• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nickel-catalyzed umpolung C–S radical reductive cross coupling of S-(trifluoromethyl)arylsulfonothioates with alkyl halides?

    2023-11-21 03:04:00YuZhongYngGuiFenLvMingHuYngLiJinHengLi
    Chinese Chemical Letters 2023年11期

    Yu-Zhong Yng,Gui-Fen Lv,Ming Hu,b,Yng Li,?,Jin-Heng Li,b,c,d,?

    a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle,Nanchang Hangkong University,Nanchang 330063,China

    b State Key Laboratory Base of Eco-Chemical Engineering,College of Chemical Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    c State Key Laboratory of Applied Organic Chemistry,Lanzhou University,Lanzhou 730000,China

    d School of Chemistry and Chemical Engineering,Henan Normal University,Xinxiang 453007,China

    Keywords:Nickel Radical Reductive cross coupling S-(Trifluoromethyl)arylsulfonothioates Alkyl halides Alkyl aryl thioethers

    ABSTRACT A new cooperative nickel reductive catalysis and N,N-dimethylformamide-mediated strategy for umpolung C–S radical reductive cross coupling of S-(trifluoromethyl)arylsulfonothioates with alkyl halides to produce alkyl aryl thioethers is described.This reaction features excellent selectivity,wide functionality tolerance,broad substrate scope,and facile late-stage modification of biologically relevant molecules.Mechanistic studies recognize initial generation of an amidyl radical anion via thermoinduced reduction of DMF with Sn,followed by umpolung reduction and single electron transfer of the nucleophilic sulfonyl moiety to form a sulphydryl radical and engage the Ni0/NiI/NiIII/NiI catalytic cycle.

    Organosulfur compounds,including thioethers,are core moieties encountered in the structure of various drugs,natural products,herbicides,ligands and functional materials,as well as valuable synthetic building blocks and latent functional groups that can be modified to assemble complex target molecules in synthesis [1–16].As a result,significantly ongoing efforts have been devoted to the development and expansion of methods for catalytically forging highly valuable and functionality diverse thioether scaffolds in synthetic and medicinal chemistry [8–16].Conventional methodologies to straightforward access thioethers involve transitionmetal-catalyzed C–S cross coupling reaction [8–16],which is dominated by two different modes of reactivity,including a classicalpolarity method using the thiol functionality as a nucleophile(Scheme 1A-a) [17–32] and an umpolung approach employing the sulfur-based reactant as an electrophile (RSX,X=SR,SO2R,Cl,OR,NRR’ or CN;Scheme 1A-b) [33–42].While these polarity modes of catalytic C–S cross couplings of aryl halides or aryl organometallic reagents (such as arylboronic acids,arylmagnesiums and aryllithiums) with the thiolation reagents for producing aryl-tethered thioethers by incorporation of an aryl group onto a sulfur atom to form a C(sp2)-S bond have been well established and widely exploited [8–42],analogous versions to access alkyltethered thioethersviaintroduction of an alkyl group onto the sulfur atom to construct the C(sp3)-S bond have been less extensively studied [8–16,29],probably due to tendence to the facile side reactions (such asβ-hydrogen elimination) under strong alkaline and elevated temperature conditions.Furthermore,the vast majority of these reported protocols suffer from the use of highly toxic,air sensitive,odor disagreeable thiols and their oxidized derivatives,as well as only few commercially available alkyl thiols and alkyl disulfides,which significantly impede their widespread applications.Therefore,these challenges and the increasing importance of alkyl-tethered thioethers spur the synthetic chemists to develop mild,versatile strategies that (i) enable efficient incorporation of an alkyl group onto a sulfur atom to form the C(sp3)-S bond under base-free conditions;(ii) accommodate broad functionalized substrates,especially including diverse alkyl halides and readily accessible,bench-stable,odourless thiolation reagents;and(iii) are subject to facile late-stage modification of biologically relevant molecules.

    Scheme 1.Synthesis of thioethers.

    To circumvent these issues,transition-metal-catalyzed C–S reductive cross coupling reaction of organohalides with electrophilic thiolation reagents has recently been developed as a promising alternative to the conventional polarity types with preformed nucleophiles (Scheme 1B) [22,43–57].These approaches allow facile introduction of an electrophilic aryl or alkyl group onto the electrophilic sulfur atom to construct the sp2-and sp3-hybridized C–S bonds under mild and base-free conditions,and thus exclude side reactions,such asβ-hydrogen elimination.However,only few approaches have been reported to allow catalytic C–S reductive cross couplings of unactivated alkyl halides with electrophilic thiolation reagents (e.g.,disulfides and thiosulfonates) for producing alkyl-tethered thioethers.For example,the group of Wang/Ji has reported the first nickel-catalyzed C–S reductive cross coupling of unactivated alkyl bromides with thiosulfonates and Mn reductant [46–48],which is highlighted by the use of the simple,bench-stable and odorless thiosulfonates as the electrophilic thiolation reagents and by a plausible mechanism comprising an inner-sphere Ni0/II/III/I/IIcatalytic cycle directly engaged by the alkyl carbon-centered radicals from homolysis of alkyl halides.Later,this group developed a similar catalysis version to accomplish thiolation of alkyl bromides with arenesulfonyl cyanides as the electrophilic disulfide precursors for assembling alkyl aryl sulfides [50].Very recently,the group of Ackermann reported an electroreductive nickel-catalyzed radical thiolation by cross-electrophile coupling of alkyl bromides with functionalized thiosulfonates through Mg cathodic reduction to give alkyl-tethered thioethers [51].These methods rely on the generation of the alkyl carbon-centered radicalDfrom alkyl halides reacted with theinsituformed NiIintermediateC,which would sequentially execute single electron oxidation with the NiIIintermediateAto afford the NiIIIintermediateB(Pathway I;Scheme 1B) [45–50].On the basis,we hypothesized that initially generating the sulfur-centered radicalF,which are formed from homolysis of the electrophilic thiolation reagent components,would give rise to single electron oxidation to deliver the NiI-SR intermediateGfollowed by oxidative addition with alkyl halides to produce the NiIIIintermediateH(Pathway II;Scheme 1B),which would: (i) provide new radical reductive crosscoupling tactics comprising the engagement of the reaction with the sulfur-centered radicals thus resulting in access to otherwise poorly accessible or unobtainable molecular frameworks;(ii) expand the reactivity profile of Ni reductive catalysis;and (iii) innovate and advance radical chemistry.

