• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photocatalytic direct oxygen-isotopic labelings of carbonyls in ketones and aldehydes with oxygen-isotopic waters

    2023-11-21 03:03:58XianjinZhuYongLiuLunyuOuHaijunYangHuaFu
    Chinese Chemical Letters 2023年11期

    Xianjin Zhu,Yong Liu,Lunyu Ou,Haijun Yang,Hua Fu

    Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education),Department of Chemistry,Tsinghua University,Beijing 100084,China

    Keywords:Oxygen-isotopic labeling Photocatalysis Oxygen-isotopic waters Compounds containing carbonyls Alkanesulfinates

    ABSTRACT Oxygen-isotopic labelings play important roles in identifying and understanding chemical and biological processes.Direct C=O to C=18O or C=17O conversion in a single step leading to labeled compounds can alleviate synthetic burdens without the need for resynthesis.Here we describe a photocatalytic oxygenisotopic labeling protocol that can efficiently and selectively install 18O and 17O on carbonyls of ketones and aldehydes via oxygen isotope exchange with oxygen-isotopic waters (H218O or H217O) as the sources of oxygen isotopes,in which light and oxygen-enabled sodium alkanesulfinates catalyzed this process.This strategy was extended to the in-situ formed ketones from the photocatalytic aerobic oxidation of alkyl arenes and secondary alcohols.Furthermore,reduction of the oxygen-isotopically labeled aldehydes with NaBH4 provided the corresponding oxygen-isotopically labeled primary alcohols.We believe that the oxygen-isotopically labeling method will be widely used in chemistry,biology and medicine fields.

    The isotopes of elements have become important tools in chemistry,biology and medicine fields,and they are widely used in spectroscopy,mass spectrometry and mechanistic and pharmacokinetic investigations [1].Beyond the widespread applications,there has been much attention in incorporating isotopes into drug molecules [1].For example,a deuterated drug,deutetrabenazine approved by the United States’Food and Drug Administration,is used in the treatment of Huntington’s disease [2].The replacement of hydrogen with its isotopes has received much attention as a way to change the absorption,distribution,metabolism and excretion (ADME) properties of drug candidates [1,3–5].However,there has been less attention in the oxygen-isotopic labeling relative to the hydrogen-isotopic labeling [6–8].In fact,18O and17Olabeled molecules for high resolution mass spectrometry (HRMS)and17O-labeled molecules for nuclear magnetic resonance (NMR)spectroscopy are advantageous in rapid identifying drug metabolites in very complex samples [9].18O2and17O2are the simplest oxygen sources,and they have been used in the transition metalcatalyzed aerobic oxidation [10,11].However,the aerobic oxidation with the gaseous reagents that are not easily stored and taken is incompatible with many common functional groups and suffers from some environmental problems for use of harmful transition metals.Water is a green and cheap medium or reactant for chemical transformation [12–14],the bench-stable waters,H218O and H217O,are idea oxygen isotope sources,and they have been used in labeling of organic molecules [15–20].The direct conversion of widespread C=O bonds into C=18O and C=17O bonds with H218O and H217O as the oxygen-isotopically labeled sources is simple,convenient and environmentally friendly.Furthermore,direct C=O to C=18O or C=17O conversion in a single step leading to labeled compounds should alleviate synthetic burdens without the need for resynthesis.Although the oxygen-isotopical labeling of carbonyls in aldehydes and ketones in the presence of acid was reported before,the labeling rates for ketones were lower,and the scope of substrates was limited [21].

    Visible light photocatalysis has become a thriving area of chemical research for its simplicity,economy and reaction novelty [22–30],and the efficiency of reactions highly depends on the suitable photocatalysts [31–34].The existing photocatalysts mainly are precious transition-metal complexes [35–37] and elaborate organic dyes [38].Very recently,we have developed the efficient and environmentally friendly light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective aerobic oxidations of alkyl arenes and alcohols for the first time [39,40].Later,several research groups used our photocatalytic systems to develop some useful reactions [41–45].Here,we want to explore a new strategy for direct oxygen-isotopic labeling of carbonyls in ketones and aldehydes (1) with oxygen-isotopic waters (H218O or H217O) by using our photocatalytic systems (Scheme 1A).In our previous investigations [39,40],we found that theinsituformed pentacoordinate sulfide (4) derived from sodium trifluoromethanesulfinate (3)and oxygen could act as the photocatalyst.A detailed description of our proposed mechanistic cycle is outlined in Scheme 1B.Initial photoexcitation of4would generate4?,and single-electron transfer (SET) of4?to oxygen would lead to superoxide anion radical5and radical6leaving Na+(At this time,two electron-deficient groups,radical6and Na+,should be separated each other).A proton transfer from oxygen-isotopic water to5would form radical7and oxygen-isotopic hydroxyl anion (8) [38],complexation of carbonyl compound (1) with Na+would give9,and nucleophilic attack of8to9would lead to10.SET of10to6would provide11freeing radical12and Na+,and combination of11with Na+would regenerate4.Meanwhile,transfer of hydrogen radical in7to12would afford hydrate13releasing oxygen,and dehydration of13would give the oxygen-isotopically labeled carbonyl compound (2)or unlabeled1.Addition of excess amount of oxygen-isotopic water (10 equiv.) in the reaction system would greatly improve yield of2.

