• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen-bonding-driven self-assembly nonporous adaptive crystals for the separation of benzene from BTX and cyclohexane?

    2023-11-21 03:04:10FeiZengLinLiTngHuiYuFnPingXuLeyongWng
    Chinese Chemical Letters 2023年11期

    Fei Zeng,Lin-Li Tng,Hui Yu,Fn-Ping Xu,Leyong Wng

    a Department of Biology and Chemistry,Hunan University of Science and Engineering,Yongzhou 425199,China

    b School of Chemistry and Chemical Engineering Nanjing University,Nanjing 210023,China

    Keywords:Benzene separation Self-assembly Hydrogen bonding Supramolecular chemistry Nonporous adaptive crystals

    ABSTRACT Benzene is a volatile organic compound that can seriously harm human health,while it can serve as a precursor to produce chemicals of more complex structures in chemical industry.Capturing benzene using adsorbents is of great importance for human health,when the separation of hydrocarbons including benzene from crude oil was referred to as one of the “seven chemical separations to change the world”.In this work,we reported the efficient and selective separation of benzene from BTX and cyclohexane by hydrogen bonding self-assembly nonporous adaptive crystals AdaOH for the first time under mild and user-friendly conditions.Separation of benzene and cyclohexane (v/v=1:1) can be achieved by AdaOH with a purity of benzene up to 96.8%.Separation of BTX (v/v;benzene:toluene:o-xylene:m-xylene:pxylene=1:1:1:1:1) can be achieved by AdaOH with a purity of benzene increased from 20% to 82.9%.Our results suggest that separation of benzene using the activated AdaOH as a non-porous adaptive crystal for selectively and efficiently capturing benzene can solve the challenge in separation of benzene from other chemicals such as cyclohexane in chemical industry,and can be helpful for removal of benzene that is released from the vehicles to air.The advantages of commercially availability,easy preparation,high separation efficiency and selectivity for benzene might endow this material with enormous potential for practical uses in areas like petrochemical industry.

    Gasoline [1],as a complex mixture of volatile and flammable hydrocarbons,contains about 21% BTX (benzene,toluene (Tol),and xylene (oX,mX,pX)).Because of the incomplete combustion of gasoline,the exhaust gases of vehicles containing a large amount of BTX are released to the air,causing environmental pollution [2].As a member of BTX gases,benzene (PhH) is harmful to human health,and can cause various diseased [3,4].With the increasing consumption of gasoline by a large number of vehicles,benzeneinduced environmental pollution facing the world is becoming increasingly serious.Thus,it is very urgent to develop new technologies with environmental-friendly,recyclable,low cost and high selectivity to reduce the amount of benzene in exhaust gases of cars.Recently,using activated carbon as adsorbent to adsorption of benzene from automotive gasoline has become a hot topic in the field of material science [5–9].Employing MOFs for the separation of industrially important hydrocarbon mixtures has also been experimentally investigated [10–19].

    Although it can cause environmental pollution,benzene can serve as an important raw material to produce chemicals of more complex structures in chemical industry as well [20].Cyclohexane (Cy),that is a feedstock for varnishes,resins and nylon fibers[21],is often produced by the hydrogenation of benzene.The difference of 0.6 K between the boiling points of PhH (353.25 K) and Cy (353.85 K) is almost negligible,and the azeotrope of PhH and Cy is easily formed.Because of these,the removal of unreacted PhH from the reactor’s effluent stream to afford pure Cy is referred to as one of the most challenging tasks in the petrochemical industries[22].Currently,methodologies of physical adsorption of hydrocarbons using macrocycle-based nonporous adaptive crystals (NACs)have showed better performances over those of traditional extractive and azeotropic distillations [23–37].Several groups including our group have separately reported the separation of PhH and Cy using different synthetic macrocycle-based nonporous adaptive crystals (NACs) [38–42].However,all of these progresses focused on the separation of PhH and Cy.The similarities of structure and electrostatic potential characteristics between PhH and BTX result in the great difficulty of removing PhH with a low concentration from BTX.To the best of our knowledge,the selective and efficient capture of PhH from BTX by nonporous adaptive crystals were unexplored,although the Yoshizawa group [43] reported that a capsule structure can efficiently and selectively captureo-xylene over toluene,benzene,and cyclohexane.Given that separation of PhH from mixtures like BTX can provide benzene for the chemical industry and reduce the environmental pollution,a new material,that can efficiently separate PhH from mixtures such as BTX and that of PhH and Cy,is still challenging but greatly required.