    Herein,we report the first nickel-catalyzed DMF-mediated umpolung C–S radical reductive cross coupling betweenS-(trifluoromethyl)arylsulfonothioates and alkyl halides involving a sulfur-centered radical formation (Scheme 1C).This reaction is initiated by DMF,Ni(ClO4)2?6H2O,4,4′-di–tert–butyl–2,2′-bipyridineL1and Sn,and enables the formation of the C(sp3)-S bonds through umpolung transformations ofS-(trifluoromethyl)arylsulfonothioates and sequential catalytic reductive cross coupling with alkyl halides.

    To determine the role of arylesulfonothioates2as theS-based functional group sources,the umpolung C–S radical reductive cross coupling of 3-phenylpropyl bromide1awith PhSO2SCF32awas examined (Table 1).Screening various reaction parameters revealed that a combination of 5 mol% Ni(ClO4)2?6H2O,7.5 mol% 4,4′-di–tert–butyl–2,2′-bipyridineL1and 2 equiv.Sn in DMF (0.2 mol/L) at 60 °C for 12 h afforded the desired phenyl(3-phenylpropyl)sulfane3aain nearly quantitative yield with excellent chemoselectivity(entry 1).Unlike the previously reported results acted as the SCF3(often) or PhSO2source [58–68],PhSO2SCF32aserves as the PhS source.Both Ni catalysts and Sn are necessary to make the reaction successful as leaving out each led to no desired reaction (entries 2 and 16),and a lower loading of Ni(ClO4)2?6H2O (2 mol%)decreased the yield (entry 3).Other Ni catalysts,including NiCl2,NiBr2,NiCl2?DME,NiCl2(PPh3)2and NiCl2(Py)4,were highly active(entries 4–8),but all were less efficient than Ni(ClO4)2?6H2O.Opti-mization of the dinitrogen-based ligand effect indicated that these ligandsL1-L6served as promotors since omission of ligands the reaction could still run efficiently to tender3aain 86% yield (entries 9–15).Furthermore,ligandsL2,L4-L6could improve the reaction (entries 11 and 13–15),but 2,2′-bipyridineL3was detrimental to the reaction outcome attributing to strong coordination with the Ni catalyst lowering its catalytic activity (entry 12).Using the same equivalent amount of Ni(ClO4)2?6H2O andL1slightly diminished the yield (entry 10),suggesting that excessL1assists complete reduction of Ni(ClO4)2?6H2O to the active Ni0species avoiding consumption of Sn reductant.The yield raised from 84%to 95% with the increase of the Sn amount from 1.2 equiv.to 1.7 equiv.(entry 17).These observations indicate that the roles of Sn mainly include reduction of PhSO2SCF3and regeneration of the active Ni(0) species.Notably,the reaction is sensitive to the reducing reagents as the other common reductants,such as Mn,Mg,Zn and(EtO)3SiH,had no reactivity (entry 18).Surprisingly,the reaction was sensitive to solvents: Amides,such as DMF and MeCONMe2,were viable media (entries 1 and 19),but other solvents,such as MeCN,1,4-dixoane and ClCH2CH2Cl,were inert (entry 20).These results imply that amides may participate in the reaction besides as media.Decreasing temperatures led to diminishing yields (entry 21).The standard conditions were compatible with a scale up to 3 mmol1a,giving3aain excellent yield (entry 22).

    Table 1Optimization of reaction conditions.a

    After confirming the optimized conditions,we set out to study the generality of this umpolung C–S radical reductive cross coupling protocol (Scheme 2).Gratifyingly,a variety ofS-(trifluoromethyl)arylsulfonothioates2b-iefficiently underwent the reaction with bromide1a,Ni(ClO4)2?6H2O,L1and Sn,affording3ab-3aiin 85%–98% yields.Furthermore,several aryl functionalities,including 4-MeC6H4,4-tBuC6H4,4-MeOC6H4,4-ClC6H4,4-FC6H4,4-CF3C6H4,naphthalen-2-yl and thiophen-2-yl,were well tolerated.Whereas using 2 h reacted with NiBr2catalyst reduced the yield of3ahto 53%.

