,similar results were obtained for other cell lines as well (Fig.S10 in Supporting information).And through counting and quantitative analysis of encapsulated cells of 1–3 days cultivation in Fig.3a,the viability was at the range of 88.63% to 96.37%,which proved the high cytocompatible of nanofibers-composited hydrogels.Due to the modification of RGD and PVGLIG motifs,the hydrogel provided suitable sites for cell-matrix intergration and further improved cell growth and proliferation.In Fig.3b,we estimated cell numbers on day 0,1,and 3 by CCK8 assay and defined the fold change in proliferation by normalizing to the day 0 data.Two kinds of cells in the soft (2.02 kPa) and medium-stiffness(7.45 kPa) microenvironments showed significantly higher growth than the stiff (16.76 kPa) condition in 72 h.Subsequently,cell cycles were detected by flow cytometry.In Fig.3c,the cells grown in the soft environments showed more distribution in the G2/M period,indicating the higher proliferation ability,which were consistent with the CCK8 results.In conclusion,both MCF-7 and SUM-159 cells tends to proliferate in a softer 3D microenvironment.

    Fig.3.State of MCF-7 and SUM-159 cells within the modified microgels with tunable stiffness.(a) Counting and quantitative viability analysis of encapsulated cell in microgels,n=50.(b) Proliferation curves of cells encapsulated in heterogeneous environments.N=3.(c) Analysis of cell cycle in 3D conditions for 48 h by flow cytometry.N=3.

    It is well known that breast cancer cells MCF-7 and SUM-159,exhibiting epithelial phenotype and mesenchymal phenotype,displayed with low and high metastatic potential in 2D plane,respectively (Fig.S11 in Supporting information).To study whether cell migration viability is highly correlated with 3D ECM stiffness,we encapsulated cells in 200 μm microgels and observed cell migrated from the inside of the gel to the outer space in 5 days.

    In Figs.4a and b,cells exhibited similar tendency of metastatic potential,that were more frequently forming bulges on the surface of spheroids in soft condition.While cells located at the bottom of spheroids could migrate out and attach on the 2D bottom surface.For each culture condition,we measured more than 50 microgels in each independent replicate,and repeated 3 times in Fig.4c.For MCF-7,the spheroids with surface cell bulges or bottom cell attachment were significantly decreased from 29.44% ± 2.53%to 19.48% ± 0.82% and 11.77% ± 0.23% with the increased stiffness.And SUM-159 presented the migration percentage of 41.30%± 2.50%,27.25% ± 1.57% and 22.23% ± 1.21%,respectively,after encapsulated for 72 h under the same condition as MCF-7.It proved that cells with a mesenchymal phenotype still maintained the high migratory capacity in 3D microenvironment.Certainly,with a limited number of encapsulated cells,cell protrusions on the microgel surface could also be observed,but for a longer time (Fig.S12 in Supporting information).

    Fig.4.Migration ability and gene expression two kinds of breast cancer cells under different mechanical stiffness stimulations.Images of (a) MCF-7 and (b) SUM-159 migration for 1,3,5 days.(c) Efficiency of cell migration after 3 days of culture in varying stiffness 3D constructs.n ≥50,N=3.(d) Immunofluorescence intensity of Ncadherin and E-cadherin in two kinds of cells,N=3.(e) Gene expression heat map shows several critical protein expression genes associated with cell migration.All gene expression levels are normalized with housekeeping gene GAPDH from each culture condition (-ΔΔCt was applied for normalization),N=3.?P <0.05,??P <0.01,???P <0.001,n.s.is no significance.

    Furthermore,we sought to further testify motility of encapsulated cells by immunofluorescence staining of N-cadherin and Ecadherin.As shown in Fig.S13 (Supporting information),cultured for 72 h,both N-cadherin and E-cadherin were observed in two type of cells.And the expression of E-cadherin was slightly lower in cells within the soft microgels,indicating the weakened intercellular cohesion.Thus,cells easily dispersed and infiltrated to the periphery.Obviously,with the increasing ECM stiffness,the decrease of N-cadherin expression level suggested the weakening of cell migration and invasion ability as well (Fig.4d).Instead,the expression of epithelial markers E-cadherin in MCF-7 and mesenchymal markers N-cadherin in SUM-159 were more deeply affected by ECM stiffness,respectively,which was determined by cell characteristics.In summary,cell migration became tough in stiff 3D microenvironment.Therefore,we speculated that cells need time to find or pave a way to pass through the ECM with more physical constraints.