    Scheme 1.Our design on photocatalytic direct oxygen-isotopic labeling of carbonyls in ketones and aldehydes with oxygen-isotopic waters.(A) Reaction route.(B) Proposed catalytic cycle for the photoredox-catalyzed protocol.

    With this mechanistic design in hand,we first screened various conditions for18O-labeling of acetophenone (14) (see Tables S1-S7 in Supporting information for details).Here,we summary some key reaction parameters (Table 1).The results showed that the conditions,using 2 mol% sodium trifluoromethanesulfinate (3)relative to14as the precursor of photosensitizer,acetonitrile as the solvent with irradiation of a 3 W light emitting diode (LED)bulb (400–405 nm) under oxygen atmosphere (1 atm),gave18Olabeled acetophenone (15) in 85%18O-labeling rate (LR) with 15%of unlabeled acetophenone (14) remaining without occurrence of any by-product (entry 1).When 5 mol% sodium benzenesulfinate(16) or 10 mol% sodium ethanesulfinate (17) replaced 2 mol%3as the precursor of photosensitizer,and 86% and 85% LRs were provided,respectively (entries 2 and 3).This transformation did not work in the presence of 10 mol% sodium trifluoromethanesulfonate (CF3SO3Na) (18) instead of3(entry 4).No18O-labeled product was observed in the absence of sulfinate (entry 5).Irradiationwith 530–535 nm LED could not induce this transformation (entry 6).When 450–455 nm,420–425 nm,380–425 nm LED or compact fluorescent light (34 W) bulbs were used as the light sources,82%,82%,79% and 75% LRs were afforded,respectively (entries 7–10).This transformation was not performed without irradiation of light (entry 11).82% LB was provided with air instead of oxygen atmosphere (entry 12).This transformation did not occur in the absence of oxygen (entry 13).The results above showed that none was dispensable for oxygen,light and sulfinate in this transformation.Other solvents,dichloromethane (CH2Cl2),1,2-dichloroethane(ClCH2CH2Cl),tetrahydrofuran (THF),ethyl acetate (CH3COOEt) and dimethyl sulfoxide (DMSO),were attempted (entries 14–18),and they were inferior to acetonitrile.More investigations on the reaction parameters were performed in Tables S1-S7.Therefore,the optimal conditions for the oxygen-isotopic labeling of ketones are as follows: 3 W LED bulb (400–405 nm) as the light source,catalytic amount of sulfinate (2 mol% sodium trifluoromethanesulfinate (3),5 mol% sodium benzenesulfinate (16) or 10 mol% sodium ethanesulfinate (17)) as the precursor of photosensitizer in acetonitrile under atmosphere of oxygen at room temperature.

    Table 1Investigations of key reaction parameters.a

    Having established the optimal conditions for this18O-labeling of ketones,we investigated scope of substrates.As shown in Scheme 2,various ketones are amenable to this light and oxygenenabled sulfinate-mediated selective18O-labeling strategy,they were performed well,and almost no side-products were observed.First,twenty aryl methyl ketones underwent this18O-labeling under the optimal conditions in Table 1 (15,19–37),and three sulfinates (3,16and17) as the precursors of photocatalysts were effective.Substituents on aromatic rings of the aryl methyl ketones did not obviously affect18O-labeling rates of ketones including neutral (15,35–37,75%-86% LRs),electron-rich (19–25,74%-87% LRs),weak electron-deficient (26–30,72%-87% LRs),and strong electron-deficient (31–34,62%-91% LRs) groups.Interestingly,18O-labeling of25containing amide group selectively occurred on the ketone rather than on the amide because hydrate formation of the amide was much more difficult than formation of the ketone hydrate (13in Scheme 1).Other carbonyl compounds including carboxylic acids,esters,amides,thioamide,ureas and anhydrides were attempted to perform this18O-labeling,and they did not work,which indicated that the present method exhibited high selectivity (Scheme S1 in Supporting information).Subsequently,aryl alkyl ketones containing different alkyls were tested under the standard conditions,and we found that different alkyls including trifluoromethyl (38,82%-89% LRs),ethyl (39,77%-87% LRs),cyclopentyl (40,74%-80% LRs) and cyclohexyl (41,54%-70% LRs)showed some different18O-labeling efficiency.Next,two cyclic ketones were used as the substrates,and they provided the satisfactory18O-labeling rates (42and43,77%-83% LRs).Ketones containing ether (44) and bromo (45) groups were tested,and 69%-90%LRs were achieved.Thirteen aliphatic ketones including chain (46–49,58) and cyclic (50–57) ketones were applied,and this18Olabelings were performed well (76%-91% LRs).Three aliphatic ketones containing ester groups were selectively labeled on the carbonyls of the ketones rather than on those of the ester groups(59–61,79%-90% LRs).We attempted threeα,β-unsaturated ketones (62–64),and 53%-90% LRs were obtained.Finally,various diaryl ketones were investigated,and we found that more amounts of sulfinates (25 mol% CF3SO2Na (3),25 mol% PhSO2Na (16),50 mol% EtSO2Na (17)) were needed and18O-labeling rates of the diaryl ketones (65–73,50%-77% LRs) were lower than those of the aryl alkyl ketones and aliphatic ketones above.The results can be attributed to conjugative effect and steric hindrance of two aryls in the diaryl ketones,which is unfavorable for formation of the corresponding hydrates.It is worthwhile to note that the18O-labeling of fenofibrate (73) (an effective marketed hypolipidemic drug [46])containing an ester group also was selectively performed on the ketone rather than on the ester.