    Herein,as part of our research interests in the separation of hydrocarbons [44–46],we report the high unusual vapor adsorption behavior toward PhH over toluene,xylene,and Cy by commercially available 4,4’-(adamantane-1,3-diyl)diphenol (AdaOH) under room temperature and atmospheric pressure (Fig.1).The AdaOH used as an adsorption material for PhH has the following advantages: (a)adsorption of PhH with high efficiency and selectivity.Separation of equimolar PhH and Cy can be achieved by AdaOH with a purity of PhH up to 96.8%.Separation of BTX (v/v;benzene:toluene:oxylene:m-xylene:p-xylene=1:1:1:1:1) can be achieved by AdaOH with a purity of PhH up to 82.9%;(b) easy prepared and commercially available;(c) reusability.After five cycles of adsorption and desorption,AdaOH was still able to selectively adsorb PhH from BTX and mixtures of PhH and Cy without losing performance;(d)AdaOH is a crystalline adsorbent,obtained by hydrogen bondingdriven self-assembly.This new discovery will open a new window for the development of new adsorption materials for PhH.

    Fig.1.Structural representation of the capture of PhH from a PhH/Cy mixture and BTX using AdaOH crystals.

    The activated AdaOH was first prepared according to the reported literature [47] and dried under vacuum at 150°C for 6 h.The1H NMR spectrum shows no organic solvent signals,indicating the removal of the residual organic solvents.The thermogravimetric analysis (TGA) results also verified the complete removal of the residual organic solvents,in which no weight loss was observed for the activated solids below 200°C (Fig.S1 in Supporting information).The powder X-ray diffraction analysis (PXRD) patterns of AdaOH showed sharp peaks,suggested that AdaOH maintained its crystallinity after losing the solvent (Fig.S2 in Supporting information).A N2sorption experiment at 77 K revealed the Brunauer–Emmett–Teller (BET) surface area of AdaOH was 4.47 m2/g,suggested the nonporous character of AdaOH (Fig.S3 in Supporting information).

    To test the adsorption behavior of activated AdaOH toward PhH and Cy,single component solid-vapor sorption experiments were performed under room temperature and atmospheric pressure.The mole ratio of time-dependent solid-vapor sorption plots was determined by1H NMR analysis.As shown in Fig.2a,the adsorption amount of PhH by the activated AdaOH increases with time and finally reaches saturation state after 12 h,while that of Cy by the activated AdaOH is almost negligible.The mole ratio of PhH/AdaOH at the saturated adsorption point is ~0.41.Multi-step TGA result of the saturated AdaOH shows a weight loss of 9.1% from 30°C to 103°C after adsorption of PhH vapor for 12 h,also suggesting that one AdaOH molecule can capture 0.41 PhH molecule (Fig.S6 in Supporting information).In contrast,there is no obvious weight loss of AdaOH before 200°C after exposure of the activated of AdaOH to Cy vapor for 12 h.This result indicates that the activated AdaOH cannot capture Cy (Fig.S9 in Supporting information).Moreover,the powder X-ray diffraction (PXRD) patterns of AdaOH after adsorption of PhH vapor for 12 h showed different from the original pattern of activated AdaOH,which implied the structural transformation of activated AdaOH upon capture of PhH vapor (Fig.2d).In addition,there was no obvious change in PXRD pattern of AdaOH after adsorption of Cy vapor for 12 h (Fig.2d).These results suggest that the AdaOH shows a high selectivity adsorption capacity for PhH and may be used in the separation of PhH/Cy mixtures.To confirm this hypothesis,two-component(v/v=1:1) competition solid-vapor sorption experiments were carried out.As shown in Fig.2b,the adsorption amount of PhH in activated AdaOH was increased with time,while the adsorption of Cy was negligible.After 12 h,one molecule AdaOH could adsorb 0.29 PhH molecules through the1H NMR and TGA analysis (Fig.2f and Fig.S10 in Supporting information).This result demonstrates that activated AdaOH has higher selectivity absorption of PhH than Cy.The purity of PhH that adsorbed by activated AdaOH was determined to be 96.8% by gas chromatography analysis (Fig.2c).Moreover,the reusability property of AdaOH was further tested.The desorption process of PhH is easy to achieve by heating the activated AdaOH at 150°C for 2 h.1H NMR spectroscopy,PXRD and TGA analysis suggested the completely released of PhH (Figs.S13–S15 in Supporting information).The re-activated AdaOH solids can be directly re-used for the next adsorption cycle.The AdaOH solid still retained the performance of capturing PhH even after five cycles (Fig.2e).