    After demonstrating the association between migration and ECM stiffness in encapsulated cells,the changes induced by environmental confinement should be more visualized by gene expression.Matrix metalloproteinases (MMPs) are known to play an important role in developmental and homeostatic remodeling of ECM by mediating the degradation of ECM proteins,while tissue inhibitor of metalloproteinases (TIMPs) can adjust the MMPs expression [26].From the point of view of migration ability,those genes were selected for further mRNA expression level analysis,and the detail of sequences were shown in Table S2.As shown in Fig.4e,the expression of MMP2,MMP13,MMP14 and TIMP2 in both cells were significantly upward modulation within stiffer microgels.Meanwhile,the expression of those genes in 2D plane were downward than 3D condition,except the MMP13 in MCF-7 cells.Subsequently,MMP9 and TIMP1 of two kinds of breast cells were significantly down-regulated in stiff 3D microenvironment,and only MMP9 of SUM-159 expressed more in 3D ECM than 2D cultured.These observations were consistent with the known study that MMP2 and MMP9 could be repressed by TIMP1 and TIMP2,respectively.In addition,MMP3 and MMP8 of MCF-7 were significantly up-regulated with ECM stiffness,while the expression of those two genes demonstrated opposite in SUM-159.As for TIMP3,the expression was rapid declined in MCF-7 but raised in SUM-159 as stiffness changed.Those gene expression analysis revealed a complex and sensitive feedback network of cell migration upon 3D mechanical stimulation,which may provide some insights into solid tumor research and therapy.

    In summary,we employed a composite hydrogel of PLA nanofibers and modified alginate with different concentrations of Ca2+,which can typically reinforce the mechanical properties of microgels with similar pore size.And we also investigated the effects of 3D microenvironment stiffness on the cell proliferation,viability,migration,and related gene expression of two types of breast cancer cells.Highly biocompatible and throughput microgels propose a new approach for the construction of solid tumors and observation of tumor migration.We envision that this study will provide an essential foundation for future investigations on ECM mechanisms in breast cancer and spark new approaches for therapy.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (Nos.22034005,81973569,and 21621003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108319.