    Scheme 2.Investigations of substrate scope on the 18O-labeling of ketones.Reaction conditions: ketone (1) (0.1 mmol),99% 18O-labeled H218O (1.0 mmol,10 equiv.),MeCN(1.0 mL) under O2 atmosphere and light irradiation at room temperature for 12 h.(i) In the presence of 2 mol% CF3SO2Na (3).(ii) In the presence of 5 mol% PhSO2Na (16).(iii) In the presence of 10 mol% EtSO2Na (17).(iv) In the presence of 25 mol% CF3SO2Na (3).(v) In the presence of 25 mol% PhSO2Na (16).(vi) In the presence of 50 mol%EtSO2Na (17).The 18O-labeling rates (LRs) were determined by GC–MS (see Supporting information for calculation of 18O-labeling rate (LR)).

    Scheme 3.18O-Labeling of aldehydes.Reaction conditions: aldehyde (0.2 mmol),99% 18O-labeled H218O (2.0 mmol,10 equiv.),MeCN (1.0 mL) under O2 atmosphere and irradiation with 3 W white LED at room temperature for 8 h.(i) In the presence of 2.0 mol% CF3SO2Na (3).(ii) In the presence of 10 mol% EtSO2Na (17).Isolated yields.The 18O-labeling rates (LRs) were determined by GC–MS (see Supporting information for calculation of 18O-labeling rates (LRs)).

    Inspired by the excellent results in Scheme 2,we attempted to extend the substrate scope.First,18O-labeling of aldehydes was investigated.As shown in Scheme 3,we found that18O-labeled aldehydes in the presence of 2 mol% CF3SO2Na (3) or 10 mol%EtSO2Na (17) were major products with small amount of unlabeled aldehydes remaining and newly-formed carboxylic acids appearing.Meanwhile,we also performed one-pot two-step process including18O-labeling of aldehydes and reduction of the18O-labeled aldehydes with NaBH4to the corresponding18O-labeled alcohols.Eleven aromatic formaldehydes provided satisfactory yields and18Olabeling rates including neutral (74,75,92–95,69%-76% yields,70%-83% LRs),electron-rich (76–85,69%-81% yields,69%-85%LRs),weak electron-deficient (86–89,70%-79% yields,73%-85%LRs),and strong electron-deficient (90and9171%-76% yields,75%-80% LRs) groups.Two heteroaryl formaldehydes containing furan or thiophenol rings also were suitable substrates (96–99,61%-76% yields,74%-82% LRs).Twoα,β-unsaturated aldehydes(100–103) were attempted,and 67%-73% yields and 53%-84% LRs were provided.An aliphatic aldehyde,3-phenylpropanal,was used as the substrate,and it gave18O-labeled products104and105in 73%-75% yields with 67%-81% LRs.