    Scheme 2.Variation of the alkyl halides (1) and arylsulfonothioate (2).Reaction conditions: 1 (0.2 mmol),2 (0.22 mmol;1.1 equiv.),Ni(ClO4)2?6H2O (5 mol%),L1 (7.5 mol%),Sn (2 equiv.),DMF (0.2 mol/L;1 mL),argon,60 °C and 12 h.a NiBr2 (5 mol%)instead of Ni(ClO4)2?6H2O.

    We next aimed to evaluate the scope of alkyl halides1(Scheme 2).Surprisingly,alkyl iodide,3-phenylpropyl iodide1b,was lower reactive for furnishing3aain 20% yield,attributing to readily decomposition of the C–I bonds.Using lower reactive 3-phenylpropyl chloride1cfailed to construct3aa.Strikingly,a wide range of functionalized alkyl bromides1d-aqaccommodated to this umpolung C–S radical reductive cross coupling (3da-aqa).For example,functionalized propyl bromides1d-gafforded3daga,respectively,in 70%–99% yields where a functionality,such as 4-ClC6H4,CN,CO2Et,and 4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl,at the positionγto the bromide atom was intact.This optimal conditions were compatible with (2-bromoethoxy)(tert–butyl)-dimethylsilane1),producing the high useful silyl-substituted product 3 ha in 80% yield.Using (3-bromoprop-1-en-1-yl)benzene1i,an alkene,furnished cinnamyl(phenyl)sulfane3iain good yield.The linear alkyl chains containing one to six carbon atoms were competent to the coupling,and several functional groups,including aryl,F,OH and Cl,were tolerated (3ja-sa).Alkyl bromides1t-wwith steric hindrance were suitable substates (3tawa).Broad secondary and tertiary alkyl bromides,including(1-bromoethyl)benzene1x,α-bromoketones (1y,1ad),four-to seven-membered cycloalkyl bromides (1z-ac),α–bromo ester (1ae)andα–bromo amide (1af),were subject to the coupling,furnishing the corresponding secondary and tertiary alkyl sulfanes3xaacain high to quantitative yields.Interestingly,dual umpolung C–S radical reductive cross couplings of alkyl dibromides1ag-akexecuted successfully to access disulfanes3aga-aka,which highlights the applicability of our protocol in organic and material synthesis.A number of natural product-or bioactive molecule-based alkyl bromides1al-aq,such as L-alaninate derivative [69],telmisartan derivative [70],cholesterol derivative [71],4-androstene-3,17–dione derivative [72],estrone derivative [73] and estradiol pentanoate derivative [74],exposed to the optimized conditions resulted in selective transformation of the C(sp3)–Br bonds to the C(sp3)–S bonds to produce highly valuable complex products3alaana,3aob,3apa-aqa,thus providing a powerful route to selective late stage modification of complex bioactive substrates with multiple potential sites of reaction.Unfortunately,aryl halides,such as bromobenzene and iodobenezen,had no reactivity for the reaction.

    In contrast to alkene-containing bromides1i,1ai,and1anao(3ia,3aia,3ana,3aob,Scheme 2),6-bromohex-1-ene1arwas converted to a mixture of the desired product3araand the intramolecular alkene difunctionalization product4arain 71% total yield with 5.1:1 chemoselectivity (Eq.1,Scheme 3) [45].Moreover,increasing concentrations of the Ni(ClO4)2?6H2O/L1catalytic system shifted the chemoselectivity toward the coupling,and using 10 mol% Ni(ClO4)2?6H2O led to occurrence of the coupling exclusively.These radical clock experiments support that the reaction proceedsviaa radical chain process [45,75–78].Gratifyingly,3-bromoprop-1-yne3aswas a suitable substrate,efficiently affording3asdin 98% yield (Eq.2).It was noted that no conversion of bromide1awas observed in the absence of PhSO2SCF3(Eq.3),supporting initiation of this coupling not from the alkyl bromide component.Using PhSO2S(4-ClC6H4)2jresulted in the selectivity toward direct C–S reductive cross coupling with the S(4-ClC6H4) moiety [45–49],not the PhSO2moiety,to afford3ajin 19% yield along with 4-chlorobenzenethiol5jin 10% yield,but PhSO2SCH2(CH2)2Ph2khad no reactivity (Eq.4).The different chemoselectivity support that this current protocol performs a different mechanism from the previously reported reductive C–S cross coupling transformations[22,43–57],probably attributing to both the electron effect of the SCF3group and reduction behavior of Sn.In the presence of Sn or Mn reductant,PhSSCF32lcould react with bromide1ato access3aain 10%–15% yields (Eq.5),but leaving out each led to no detectable product3aa.These results suggest that the PhSSCF3is not the key intermediate during this current process,and the reductant can simultaneously assist both the S–S bond cleavage and the C–S bond formation.Subsequently,a series of the sulfur sources,including PhSSPh (2m),PhSO2CN (2n),PhSO2CF3(2o),PhSO2F (2p),PhSO2Na (2q),PhSO3Na (2r),PhSO2N3(2s) and PhSO2NCO (2t),were examined,but all had no reactivity under the optimized conditions (Eq.6).It is noteworthy that both electrophilic PhSSPh (2m)and PhSO2CN (2n),the reported highly reactive thiolation reagents[43,44,48],are inert,thus ruling out the generation of PhSSPh as the key intermediate.