    Fig.2.(a) Time-dependent solid-vapor sorption plots of activated AdaOH for single-component vapors.(b) Time-dependent solid–vapor sorption plot of activated AdaOH for PhH and Cy equal volume mixtures vapor.(c) Relative uptakes of PhH and Cy adsorbed by activated AdaOH that adsorbed PhH/Cy mixtures for 12 h as measured by gas chromatography.(d) PXRD patterns of AdaOH: (I) activated AdaOH;(II) activated AdaOH adsorption of Cy vapour for 12 h;(III) activated AdaOH adsorption of PhH vapour for 12 h;(IV) activated AdaOH adsorption of PhH/Cy mixtures vapour for 12 h;(V) activated AdaOH after adsorption of PhH/Cy mixtures vapour for 12 h and then heating at 150°C for 2 h;(Ⅵ) simulated from single-crystal structure of PhH@(AdaOH)2.(e) Relative uptakes of PhH and Cy by activated AdaOH that adsorbed PhH/Cy mixtures for 12 h after five recycles.(f) Thermogravimetric analysis of activated AdaOH after sorption of PhH/Cy mixtures vapor for 12 h.

    Based on these results,we reasoned that the activated AdaOH might be useful for solving the challenge of the separation of BTX mixtures in petrochemical industry.Consequently,single component solid-vapor sorption experiments of activated AdaOH toward toluene,o-xylene,m-xylene andp-xylene were respectively performed under room temperature and atmospheric pressure.As shown in Fig.3a,the adsorption amount of toluene in activated AdaOH increased with time.The adsorption behavior becomes saturated after ~12 h.Foro-xylene,m-xylene andp-xylenevapors,no adsorption by the activated AdaOH was observed.The saturated activated AdaOH (1 mol) can capture ~0.23 mol toluene.TGA result showed a weight loss of 6.2% from 30°C to 127°C after exposure of the activated AdaOH to toluene vapor for 12 h (Fig.S19 in Supporting information),also confirming the saturated adsorption ratio of 0.23.No obvious weight loss for the TGA profile of the AdaOH ranging from 30°C to 200°C was observed after exposure of the activated AdaOH to xylene (v/v,o-xylene:m-xylene:pxylene=1:1:1) vapor for 12 h (Fig.S26 in Supporting information).Significantly,the PXRD pattern of activated AdaOH did not change after adsorption of xylene vapor (Fig.S27 in Supporting information) but did change after capture of toluene vapor (Fig.3d),supporting the absorption of toluene.Inspired by the above results,five-component (v/v;benzene:toluene:o-xylene:m-xylene:pxylene=1:1:1:1:1) competition solid-vapor sorption experiments were then carried out.Similar to the single-component solid–vapor sorption experiments,AdaOH does not adsorbo-xylene,m-xylene andp-xylene,but shows a higher selective adsorption of PhH than toluene (Fig.3b).At the saturated adsorption point (after adsorption for 12 h),the adsorption amount of PhH and toluene were determined as 0.21 PhH and 0.05 toluene molecules per AdaOH from the1H NMR analysis (Fig.S28 in Supporting information).In addition,the PXRD and TGA analysis of activated AdaOH that adsorbed BTX mixtures further confirming the adsorption of PhH and toluene (Figs.3d and f).Gas chromatography determined the percentage of PhH adsorbed by activated AdaOH from BTX mixtures to be 82.9% (Fig.S30 in Supporting information),which meant that the purity of PhH was increased from 20% to 82.9%.This result indicates the successful adsorption of PhH from BTX by activated AdaOH.Considering the further real application,the recycling capacity of AdaOH is an important criterion for assessing an adsorbent.Heating the AdaOH that adsorbed BTX at 150°C for 2 h,the1H NMR spectroscopy and TGA analysis revealed the completely release of the PhH and toluene from AdaOH (Figs.S31 and S32 in Supporting information).As shown in Fig.3e,the recycling experiments reveal that no obvious performance loss was observed after five times of AdaOH adsorption ability.