    国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久| 国产高潮美女av| 免费av观看视频| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区| 中文字幕亚洲精品专区| 99热全是精品| 国产美女午夜福利| 久久久色成人| 乱系列少妇在线播放| 免费在线观看成人毛片| 欧美成人精品欧美一级黄| 精品亚洲乱码少妇综合久久| 亚洲图色成人| 精品人妻一区二区三区麻豆| 嘟嘟电影网在线观看| 国产色婷婷99| 日本一本二区三区精品| 成人二区视频| 伊人久久国产一区二区| 亚洲图色成人| 久久久久久久久久久免费av| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频| 天堂影院成人在线观看| 欧美区成人在线视频| 精品国产一区二区三区久久久樱花 | 99热全是精品| 人妻一区二区av| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 亚洲人成网站高清观看| 纵有疾风起免费观看全集完整版 | 成人亚洲精品av一区二区| 欧美+日韩+精品| 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| 91av网一区二区| 综合色丁香网| 免费在线观看成人毛片| 亚洲最大成人中文| 99久久精品热视频| 大香蕉97超碰在线| 大又大粗又爽又黄少妇毛片口| 精品国产一区二区三区久久久樱花 | 别揉我奶头 嗯啊视频| 国产成人精品福利久久| 日韩制服骚丝袜av| 99久国产av精品国产电影| 天堂影院成人在线观看| 肉色欧美久久久久久久蜜桃 | 毛片女人毛片| 十八禁国产超污无遮挡网站| 22中文网久久字幕| 免费看美女性在线毛片视频| 午夜福利成人在线免费观看| 九草在线视频观看| 美女国产视频在线观看| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 国产白丝娇喘喷水9色精品| 国产不卡一卡二| 久久久精品94久久精品| 精品欧美国产一区二区三| 国产色爽女视频免费观看| 最近中文字幕2019免费版| www.色视频.com| 欧美日韩国产mv在线观看视频 | 欧美日韩亚洲高清精品| 国产精品一区二区三区四区免费观看| 婷婷六月久久综合丁香| 久久国内精品自在自线图片| 日韩电影二区| 亚洲欧美精品专区久久| av在线天堂中文字幕| 韩国高清视频一区二区三区| 黄色一级大片看看| 日韩大片免费观看网站| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片| 亚洲精品成人久久久久久| 两个人视频免费观看高清| 九九爱精品视频在线观看| 成人亚洲欧美一区二区av| 色吧在线观看| 国产精品嫩草影院av在线观看| 精品一区二区三卡| 精品人妻视频免费看| av在线播放精品| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 黄色日韩在线| 国产成人福利小说| 国产v大片淫在线免费观看| 免费大片黄手机在线观看| 日本wwww免费看| 六月丁香七月| 日韩电影二区| 国产午夜精品久久久久久一区二区三区| 青青草视频在线视频观看| 嘟嘟电影网在线观看| 国产午夜精品论理片| 精品国产一区二区三区久久久樱花 | 免费观看无遮挡的男女| 亚洲综合精品二区| 在线观看免费高清a一片| 男人爽女人下面视频在线观看| 国产中年淑女户外野战色| 99热6这里只有精品| 亚洲最大成人手机在线| 久久久久免费精品人妻一区二区| 亚洲av中文字字幕乱码综合| 国产精品麻豆人妻色哟哟久久 | 国产真实伦视频高清在线观看| 色综合亚洲欧美另类图片| 亚洲欧洲日产国产| 午夜福利在线观看吧| 日本黄色片子视频| 成人美女网站在线观看视频| 黄色一级大片看看| 亚洲真实伦在线观看| 中文精品一卡2卡3卡4更新| 国产精品久久视频播放| 韩国高清视频一区二区三区| 黄色欧美视频在线观看| 大陆偷拍与自拍| 久久久午夜欧美精品| 国产成人91sexporn| 少妇的逼好多水| 国产精品一区二区性色av| 黄色一级大片看看| 