    Scheme 3.Variations of the other reaction components.

    To further understand the mechanism,control reduction experiments with (4-ClC6H4)SO2SCF32ewere conducted (Eqs.7 and 8).In the presence of Ni(ClO4)2?6H2O,L1and Sn,substrate2ewas reductively decomposed to 4-ClC6H4SH5jin 74% yield and 4-ClC6H4SS(4-ClC6H4)6ein 13% yield (Eq.7).Reduction of (4-ClC6H4)SO2SCF32ewith Sn run smoothly,affording 4-ClC6H4SH5jexclusively in 95% yield;however,the SnBr2additive (10 mol%)is detrimental and decreased the yield of5jslightly to 92% yield(Eq.8).The reason may be that the SnBr2salt can promote the formation of disulfide [48],which would suppress the current coupling.It is noted that the reduction reaction is also sensitive to reductants: other reductants,such as Mn,Mg,Zn or (EtO)3SiH,are inert,and no reduction of the (4-ClC6H4)SO2SCF32ewas observed without reductants (Eq.8).These findings are consistent with the results observed in Table 1 (entries 1,16 and 18),and support that the generation of the active benzenethiol-type intermediate,not the reported active PhSH and/or PhSSPh intermediates [22,43–57],is the key step.Under the optimized conditions,4-ClC6H4SH5jwas less reactive than (4-ClC6H4)SO2SCF32eas using 4-ClC6H4SH5jdirectly reacted with alkyl bromide1adelivered a lower yield of3ae(85% yield) (Eq.9) than that of (4-ClC6H4)SO2SCF32e(96%yield,Scheme 2).It is because among the current coupling processes thermoinduced reduction of 4-ClC6H4)SO2SCF32eoccurs to generate the higher reactive 4-ClC6H4S-based intermediate,not 4-ClC6H4SH5j,to directly react with the active Ni species,thus avoiding further umpolung step of 4-ClC6H4SH to form the reactive 4-ClC6H4S-based intermediates (such as disulfides) and side reactions.

    As shown in Scheme 4,the reaction of bromide1awith PhSO2SCF32awas inhibited by radical scavengers,such as TEMPO,BHT and hydroquninone (Eq.10).In the presence of TEMPO,the methylated products8and8′was detected by GC–MS analysis and no phenylpropyl-substituted product7from bromide1awas observed (Eq.9).Identical results were obtained from the reaction of1aalone in the presence/absence of Ni(ClO4)2?6H2O andL1(Eq.11).These observations speculate that the methyl radical is generated from DMF,and DMF may really engage the umpolung C-S radical reductive cross coupling reaction.To verify thespeculations,control transformations of DMF with TEMPO were examined (Eq.12).No reaction of DMF with TEMPO occurred when performing at 60 °C for 12 h.Using 2 equiv.Sn resulted in the formation of8in 3.7% GC yield.The optimized conditions that comprise a combination of 5 mol% Ni(ClO4)2?6H2O,7.5 mol%L1and 2 equiv.Sn were further confirmed,thus giving8in the highest 4.5% GC yield.Increasing loading of Ni(ClO4)2?6H2O andL1led to diminishing GC yields of8.The reason may be that the optimal loadings of the Ni(ClO4)2/L1system efficiently initiate the generation of the radicals and effectively improve their reactivity,whereas the higher loadings of the Ni(ClO4)2/L1system over activate the radicals to cause some unwanted side-reactions.The high reduction potentials of tin (Sn;-0.45 Vvs.SCE) and DMF (-1.95 Vvs.SCE) are proven to be useful reductants [79–83].These findings indicate that thermoinduced reduction of DMF with Sn occurs to generate an amidyl radical anion intermediate [83–88],and DMF as an organic catalyst mediated the umpolung C-S radical reductive cross coupling reaction.

    Scheme 4.Control experiments and synthetic utilizations.

    In the presence of 2 equiv.Sn,a stoichiometric amount of the Ni(II) complex9(Eq.13) exhibits identical catalytic activity to the NiBr2/L1catalytic system (3ah,Scheme 2).However,neglecting Sn led to no detectable C–S cross coupling (Eq.13).These observations prove the importance of the reduction process and the Ni0species,not the NiIIsalts,is the real active catalyst,which are further verified by the results using a stoichiometric amount of Ni(ClO4)2?6H2O (Eq.14).The C–S radical reductive cross coupling of1awith2aand 1 equiv.Ni(ClO4)2?6H2O in the presence/absence of Sn (Eq.14): Neglecting Sn caused no desired reaction after 12 h,but supplementing Sn to the same pot resulted in the formation of3aain 45% yield for 12 h.

    Synthetic utilizations of phenyl(3-phenylpropyl)sulfane3aawere conducted under oxidative conditions (Eq.14)[22,43–57]: Sulfane3aawas converted to highly valuable ((3-phenylpropyl)sulfinyl)-benzene10aaand ((3-phenylpropyl)-sulfonyl)benzene11aa,respectively,in quantitative yields (Eq.15).However,both substrates10aaand11aacould not be transformed to3aaunder the optimized conditions,excluding the possibility of the umpolung C–S radical reductive cross couplingviathe10aaand/or11aaformation process.