    Fig.3.(a) Time-dependent solid-vapor sorption plots of activated AdaOH for single-component vapors.(b) Time-dependent solid–vapor sorption plot of activated AdaOH for BTX mixtures vapor.(c) Relative uptakes of PhH and toluene adsorbed by activated AdaOH that adsorbed BTX mixtures for 12 h as measured by gas chromatography.(d) PXRD patterns of AdaOH: (I) activated AdaOH adsorption of PhH vapor for 12 h;(II) activated AdaOH adsorption of toluene vapour for 12 h;(III) activated AdaOH adsorption of BTX vapour for 12 h;(IV) simulated from single-crystal structure of toluene@(AdaOH)2.(e) Relative uptakes of PhH and toluene by activated AdaOH that adsorbed BTX mixtures for 12 h after five recycles.(f) Thermogravimetric analysis of activated AdaOH after sorption of BTX mixture vapor for 12 h.

    To reveal the mechanism of high adsorption capacity for PhH of activated AdaOH,single crystals of AdaOH,PhH@(AdaOH)2and toluene@(AdaOH)2were obtained by slow diffusion of the solution of AdaOH in CH3CN,CH3CN/PhH (v:v=1:1) and CH3CN/toluene(v:v=1:1),respectively.However,the single crystals ofoxylene@(AdaOH)2,m-xylene@(AdaOH)2andp-xylene@(AdaOH)2cannot be obtained under the same conditions and only obtained the crystals of AdaOH.This may be due to the weak adsorption capacity for xylene of AdaOH,which was consistent with the results before.Similar to the crystal structure of AdaOH in chloroform reported by Tominaga’s group [47],the crystal structure of AdaOH grown in CH3CN can also associated into infinite 1D polymersviahydrogen bonds between the hydroxyl groups of phenol parts and water molecules.As shown in Fig.4a,cyclic structures with sizes of 7.533 ?A (measured from the center carbon atom of the adamantane to the center carbon atom of the adamantane)were formed through two molecules of AdaOH by intermolecular hydrogen bonds between the hydroxyl groups of the phenol moieties and water molecules with the distance of 1.826 ?A (b),1.838 ?A (c) and 1.853 ?A (d),respectively.Moreover,CH···πintermolecular interactions between the phenol moieties with the distance of 2.799 ?A (a) were also observed.

    Fig.4.Crystal structure of AdaOH.(a) The channel-shaped network structure formed by water mediated hydrogen-bonding viewed from the top (along the a axis).(b) Space-filling model of the network structure from the front view.

    We reasoned that the assembly of the AdaOH with cavities might be useful for capturing guest molecules such as PhH and toluene,and the single crystal structures of PhH@(AdaOH)2and toluene@(AdaOH)2were thus grown.As expected,in the crystal structure of PhH@(AdaOH)2,PhH molecule was located inside the cavity of the formed cyclic structure by AdaOH to formation of 1:2 complexes.To our surprise,there are no noncovalent interactions between the PhH and AdaOH.The high adsorption capacity of activated AdaOH for PhH may be due to the size matching between the PhH molecule and the formed cyclic structure by AdaOH (Fig.5a).Similar situation to the structure of PhH@(AdaOH)2,toluene molecule was also located inside the cavity of the formed cyclic structure by AdaOH to formation of 1:2 complexes (Fig.5b).Additionally,CH···πintermolecular interactions between toluene and the phenol moieties of AdaOH with the distance of 2.842 ?A (e) and 2.879 ?A (f) were observed.It was also found that there were CH···πintermolecular interactions between toluene and the adamantane moieties of AdaOH with the distance of 2.887 ?A (g).Because of these multi noncovalent interactions,the toluene molecules were firmly embedded in the cavity of the formed cyclic structure by AdaOH.From the a-axis direction of PhH@(AdaOH)2and toluene@(AdaOH)2complex packing structure,a large number of PhH and toluene molecules are captured in the crystal structure.

    Fig.5.(a) Crystal structure of PhH@(AdaOH)2.(b) Crystal structure of toluene@(AdaOH)2.(c) Packing structure of PhH@(AdaOH)2,viewed along the a axis.(d) Packing structure of toluene@(AdaOH)2,viewed along the a axis.Hydrogen atoms are omitted for clarity.