欧美xxⅹ黑人| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 欧美日韩视频高清一区二区三区二| 亚洲aⅴ乱码一区二区在线播放| 成人二区视频| a级一级毛片免费在线观看| 国产黄片美女视频| h日本视频在线播放| 我的老师免费观看完整版| 国产黄频视频在线观看| 亚洲美女视频黄频| 激情 狠狠 欧美| 亚洲精品日本国产第一区| 国产久久久一区二区三区| 波多野结衣巨乳人妻| 亚洲人成网站在线播| 丰满人妻一区二区三区视频av| 欧美另类一区| 久久久久久久久久黄片| 色播亚洲综合网| 欧美一区二区亚洲| 亚洲精品国产av成人精品| 狂野欧美白嫩少妇大欣赏| 极品少妇高潮喷水抽搐| 伊人久久精品亚洲午夜| 国产一级毛片七仙女欲春2| 国产 亚洲一区二区三区 | 久久精品久久久久久噜噜老黄| 国产精品一区二区三区四区久久| 日韩强制内射视频| 中文字幕av在线有码专区| 十八禁网站网址无遮挡 | 精品国产三级普通话版| 99热网站在线观看| xxx大片免费视频| 18禁在线播放成人免费| 日本黄色片子视频| 久久亚洲国产成人精品v| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 亚洲av电影不卡..在线观看| 成年女人在线观看亚洲视频 | 高清毛片免费看| 人妻一区二区av| 国产真实伦视频高清在线观看| 免费大片18禁| 午夜福利成人在线免费观看| www.av在线官网国产| 少妇丰满av| 好男人视频免费观看在线| 久久久久久久久久久丰满| 国产探花极品一区二区| eeuss影院久久| 少妇猛男粗大的猛烈进出视频 | 国产淫片久久久久久久久| 国产精品麻豆人妻色哟哟久久 | 嫩草影院新地址| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 国产有黄有色有爽视频| 精品国产三级普通话版| 亚洲aⅴ乱码一区二区在线播放| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久大尺度免费视频| 少妇熟女aⅴ在线视频| 亚洲av二区三区四区| 国产 一区精品| 青春草亚洲视频在线观看| 在现免费观看毛片| 韩国高清视频一区二区三区| 如何舔出高潮| 人人妻人人看人人澡| 国产一级毛片七仙女欲春2| 亚洲怡红院男人天堂| 久久6这里有精品| 97热精品久久久久久| 少妇人妻一区二区三区视频| 亚洲av成人av| 2021少妇久久久久久久久久久| 日日啪夜夜爽| 午夜激情久久久久久久| 亚洲va在线va天堂va国产| 国产一区有黄有色的免费视频 | 久久人人爽人人爽人人片va| 亚洲av电影不卡..在线观看| 男的添女的下面高潮视频| 日韩av在线大香蕉| 高清视频免费观看一区二区 | 欧美97在线视频| 亚洲欧美日韩无卡精品| 精品人妻熟女av久视频| 白带黄色成豆腐渣| 青青草视频在线视频观看| 久久精品国产鲁丝片午夜精品| 国产高潮美女av| 免费观看无遮挡的男女| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区久久| 高清在线视频一区二区三区| 最新中文字幕久久久久| 午夜激情福利司机影院| 亚洲精品,欧美精品| 欧美激情在线99| 日韩欧美一区视频在线观看 | 国产av在哪里看| 美女黄网站色视频| 亚洲精品乱码久久久久久按摩| 国产亚洲精品av在线| 天堂中文最新版在线下载 | 午夜免费观看性视频| 成人亚洲精品av一区二区| 国产成人一区二区在线| 熟女电影av网| 亚洲伊人久久精品综合| 色播亚洲综合网| 免费黄网站久久成人精品| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9| 嫩草影院入口| 久久精品国产亚洲av天美| 看十八女毛片水多多多| 夫妻午夜视频| 日韩欧美国产在线观看| 日韩精品有码人妻一区| 国产精品国产三级专区第一集| 午夜免费观看性视频| 伦理电影大哥的女人| eeuss影院久久| 精品午夜福利在线看| 久99久视频精品免费| 熟妇人妻久久中文字幕3abv| 在线免费观看的www视频| a级毛色黄片| 欧美不卡视频在线免费观看| www.色视频.com| 午夜福利视频1000在线观看| 真实男女啪啪啪动态图| 三级国产精品欧美在线观看| xxx大片免费视频| 免费黄网站久久成人精品| av在线观看视频网站免费| 国产老妇伦熟女老妇高清| 国产精品一区二区在线观看99 | 熟妇人妻不卡中文字幕| 蜜臀久久99精品久久宅男| 亚洲精品日本国产第一区| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 中国美白少妇内射xxxbb| 国产av不卡久久| 晚上一个人看的免费电影| 熟女电影av网| 亚洲美女视频黄频| 精华霜和精华液先用哪个| 九色成人免费人妻av| 久久久色成人| 久久久久久久久中文| 最新中文字幕久久久久| 亚洲四区av| 免费大片黄手机在线观看| 国产一区亚洲一区在线观看| 