    Based on the current results and precedent literatures [22,43–57,75–88],the plausible mechanism for the Ni-catalyzed umpolung C–S radical reductive cross coupling reaction was proposed(Scheme 5).Initially,thermoinduced reduction of DMF with Sn affords an amidyl radical anion intermediateJ[79–88].Meanwhile,coordination of the NiIIspecies with the dinitrogen-based ligandLforms the active Ni0species.Subsequently,the reaction of the active Ni0species with the sulphydryl sulfur-centered radical (PhS?)intermediateF,which is formed from the umpolung reduction and single electron transfer (SET) of PhSO2SCF32awith Sn and the intermediateJ,occurs to produce the LnNiISPh intermediateG.Oxidation addition of the intermediateGwith 3-phenylpropyl bromide1aaffords the Ph(CH2)2CH2(Ln)NiIIIBr(SPh) intermediateH,followed by reductive elimination of the intermediateHto give the LnNiIBr intermediateIand the desired product3aa.Finally,reduction of the intermediateIby Sn regenerates the active Ni0species to start a new catalytic cycle.

    Scheme 5.Possible reaction mechanism.

    In summary,we have disclosed a novel catalytic radical reductive strategy for umpolung transformation ofS-(trifluoromethyl)arylsulfonothioatesviacooperative DMF and nickel reductive catalysis.This strategy was developed in a umpolung C–S radical reductive cross coupling ofS-(trifluoromethyl)arylsulfonothioates with unactivated alkyl halides to assemble alkyl aryl thioethers.The reaction involves the formation of a sulfur-centered radical through thermoinduced umpolung reduction ofS-(trifluoromethyl)arylsulfonothioates with DMF and Sn,as well as features excellent selectivity and wide functional group tolerance,which can be of great synthetic value for organic synthesis,such as applications in late-stage derivatization of pharmaceuticals and naturally occurring molecules,and creation of new reactions to access value-added derivatives of feedstocks.Mechanistic experiment evidence suggests that thermoinduced reduction of DMF by Sn readily occurs to generate the amidyl radical anion followed by umpolung reduction and SET ofS-(trifluoromethyl)arylsulfonothioates with the amidyl radical anion and Sn to produce a sulfur-centered radical that engages a process of single electron oxidation of the active Ni0species,unlike the previously explored alkyl carbon-centered radical counterparts.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We thank the National Natural Science Foundation of China (No.22271245),the Jiangxi Province Science and Technology Project(Nos.20212AEI91002 and 20202ACBL213002) and the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University (No.2021ZD01) for financial support.