    In summary,we reported the use of commercially available AdaOH as a non-porous adaptive crystal to separate PhH from mixed vapors of Cy and BTX under conditions of room temperature and atmospheric pressure for the first time.We attribute the high selective capturing performance of AdaOH toward PhH to the formation of an infinite 1D assembly of AdaOH with cavities that are well-suited for the capturing PhH.The purity of PhH,that are separated from a mixture of equimolar PhH and Cy by using the avtivated AdaOH,was as high as 96.8%.When using the activated AdaOH to separate PhH from BTX vapor,the purity of PhH can be as high as 82.9%.The new discovery of using the activated AdaOH as a non-porous adaptive crystal for selectively and efficiently capturing PhH can solve the challenge in separation of benzene from other chemicals such as Cy in chemical industry,and can be helpful for removal of benzene that is released from the vehicles to air.The advantages of commercially availability,easy preparation,high separation efficiency and selectivity for benzene,and excellent recycling performance of the AdaOH endow this material with enormous potential for uses in the petrochemical industry.We will further focus on developing AdaOH derivatives to improve the performance for separating PhH from BTX vapor.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful for the financial support from the National Natural Science Foundation of China (No.21602055);Natural Science Foundation of Hunan Province (No.2017JJ3094).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108304.

    久久久久久久久大av| 免费大片18禁| 成年人黄色毛片网站| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| 婷婷色综合大香蕉| 99国产综合亚洲精品| 亚洲人成电影免费在线| 看免费av毛片| 久久热精品热| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 国产av一区在线观看免费| 国产亚洲精品综合一区在线观看| 免费看光身美女| 久久精品国产亚洲av涩爱 | 精品99又大又爽又粗少妇毛片 | 精品99又大又爽又粗少妇毛片 | 久久伊人香网站| 最新在线观看一区二区三区| 欧美黄色淫秽网站| 免费看日本二区| 国产精品久久电影中文字幕| 欧美黄色淫秽网站| 国产人妻一区二区三区在| 一级作爱视频免费观看| 亚洲人成伊人成综合网2020| 国产真实乱freesex| 久久久国产成人免费| 精品欧美国产一区二区三| 一级作爱视频免费观看| 1024手机看黄色片| 国产精品嫩草影院av在线观看 | 97人妻精品一区二区三区麻豆| av天堂在线播放| 精品国产亚洲在线| 亚洲精品亚洲一区二区| 波多野结衣高清无吗| 91字幕亚洲| 小说图片视频综合网站| 亚洲无线观看免费| 人妻制服诱惑在线中文字幕| 国产老妇女一区| 欧美日韩黄片免| av在线观看视频网站免费| 亚洲精品一区av在线观看| 亚洲真实伦在线观看| 午夜福利18| 精品国产三级普通话版| 九色成人免费人妻av| 69人妻影院| 国产精华一区二区三区| 非洲黑人性xxxx精品又粗又长| 脱女人内裤的视频| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 成人av在线播放网站| 免费在线观看日本一区| 99国产极品粉嫩在线观看| 久久久久久大精品| 亚洲精品456在线播放app | 亚洲精品一区av在线观看| 久久久久久大精品| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 国模一区二区三区四区视频| 国产色婷婷99| 1000部很黄的大片| 美女xxoo啪啪120秒动态图 | 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 亚洲av五月六月丁香网| 欧美性猛交╳xxx乱大交人| 一本一本综合久久| 国产成人a区在线观看| 国产一区二区三区视频了| 亚洲,欧美精品.