亚洲精品中文字幕在线视频 | 亚洲国产成人一精品久久久| 白带黄色成豆腐渣| 国产成人精品婷婷| av女优亚洲男人天堂| 成人欧美大片| 黄片无遮挡物在线观看| av卡一久久| 国产成人a区在线观看| 天堂中文最新版在线下载 | 亚洲美女视频黄频| 一级毛片我不卡| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 午夜免费激情av| 久久精品熟女亚洲av麻豆精品 | 韩国av在线不卡| 中文在线观看免费www的网站| 亚洲电影在线观看av| 国产黄a三级三级三级人| 国产精品国产三级国产专区5o| 久久久久久久久久成人| 又大又黄又爽视频免费| 久久久色成人| 在线播放无遮挡| 亚洲av男天堂| 亚洲天堂国产精品一区在线| 一级毛片 在线播放| 精品久久久久久成人av| 精品国产三级普通话版| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄| 亚洲精品中文字幕在线视频 | 国产淫片久久久久久久久| 免费观看av网站的网址| 春色校园在线视频观看| 日本黄大片高清| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 99久久精品国产国产毛片| 国产探花在线观看一区二区| 久久久久国产网址| 精品一区二区三卡| 国产黄色免费在线视频| 搡老乐熟女国产| 国产中年淑女户外野战色| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播| 熟女电影av网| 九色成人免费人妻av| 97精品久久久久久久久久精品| 精品久久久久久久人妻蜜臀av| 国产精品福利在线免费观看| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 日韩伦理黄色片| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 国产精品麻豆人妻色哟哟久久 | 亚洲国产欧美人成| 国产v大片淫在线免费观看| 亚洲高清免费不卡视频| 国产黄a三级三级三级人| 成年人午夜在线观看视频 | 免费av观看视频| 美女大奶头视频| 少妇人妻一区二区三区视频| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 亚洲婷婷狠狠爱综合网| 国产在线男女| 777米奇影视久久| 亚洲图色成人| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 免费观看在线日韩| 午夜亚洲福利在线播放| 乱码一卡2卡4卡精品| 蜜臀久久99精品久久宅男| 插阴视频在线观看视频| 尾随美女入室| 97超视频在线观看视频| 青春草国产在线视频| 亚洲电影在线观看av| 国产av国产精品国产| 精品国产露脸久久av麻豆 | 国产精品蜜桃在线观看| 成人国产麻豆网| 日本三级黄在线观看| 国产成人91sexporn| av黄色大香蕉| 亚洲av福利一区| 一级毛片aaaaaa免费看小| 亚洲国产欧美人成| 国产成人一区二区在线| 如何舔出高潮| 三级毛片av免费| 亚洲av中文av极速乱| 国产淫片久久久久久久久| 三级经典国产精品| 99九九线精品视频在线观看视频| 欧美97在线视频| 搡女人真爽免费视频火全软件| 亚洲精品第二区| 成人亚洲欧美一区二区av| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频| 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 麻豆成人午夜福利视频| 免费观看av网站的网址| 成人无遮挡网站| 中国美白少妇内射xxxbb| 欧美精品国产亚洲| 日韩欧美国产在线观看| 精品一区二区免费观看| 毛片女人毛片| 国产伦在线观看视频一区| 久久久久久九九精品二区国产| 日韩av在线免费看完整版不卡| 国产一区有黄有色的免费视频 | 真实男女啪啪啪动态图| 日韩,欧美,国产一区二区三区| 又大又黄又爽视频免费| 好男人在线观看高清免费视频| 日韩成人伦理影院| av免费观看日本| 大香蕉97超碰在线| 一级毛片aaaaaa免费看小| 伦精品一区二区三区| 最新中文字幕久久久久| 搡老妇女老女人老熟妇| 免费看av在线观看网站| 亚洲电影在线观看av| 91精品伊人久久大香线蕉| 免费看不卡的av| 国产成人福利小说| 国产91av在线免费观看| 亚洲成人久久爱视频| 99久久九九国产精品国产免费| 亚洲18禁久久av| 久久久久久久国产电影| 免费观看在线日韩| 美女内射精品一级片tv| 亚洲国产日韩欧美精品在线观看| 亚洲综合色惰| 国产精品久久久久久久久免| 我的老师免费观看完整版| 久久久色成人| 高清午夜精品一区二区三区| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 国产精品嫩草影院av在线观看| 国产精品综合久久久久久久免费| 