    国产在线视频一区二区| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 别揉我奶头~嗯~啊~动态视频 | 中文字幕另类日韩欧美亚洲嫩草| 欧美在线黄色| 女人被躁到高潮嗷嗷叫费观| 国产免费一区二区三区四区乱码| 777米奇影视久久| 午夜日本视频在线| 美女高潮到喷水免费观看| 亚洲第一av免费看| 亚洲五月色婷婷综合| 人人澡人人妻人| 视频区图区小说| 中文天堂在线官网| 国产在线视频一区二区| 波多野结衣av一区二区av| 97人妻天天添夜夜摸| 久久午夜综合久久蜜桃| 国产极品粉嫩免费观看在线| 在线天堂中文资源库| 亚洲成人免费av在线播放| 国产爽快片一区二区三区| 热99国产精品久久久久久7| 亚洲精品国产色婷婷电影| 精品国产乱码久久久久久小说| 美女脱内裤让男人舔精品视频| 国产精品香港三级国产av潘金莲 | 色婷婷av一区二区三区视频| 大陆偷拍与自拍| 80岁老熟妇乱子伦牲交| 蜜桃国产av成人99| 久久精品国产综合久久久| 日韩av免费高清视频| 18在线观看网站| 成人免费观看视频高清| 9色porny在线观看| 婷婷色综合www| 欧美日韩视频高清一区二区三区二| 黑人猛操日本美女一级片| 成年女人毛片免费观看观看9 | 2018国产大陆天天弄谢| 日韩不卡一区二区三区视频在线| 亚洲色图 男人天堂 中文字幕| 国产成人精品久久久久久| 大话2 男鬼变身卡| 欧美激情高清一区二区三区 | 国产片内射在线| 亚洲av福利一区| 亚洲情色 制服丝袜| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 日韩一区二区三区影片| 国产精品久久久久久久久免| 飞空精品影院首页| 天天影视国产精品| 久久婷婷青草| 精品一品国产午夜福利视频| 女的被弄到高潮叫床怎么办| 久热爱精品视频在线9| 一区二区三区乱码不卡18| 亚洲av电影在线观看一区二区三区| 精品一区二区免费观看| 丝袜人妻中文字幕| 最近中文字幕2019免费版| 高清视频免费观看一区二区| 男人添女人高潮全过程视频| 考比视频在线观看| 99久久精品国产亚洲精品| 午夜日本视频在线| 99精国产麻豆久久婷婷| 少妇被粗大的猛进出69影院| 伊人久久国产一区二区| 亚洲精品在线美女| 亚洲精品日本国产第一区| 国产免费视频播放在线视频| 亚洲欧洲日产国产| 日韩大片免费观看网站| 免费观看a级毛片全部| 伊人亚洲综合成人网| 久久国产精品大桥未久av| 深夜精品福利| 热99久久久久精品小说推荐| 波多野结衣av一区二区av| 男人舔女人的私密视频| 国产精品免费视频内射| 一区二区三区乱码不卡18| 91精品伊人久久大香线蕉| 久久影院123| 成人三级做爰电影| 中文字幕人妻熟女乱码| 亚洲精品视频女| 欧美xxⅹ黑人| 亚洲久久久国产精品| 成年女人毛片免费观看观看9 | 久久久精品免费免费高清| 天天躁夜夜躁狠狠躁躁| 国产无遮挡羞羞视频在线观看| 欧美国产精品va在线观看不卡| 亚洲成人手机| 精品一区二区三区av网在线观看 | 日本黄色日本黄色录像| 成年动漫av网址| 丁香六月天网| 自线自在国产av| 亚洲国产欧美网| 国产精品三级大全| 99热网站在线观看| 欧美日韩一级在线毛片| 丝袜人妻中文字幕| 伊人亚洲综合成人网| 久久99一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区久久久樱花| 看免费成人av毛片| 1024香蕉在线观看| 赤兔流量卡办理| 男女边吃奶边做爰视频| 国产成人午夜福利电影在线观看| 国产不卡av网站在线观看| 男人添女人高潮全过程视频| 亚洲精品一区蜜桃| 国产精品蜜桃在线观看| 欧美成人午夜精品| 一区二区三区激情视频| 少妇 在线观看| 99热全是精品| 99热全是精品| 性色av一级| 亚洲专区中文字幕在线 | 欧美精品一区二区免费开放| xxx大片免费视频| 日韩欧美精品免费久久| 老司机靠b影院| 热99久久久久精品小说推荐| 伊人亚洲综合成人网| 国产一区亚洲一区在线观看| 精品卡一卡二卡四卡免费| av女优亚洲男人天堂| 日本猛色少妇xxxxx猛交久久| 午夜日韩欧美国产| 自线自在国产av| 日韩熟女老妇一区二区性免费视频| 亚洲美女视频黄频| 在线观看免费高清a一片| 国产精品久久久久久精品古装| 午夜福利,免费看| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 哪个播放器可以免费观看大片| 欧美少妇被猛烈插入视频| 咕卡用的链子| 亚洲av成人不卡在线观看播放网 | 人妻人人澡人人爽人人| 老熟女久久久| 考比视频在线观看| 国产av精品麻豆| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 18禁动态无遮挡网站| 深夜精品福利| 国产欧美日韩综合在线一区二区| 亚洲情色 制服丝袜| 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看 | 丝袜喷水一区| 叶爱在线成人免费视频播放| 操美女的视频在线观看| 亚洲婷婷狠狠爱综合网| 一级黄片播放器| 中文字幕最新亚洲高清| 美国免费a级毛片| 少妇人妻精品综合一区二区| 一区二区三区激情视频| 亚洲图色成人| 美女高潮到喷水免费观看| 美女国产高潮福利片在线看| 亚洲三区欧美一区| 99久久人妻综合| 热99久久久久精品小说推荐| 国产高清不卡午夜福利| 1024视频免费在线观看| 久久精品久久久久久噜噜老黄| 一本色道久久久久久精品综合| 精品一区在线观看国产| 日韩成人av中文字幕在线观看| 人妻人人澡人人爽人人| 国产 精品1| 一区二区三区激情视频| 国产欧美日韩一区二区三区在线| 黑人巨大精品欧美一区二区蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 精品一品国产午夜福利视频| 久久av网站| 亚洲成色77777| 在线天堂最新版资源| 久久99一区二区三区| 99精品久久久久人妻精品| 欧美中文综合在线视频| 在线 av 中文字幕| 免费黄频网站在线观看国产| 免费少妇av软件| 精品一品国产午夜福利视频| 久久av网站| 亚洲成人av在线免费| 99热网站在线观看| 大片电影免费在线观看免费| 制服人妻中文乱码| 日韩欧美精品免费久久| 人妻人人澡人人爽人人| 老司机影院成人| 99热全是精品| 老熟女久久久| 精品人妻在线不人妻| 亚洲,欧美精品.