| 亚洲五月婷婷丁香| 少妇的逼水好多| 日韩人妻高清精品专区| 日本免费a在线| 久久精品国产99精品国产亚洲性色| 搞女人的毛片| 国产精品一及| 一进一出抽搐动态| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品日韩av片在线观看| 嫁个100分男人电影在线观看| 国产色爽女视频免费观看| 国产黄片美女视频| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 脱女人内裤的视频| 丁香欧美五月| 国产亚洲精品久久久com| 免费在线观看日本一区| 成人三级黄色视频| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 1000部很黄的大片| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 日本熟妇午夜| 色吧在线观看| 日韩欧美精品免费久久 | 国产精品自产拍在线观看55亚洲| 午夜福利成人在线免费观看| 国产极品精品免费视频能看的| 波多野结衣高清作品| 1024手机看黄色片| 亚洲欧美日韩东京热| 最新中文字幕久久久久| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 久久国产乱子伦精品免费另类| 制服丝袜大香蕉在线| 国产日本99.免费观看| 国产精品99久久久久久久久| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 99国产精品一区二区三区| 色噜噜av男人的天堂激情| 色精品久久人妻99蜜桃| 美女被艹到高潮喷水动态| av天堂在线播放| 一夜夜www| 内地一区二区视频在线| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 欧美中文日本在线观看视频| 波野结衣二区三区在线| 男女床上黄色一级片免费看| 精品无人区乱码1区二区| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久| 亚洲成人久久爱视频| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 男人和女人高潮做爰伦理| 欧美潮喷喷水| 亚洲va日本ⅴa欧美va伊人久久| 两个人视频免费观看高清| 嫁个100分男人电影在线观看| 人妻久久中文字幕网| 国产熟女xx| 亚洲av成人不卡在线观看播放网| 日韩欧美一区二区三区在线观看| 一区二区三区免费毛片| 又爽又黄无遮挡网站| 老司机深夜福利视频在线观看| 日本免费一区二区三区高清不卡| 国产av在哪里看| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩卡通动漫| 午夜老司机福利剧场| 日韩亚洲欧美综合| 国产成人啪精品午夜网站| 国产精品久久久久久久电影| 少妇裸体淫交视频免费看高清| 日韩欧美在线二视频| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 国内久久婷婷六月综合欲色啪| 麻豆久久精品国产亚洲av| 国产精品精品国产色婷婷| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 丝袜美腿在线中文| 天堂av国产一区二区熟女人妻| 可以在线观看毛片的网站| 成人特级黄色片久久久久久久| 亚洲无线在线观看| av黄色大香蕉| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 午夜视频国产福利| 丰满的人妻完整版| 性欧美人与动物交配| 麻豆成人av在线观看| 在线观看一区二区三区| 夜夜爽天天搞| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在 | www.色视频.com| 午夜精品久久久久久毛片777| 欧美绝顶高潮抽搐喷水| 九色成人免费人妻av| 极品教师在线视频| 久久精品人妻少妇| 亚洲欧美清纯卡通| 757午夜福利合集在线观看| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 日韩人妻高清精品专区| 男插女下体视频免费在线播放| 99久久99久久久精品蜜桃| 男女做爰动态图高潮gif福利片| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久 | 欧美激情在线99| 看免费av毛片| 免费av毛片视频| 很黄的视频免费| 欧美日韩综合久久久久久 | 18美女黄网站色大片免费观看| 成人欧美大片| 我的女老师完整版在线观看| 很黄的视频免费| 99国产精品一区二区蜜桃av| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 一级黄片播放器| 国产老妇女一区| 极品教师在线免费播放| 99久久精品一区二区三区| avwww免费| 在现免费观看毛片| 亚洲经典国产精华液单 | 人妻制服诱惑在线中文字幕| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| av国产免费在线观看| 久久久色成人| 国产亚洲精品久久久久久毛片| 中文字幕熟女人妻在线| 脱女人内裤的视频| 丰满人妻一区二区三区视频av| 亚洲成a人片在线一区二区| 熟女电影av网| 欧美成人a在线观看| 在线国产一区二区在线| 久久久久久久久大av| 99久久精品国产亚洲精品| 午夜两性在线视频| 久久亚洲真实| 亚洲一区二区三区不卡视频| 琪琪午夜伦伦电影理论片6080| www.