在现免费观看毛片| 天堂中文最新版在线下载 | 美女主播在线视频| 人人妻人人澡欧美一区二区| 午夜精品在线福利| 国产熟女欧美一区二区| 毛片一级片免费看久久久久| 国产精品99久久久久久久久| 一级毛片电影观看| 日韩视频在线欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色一级大片看看| 高清日韩中文字幕在线| 国产在视频线在精品| 日日撸夜夜添| 日本一本二区三区精品| 99热网站在线观看| 亚洲天堂国产精品一区在线| 久久这里只有精品中国| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 精品欧美国产一区二区三| 肉色欧美久久久久久久蜜桃 | 熟妇人妻不卡中文字幕| 午夜福利网站1000一区二区三区| 婷婷色综合www| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 国产黄片美女视频| 国产成人a∨麻豆精品| h日本视频在线播放| 青春草亚洲视频在线观看| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 99热这里只有是精品50| 一级毛片 在线播放| 日韩欧美精品免费久久| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 国产精品爽爽va在线观看网站| 亚洲人成网站在线观看播放| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 亚洲国产欧美在线一区| 亚洲av成人精品一区久久| 日韩三级伦理在线观看| 日本一本二区三区精品| 亚洲精品乱久久久久久| videos熟女内射| 天堂√8在线中文| 亚洲性久久影院| 亚洲国产最新在线播放| 男人舔奶头视频| 欧美成人午夜免费资源| 久久久久久国产a免费观看| 久久久久国产网址| 男人爽女人下面视频在线观看| 国产 一区精品| 国产精品麻豆人妻色哟哟久久 | 大又大粗又爽又黄少妇毛片口| 美女xxoo啪啪120秒动态图| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| 亚洲电影在线观看av| 国产一区亚洲一区在线观看| 在现免费观看毛片| 国产一级毛片七仙女欲春2| 99久久精品国产国产毛片| 插逼视频在线观看| av国产久精品久网站免费入址| 看十八女毛片水多多多| 成人无遮挡网站| 免费观看av网站的网址| 亚洲av免费高清在线观看| 黄色日韩在线| 美女主播在线视频| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 97在线视频观看| 赤兔流量卡办理| 亚洲最大成人av| 人妻一区二区av| 午夜亚洲福利在线播放| 国产免费福利视频在线观看| 女人被狂操c到高潮| 国产欧美另类精品又又久久亚洲欧美| 91狼人影院| 亚洲欧美清纯卡通| 黄片无遮挡物在线观看| 欧美一级a爱片免费观看看| 日韩成人av中文字幕在线观看| 国产午夜福利久久久久久| 日本黄色片子视频| xxx大片免费视频| 国产一区二区三区综合在线观看 | 男女下面进入的视频免费午夜| 可以在线观看毛片的网站| 免费观看无遮挡的男女| 日韩av不卡免费在线播放| 别揉我奶头 嗯啊视频| 国产视频首页在线观看| 白带黄色成豆腐渣| 免费黄色在线免费观看| av国产免费在线观看| 尤物成人国产欧美一区二区三区| 国产国拍精品亚洲av在线观看| 午夜视频国产福利| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 寂寞人妻少妇视频99o| 国产人妻一区二区三区在| av在线观看视频网站免费| 极品教师在线视频| 精品久久久久久久久亚洲| 亚洲精品一区蜜桃| 免费电影在线观看免费观看| 日韩视频在线欧美| 99热网站在线观看| 日韩在线高清观看一区二区三区| 久久久久九九精品影院| 97人妻精品一区二区三区麻豆| 青春草视频在线免费观看| 亚洲欧美日韩卡通动漫| 亚洲精品亚洲一区二区| 丝袜喷水一区| 成人午夜高清在线视频| 亚洲激情五月婷婷啪啪| 免费黄频网站在线观看国产| 亚洲成人一二三区av| 一级毛片 在线播放| 内射极品少妇av片p| av女优亚洲男人天堂| 国产精品av视频在线免费观看| 久久久欧美国产精品| 男插女下体视频免费在线播放| 久久国产乱子免费精品| 一级毛片aaaaaa免费看小| 国产精品久久视频播放| 久久99蜜桃精品久久| 日韩视频在线欧美| 美女内射精品一级片tv| 中文欧美无线码| 可以在线观看毛片的网站| 97热精品久久久久久| 亚洲熟女精品中文字幕| 国产伦精品一区二区三区四那| 18禁裸乳无遮挡免费网站照片| 亚洲成人精品中文字幕电影| 成年女人在线观看亚洲视频 | 最近的中文字幕免费完整| 国产成人免费观看mmmm| 国产探花极品一区二区| 欧美xxxx性猛交bbbb| 爱豆传媒免费全集在线观看|