| 女性生殖器流出的白浆| 精品国产露脸久久av麻豆| 国产成人精品无人区| 在线观看免费日韩欧美大片| 少妇人妻 视频| 夫妻午夜视频| 免费观看性生交大片5| 免费在线观看视频国产中文字幕亚洲 | e午夜精品久久久久久久| 日日撸夜夜添| av一本久久久久| 国产成人免费无遮挡视频| 中文字幕精品免费在线观看视频| 一区二区三区激情视频| 波多野结衣av一区二区av| 男女床上黄色一级片免费看| 国产精品一区二区在线观看99| 欧美日韩成人在线一区二区| 十分钟在线观看高清视频www| 亚洲av电影在线观看一区二区三区| 男男h啪啪无遮挡| 王馨瑶露胸无遮挡在线观看| 亚洲精品成人av观看孕妇| 老司机靠b影院| 欧美97在线视频| 天堂中文最新版在线下载| 午夜老司机福利片| 亚洲婷婷狠狠爱综合网| 男女午夜视频在线观看| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区 | 亚洲av电影在线观看一区二区三区| 美国免费a级毛片| 欧美精品亚洲一区二区| 欧美日韩亚洲高清精品| 国产一区有黄有色的免费视频| kizo精华| 成人亚洲精品一区在线观看| 一级毛片黄色毛片免费观看视频| 欧美在线一区亚洲| 亚洲av成人精品一二三区| 精品一区在线观看国产| 久久国产亚洲av麻豆专区| 久久国产亚洲av麻豆专区| 久久久久精品性色| 中文字幕制服av| 91成人精品电影| 亚洲,欧美精品.| 亚洲欧美一区二区三区黑人| 哪个播放器可以免费观看大片| 午夜激情久久久久久久| 天美传媒精品一区二区| 曰老女人黄片| 婷婷成人精品国产| 久久精品熟女亚洲av麻豆精品| 欧美激情极品国产一区二区三区| 亚洲精品aⅴ在线观看| 久久久久精品久久久久真实原创| 国产精品 欧美亚洲| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| 亚洲伊人色综图| 欧美黄色片欧美黄色片| av.在线天堂| 观看av在线不卡| 日本wwww免费看| 人人妻人人添人人爽欧美一区卜| 老司机深夜福利视频在线观看 | 香蕉丝袜av| 欧美日韩福利视频一区二区| 国产男人的电影天堂91| 99久久综合免费| 国产精品久久久久久精品古装| 国产免费又黄又爽又色| 免费观看性生交大片5| av网站免费在线观看视频| 亚洲美女视频黄频| 校园人妻丝袜中文字幕| 国产老妇伦熟女老妇高清| 自线自在国产av| 精品国产一区二区三区四区第35| 久久av网站| 日韩一本色道免费dvd| 最近最新中文字幕免费大全7| 久久精品久久精品一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲精品国产av蜜桃| 国产精品二区激情视频| a级毛片在线看网站| 午夜激情久久久久久久| 一本久久精品| 婷婷成人精品国产| 人妻一区二区av| 日韩免费高清中文字幕av| 黄网站色视频无遮挡免费观看| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜制服| 日本vs欧美在线观看视频| 国产av国产精品国产| 国产乱来视频区| 一区二区日韩欧美中文字幕| 狠狠婷婷综合久久久久久88av| 99香蕉大伊视频| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| 无遮挡黄片免费观看| 欧美日韩综合久久久久久| 69精品国产乱码久久久| 久久久久精品国产欧美久久久 | 麻豆乱淫一区二区| 国产成人精品福利久久| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9 | 老司机靠b影院| 在线精品无人区一区二区三| 国产黄色免费在线视频| 午夜激情久久久久久久| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线| 十八禁网站网址无遮挡| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 男女边吃奶边做爰视频| 在现免费观看毛片| 日本91视频免费播放| 亚洲第一区二区三区不卡| www.熟女人妻精品国产| 老司机深夜福利视频在线观看 | 久久99精品国语久久久| 男女边吃奶边做爰视频| 丝袜脚勾引网站| 亚洲男人天堂网一区| 中文字幕另类日韩欧美亚洲嫩草| 又大又黄又爽视频免费| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 高清视频免费观看一区二区| 汤姆久久久久久久影院中文字幕| 夫妻午夜视频| 9热在线视频观看99| 欧美av亚洲av综合av国产av | 成人18禁高潮啪啪吃奶动态图| 国产黄色视频一区二区在线观看| 精品国产一区二区三区四区第35| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 美国免费a级毛片| 精品人妻一区二区三区麻豆| 久久国产精品大桥未久av| 精品一区二区三区四区五区乱码 | 十八禁人妻一区二区| 久久久久精品国产欧美久久久 | 亚洲 欧美一区二区三区| 99香蕉大伊视频| 久久97久久精品| 麻豆精品久久久久久蜜桃| 国产一卡二卡三卡精品 | 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| www.自偷自拍.com| 岛国毛片在线播放| 七月丁香在线播放| 欧美人与性动交α欧美软件| 国产精品久久久av美女十八| 久久99一区二区三区| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 麻豆av在线久日| 亚洲av电影在线观看一区二区三区| 国产亚洲一区二区精品| 99国产精品免费福利视频| 在线观看免费午夜福利视频| 久久 成人 亚洲| 久久精品久久久久久久性| 国产一区二区三区综合在线观看| 精品一区二区三区四区五区乱码 | 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 精品亚洲成a人片在线观看| 欧美xxⅹ黑人| 青春草亚洲视频在线观看| 老司机靠b影院| 国产有黄有色有爽视频| 夫妻午夜视频| 国产精品久久久久久精品古装| 天天添夜夜摸| svipshipincom国产片| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| 