熟女人妻精品国产| 亚洲精品一区av在线观看| 毛片女人毛片| 波野结衣二区三区在线| 亚洲av熟女| 赤兔流量卡办理| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 国产男靠女视频免费网站| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 久久6这里有精品| 午夜免费男女啪啪视频观看 | 少妇丰满av| 国产精品美女特级片免费视频播放器| 不卡一级毛片| 午夜老司机福利剧场| 久久精品国产亚洲av涩爱 | 99久久九九国产精品国产免费| 国产av不卡久久| 亚洲欧美精品综合久久99| 麻豆成人av在线观看| 亚洲18禁久久av| 18美女黄网站色大片免费观看| 亚洲不卡免费看| 在线观看66精品国产| avwww免费| 性插视频无遮挡在线免费观看| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 国产爱豆传媒在线观看| 久久久久久国产a免费观看| 欧美成人一区二区免费高清观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲最大成人中文| 少妇丰满av| 51午夜福利影视在线观看| 色av中文字幕| 757午夜福利合集在线观看| 男人舔女人下体高潮全视频| 中国美女看黄片| 国产av一区在线观看免费| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久久av| aaaaa片日本免费| 色综合婷婷激情| 久久国产乱子免费精品| 久久久久性生活片| 亚洲专区中文字幕在线| 精品熟女少妇八av免费久了| 麻豆久久精品国产亚洲av| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 18禁在线播放成人免费| 久久久久久久久中文| 精品午夜福利在线看| 亚洲不卡免费看| 美女大奶头视频| 少妇人妻精品综合一区二区 | 欧美在线一区亚洲| 久久久久国产精品人妻aⅴ院| 久久久精品欧美日韩精品| 精品国内亚洲2022精品成人| 亚洲av美国av| av在线老鸭窝| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 18禁黄网站禁片免费观看直播| 国内精品久久久久久久电影| 中文字幕av成人在线电影| 毛片女人毛片| 女同久久另类99精品国产91| www.www免费av| 日韩精品中文字幕看吧| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 我要看日韩黄色一级片| 人人妻人人看人人澡| 床上黄色一级片| 九色国产91popny在线| 欧美bdsm另类| 色av中文字幕| 亚洲片人在线观看| 国产成人啪精品午夜网站| 一级a爱片免费观看的视频| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| av女优亚洲男人天堂| 亚洲成人免费电影在线观看| 一个人观看的视频www高清免费观看| 亚洲一区二区三区不卡视频| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 51午夜福利影视在线观看| 国产伦一二天堂av在线观看| 性色av乱码一区二区三区2| 91九色精品人成在线观看| 丰满乱子伦码专区| 中文字幕高清在线视频| 丰满乱子伦码专区| 亚洲午夜理论影院| 我要搜黄色片| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| 欧美日韩乱码在线| 亚洲国产精品合色在线| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 在线观看美女被高潮喷水网站 | 99在线人妻在线中文字幕| 男女那种视频在线观看| 亚洲自偷自拍三级| 怎么达到女性高潮| 精品久久久久久久久av| 中文字幕av在线有码专区| 变态另类丝袜制服| 午夜视频国产福利| 乱人视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 69人妻影院| 天天一区二区日本电影三级| 亚洲av第一区精品v没综合| 国产伦在线观看视频一区| 深爱激情五月婷婷| 18+在线观看网站| 亚洲最大成人av| 少妇的逼水好多| 九九热线精品视视频播放| 赤兔流量卡办理| 综合色av麻豆| 欧美日韩国产亚洲二区| 精品免费久久久久久久清纯| 成年版毛片免费区| 欧美成人一区二区免费高清观看| 久久精品91蜜桃| 亚洲成av人片免费观看| 九九久久精品国产亚洲av麻豆| 人妻久久中文字幕网| 少妇被粗大猛烈的视频| 亚洲精品乱码久久久v下载方式| 精品人妻视频免费看| 成年女人毛片免费观看观看9| 久久国产乱子免费精品| 内地一区二区视频在线| 久久中文看片网| 亚洲av成人精品一区久久| 国产精品一区二区三区四区久久| 国产激情偷乱视频一区二区| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添小说| 国产亚洲欧美在线一区二区| netflix在线观看网站| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费| 91在线精品国自产拍蜜月| 两性午夜刺激爽爽歪歪视频在线观看| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 国产欧美日韩一区二区精品| 人人妻,人人澡人人爽秒播| 色视频www国产| 久久国产乱子伦精品免费另类| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| 国产伦精品一区二区三区视频9| 天堂影院成人在线观看| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 91av网一区二区| 女人被狂操c到高潮| 精品久久久久久,| 欧美色视频一区免费| 欧美最新免费一区二区三区 | 黄色一级大片看看| 欧美成人一区二区免费高清观看| 色哟哟哟哟哟哟| 简卡轻食公司| 最好的美女福利视频网| 亚洲人成网站在线播| 国产蜜桃级精品一区二区三区| 国产aⅴ精品一区二区三区波| www.999成人在线观看| 国产探花在线观看一区二区| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 一本久久中文字幕| 中文字幕av成人在线电影| 久久99热6这里只有精品| 一级a爱片免费观看的视频| 亚洲美女搞黄在线观看 | 久久精品久久久久久噜噜老黄 | 亚洲中文字幕日韩| 简卡轻食公司| 精品久久久久久,| 99热这里只有精品一区| 99热只有精品国产| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图 | 成人av在线播放网站| 久久久久亚洲av毛片大全| 久久精品国产99精品国产亚洲性色| avwww免费| 久久国产精品人妻蜜桃| 九九热线精品视视频播放| 内射极品少妇av片p| 免费搜索国产男女视频| 国内精品美女久久久久久| 美女 人体艺术 gogo| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 欧美黄色片欧美黄色片| 久久精品国产亚洲av香蕉五月| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久草成人影院| 欧美在线黄色| 老女人水多毛片| 久久久久久国产a免费观看| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| ponron亚洲| 久久精品国产99精品国产亚洲性色| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| 亚洲狠狠婷婷综合久久图片| 国产乱人伦免费视频| 男插女下体视频免费在线播放| 国产乱人视频| 色综合欧美亚洲国产小说| 黄色女人牲交| 看片在线看免费视频| 国产黄色小视频在线观看| 精品不卡国产一区二区三区| 国产成人av教育| 亚洲成人中文字幕在线播放| 亚洲人成网站高清观看| 99国产综合亚洲精品| 国语自产精品视频在线第100页| 在现免费观看毛片| 亚洲美女黄片视频| 一本精品99久久精品77| 露出奶头的视频| 又黄又爽又免费观看的视频| 给我免费播放毛片高清在线观看| 国产精品久久久久久亚洲av鲁大| 中文字幕免费在线视频6| 五月玫瑰六月丁香| 亚洲,欧美,日韩| 最后的刺客免费高清国语| 大型黄色视频在线免费观看| 成熟少妇高潮喷水视频| 久久人人爽人人爽人人片va | 丰满乱子伦码专区| 伦理电影大哥的女人| 1024手机看黄色片| 搡老岳熟女国产| 最近最新中文字幕大全电影3| 哪里可以看免费的av片| 久久久久久久久久成人| 日本一二三区视频观看| av中文乱码字幕在线| 国产精品永久免费网站| 国产一区二区在线av高清观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费激情av| 午夜免费成人在线视频| 精品久久久久久久久久久久久| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 麻豆成人午夜福利视频| 3wmmmm亚洲av在线观看| 脱女人内裤的视频| av视频在线观看入口| 身体一侧抽搐| 欧美成人免费av一区二区三区| 日本精品一区二区三区蜜桃| 久久精品国产亚洲av涩爱 | 深夜a级毛片| 又黄又爽又刺激的免费视频.| 亚洲最大成人av| av天堂中文字幕网| 国产人妻一区二区三区在| 成人国产一区最新在线观看| x7x7x7水蜜桃| 一本综合久久免费| av天堂在线播放| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 中文字幕久久专区| 久久久精品欧美日韩精品| 搞女人的毛片| 久久亚洲真实| 亚洲第一区二区三区不卡| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 日韩亚洲欧美综合| 一区二区三区高清视频在线| 国产久久久一区二区三区| 一区福利在线观看| 精品久久久久久久久久久久久| 在线免费观看的www视频| 国内精品久久久久精免费| 色哟哟·www| 在线播放无遮挡| 国产黄色小视频在线观看| 国产精品一区二区三区四区免费观看 | 国产精品美女特级片免费视频播放器| 91午夜精品亚洲一区二区三区 | 欧美国产日韩亚洲一区| 高清日韩中文字幕在线| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 日韩欧美国产在线观看| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 国产熟女xx| 国产高清有码在线观看视频| 三级男女做爰猛烈吃奶摸视频| 毛片女人毛片| 91字幕亚洲| 女人被狂操c到高潮| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 亚洲av成人av| 在线观看舔阴道视频| 69av精品久久久久久| 一个人看的www免费观看视频| 国产成人影院久久av| 老熟妇仑乱视频hdxx| 日本撒尿小便嘘嘘汇集6| 村上凉子中文字幕在线| 高清在线国产一区| 亚洲精品粉嫩美女一区| 日日摸夜夜添夜夜添av毛片 | 嫩草影院入口| 日本黄色视频三级网站网址| 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看 | 99精品在免费线老司机午夜| 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| 午夜福利在线观看吧| 国产免费一级a男人的天堂| 无人区码免费观看不卡| 少妇丰满av| 国产探花在线观看一区二区| 欧美性感艳星| 热99re8久久精品国产| 国产午夜精品久久久久久一区二区三区 | 天堂影院成人在线观看| 久久精品影院6| 韩国av一区二区三区四区| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 一本精品99久久精品77| 床上黄色一级片| 亚洲一区二区三区不卡视频| 99久久无色码亚洲精品果冻| 国产精品久久久久久久电影| 午夜激情欧美在线| 一a级毛片在线观看| 99热这里只有是精品50| 成年女人永久免费观看视频| 欧美+日韩+精品| 日韩av在线大香蕉| av天堂中文字幕网| 99精品久久久久人妻精品| 色在线成人网|