人妻 亚洲 视频| 亚洲精品一区蜜桃| 中文字幕人妻丝袜制服| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 哪个播放器可以免费观看大片| 久久影院123| 男人舔女人的私密视频| 亚洲人成77777在线视频| 国产成人欧美在线观看 | 国产一区二区三区综合在线观看| 精品国产乱码久久久久久小说| 91精品伊人久久大香线蕉| 日本91视频免费播放| 男女免费视频国产| 欧美另类一区| 在线亚洲精品国产二区图片欧美| 午夜福利在线免费观看网站| 最新在线观看一区二区三区 | av福利片在线| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 亚洲国产精品一区三区| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 国产精品人妻久久久影院| 国产精品一区二区精品视频观看| 久久久久久久久免费视频了| 成人三级做爰电影| 日韩 亚洲 欧美在线| 99国产精品免费福利视频| 视频区图区小说| 欧美人与性动交α欧美软件| 久久久精品免费免费高清| 日本av免费视频播放| 久久韩国三级中文字幕| 久久国产精品男人的天堂亚洲| 男女边摸边吃奶| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 久久久久久久久久久久大奶| 中文字幕高清在线视频| 久久久久久人妻| 国产成人精品无人区| 久久综合国产亚洲精品| 亚洲图色成人| 纵有疾风起免费观看全集完整版| 精品第一国产精品| 亚洲精品一区蜜桃| 99精品久久久久人妻精品| 国产日韩欧美视频二区| 精品卡一卡二卡四卡免费| 深夜精品福利| 国产亚洲最大av| 精品国产一区二区三区四区第35| 免费不卡黄色视频| 99久久人妻综合| 午夜日本视频在线| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲| 成人手机av| 天天躁日日躁夜夜躁夜夜| 亚洲,欧美精品.| 女人精品久久久久毛片| 麻豆乱淫一区二区| 久久国产精品大桥未久av| 久久久精品94久久精品| 欧美 日韩 精品 国产| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 丁香六月天网| 亚洲精品视频女| 精品卡一卡二卡四卡免费| 考比视频在线观看| 少妇人妻 视频| 最近2019中文字幕mv第一页| 女人久久www免费人成看片| 午夜久久久在线观看| 中文字幕制服av| 精品福利永久在线观看| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 香蕉国产在线看| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 日韩制服骚丝袜av| 在线观看国产h片| 99久久人妻综合| 最新的欧美精品一区二区| 午夜91福利影院| 亚洲成人国产一区在线观看 | 中文天堂在线官网| 一二三四中文在线观看免费高清| 考比视频在线观看| 亚洲美女视频黄频| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 我的亚洲天堂| 日韩精品免费视频一区二区三区| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 免费高清在线观看日韩| 两个人看的免费小视频| 黑人巨大精品欧美一区二区蜜桃| 视频在线观看一区二区三区| 精品国产国语对白av| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 老司机靠b影院| 天天操日日干夜夜撸| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 精品一区二区免费观看| 亚洲av综合色区一区| 女人久久www免费人成看片| 丰满少妇做爰视频| 国产成人一区二区在线| 日韩av免费高清视频| 极品少妇高潮喷水抽搐| 亚洲美女黄色视频免费看| 曰老女人黄片| 最近中文字幕2019免费版| 日日爽夜夜爽网站| 久久av网站| 美女扒开内裤让男人捅视频| 日韩制服丝袜自拍偷拍| 两性夫妻黄色片| 美女国产高潮福利片在线看| 国产av精品麻豆| 国产免费视频播放在线视频| 久久av网站| 免费久久久久久久精品成人欧美视频| av在线app专区| 别揉我奶头~嗯~啊~动态视频 | 性高湖久久久久久久久免费观看| 精品第一国产精品| 少妇被粗大的猛进出69影院| 中文字幕色久视频| 十八禁高潮呻吟视频| 亚洲av成人精品一二三区| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看 | 91老司机精品| 国产精品国产av在线观看| 亚洲综合色网址| 无遮挡黄片免费观看| 日韩大片免费观看网站| 国产深夜福利视频在线观看| 日本色播在线视频| 热re99久久精品国产66热6| 一级片免费观看大全| 老司机深夜福利视频在线观看 | 国产99久久九九免费精品| 国产不卡av网站在线观看| 多毛熟女@视频| 精品国产一区二区三区四区第35| 色吧在线观看| 波多野结衣av一区二区av| 日韩一卡2卡3卡4卡2021年| 日本av免费视频播放| 性少妇av在线| 免费黄网站久久成人精品| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 国产成人精品久久二区二区91 | 另类精品久久| 婷婷色麻豆天堂久久| 99热全是精品| 18在线观看网站| 最近的中文字幕免费完整| 满18在线观看网站| 欧美国产精品va在线观看不卡| 精品福利永久在线观看| 老司机亚洲免费影院| 欧美在线一区亚洲| 五月天丁香电影| 中文字幕另类日韩欧美亚洲嫩草| 丰满少妇做爰视频| 天天添夜夜摸| 一本久久精品| 精品国产乱码久久久久久男人| 丰满少妇做爰视频| 人体艺术视频欧美日本| 精品久久久精品久久久| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 又黄又粗又硬又大视频| 美女脱内裤让男人舔精品视频| 男男h啪啪无遮挡| 国产高清不卡午夜福利| av电影中文网址| 亚洲一区二区三区欧美精品| 午夜福利影视在线免费观看| av.在线天堂| 女性被躁到高潮视频| 中文天堂在线官网|