    In our previous research,we developed the light and oxygenenabled sodium trifluoromethanesulfinate-mediated selective aerobic oxidation of alkyl arenes and secondary alcohols to ketones[39,40].Here,we attempted sequential aerobic oxidation of alkyl arenes and secondary alcohols to ketones and18O-labeling of the ketones.As shown in Scheme 4,nine examples were performed with 25 mol% sodium trifluoromethanesulfinate (3) as the precursor of photocatalyst,and they afforded the satisfactory results (15,27,32,35,37,39,65,106and107,82%-91% yields,57%-74%LRs).As shown in Scheme 5,fourteen secondary alcohols were performed this domino strategy,and excellent yields and satisfactory18O-labeling rates were obtained (15,20,21,26,31,36,39,41,54,65,66,68,71and72,75%-92% yields,68%-80% LRs).Finally,we explored17O-labeling of ketones and an aldehyde.Here,we used lower concentration of H217O (40%17O-labeled H217O)because of its high sensitivity in17O NMR spectroscopy and cost concern.As shown in Scheme 6A,five ketones were effectively labeled with 40%17O-labeled H217O (108–112,25%-36% LRs).Testosterone (112) exhibits some biological activity including adjusting the metabolism of carbohydrates,lipids and proteins and influencing muscle growth and adipogenesis [47].Subsequently,aldehyde113was performed one-pot two-step process including17Olabeling and reduction with NaBH4,and primary alcohol115was obtained in 71% yield with 32% LB.Therefore,the results above showed that our environmentally friendly oxygen-isotopically labeling method was effective.We also attempted18O-labeling of dicarbonyl compound,1,3-cyclohexanedion (116) with 10 equiv.of 99%18O-labeled H218O in the presence of 2 mol% CF3SO2Na (3) or 10 mol% EtSO2Na (17),and the single18O-labeled (117) and double18O-labeled (118) products were obtained in 37.6% or 37.1% and 60.6% or 58.1% LBs,respectively (Scheme 6B).

    Scheme 4.Aerobic oxidative 18O-labeling of alkyl arenes leading to 18O-labeled ketones.Reaction conditions: alkyl arene (0.1 mmol),99% 18O-labeled H218O (1.0 mmol,10 equiv.),CF3SO2Na (3) (0.025 mmol,25 mol%),MeCN (1.0 mL) under O2 atmosphere and irradiation with 3 W 400–405 nm LED at room temperature for 12 h.Isolated yields.The 18O-labeling rates (LRs) were determined by GC–MS (See Supporting information for calculation of 18O-labeling rates (LRs)).

    Scheme 5.Aerobic oxidative 18O-labeling of alcohols leading to 18O-labeled ketones.Reaction conditions: alcohol (0.1 mmol),99% 18O-labeled H218O (1.0 mmol,10 equiv.),CF3SO2Na (3) (0.025 mmol,25 mol%),MeCN (1.0 mL) under O2 atmosphere and irradiation with 3 W 400–405 nm LED at room temperature for 12 h.Isolated yields.The 18O-labeling rates (LRs) were determined by GC–MS (See Supporting information for calculation of 18O-labeling rates (LRs)).

    Scheme 6.(A) 17O-Labeling of ketones and an aldehyde.Reaction conditions: ketone (0.1 mmol),40% 17O-labeled H217O (1.0 mmol,10 equiv.),MeCN (1.0 mL) under O2 atmosphere and irradiation with 3 W white LED at room temperature for 8 h.(i) In the presence of 2.0 mol% CF3SO2Na (3).(ii) In the presence of 10 mol% EtSO2Na (17).The 17O-labeling rates (LRs) were determined by GC–MS or ESI-MS (See Supporting information for calculation of 17O-labeling rates (LRs)).(B) 18O-Labeling of 1,3-cyclohexanedion.(i) In the presence of 2 mol% CF3SO2Na (3).(ii) In the presence of 10 mol% EtSO2Na (17).The 18O-labeling rates (LRs) were determined by GC–MS (See Supporting information for calculation of 18O-labeling rates).

    We explored mechanism on the photocatalytic direct oxygenisotopic labeling.In previous study,we conducted density functional theory (DFT) calculations and analysis,and found that pentacoordinate sulfide (4) derived from sodium trifluoromethanesulfinate (3) and oxygen could act as the photocatalyst [39].Here,we investigated treatment of PhSO2Na (16) or EtSO2Na (17) with oxygen,and found that formation of the corresponding pentacoordinate sulfides16′and17′were feasible (Tables S8-S15,Schemes S2 and S3 in Supporting information).When 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) was added to the reaction system,no oxygen-isotopic product was observed (Supporting information),which indicated that the present oxygen-labeling underwent a radical process.More controlled experiments were performed (see Supporting information for details).All the results show that the proposed mechanism in Scheme 1 is reasonable.

    In conclusion,we have developed a photocatalytic direct oxygen-isotopic labeling protocol,in which18O and17O-labelings of carbonyls in ketones and aldehydes were efficient and selective in a single step using oxygen-isotopic waters (H218O or H217O) as the sources of oxygen isotopes.This strategy was extended to thein-situformed ketones from the aerobic oxidation of alkyl arenes and secondary alcohols.Furthermore,the reduction of the oxygenisotopically labeled aldehydes with NaBH4provided the corresponding oxygen-isotopically labeled primary alcohols.The present oxygen-isotopically labeling method shows some advantages including inexpensive and readily available alkanesulfinates as the precursors of photocatalysts,simple and easy operational reaction conditions,use of environmentally friendly chemicals and high selectivity of the reactions.We believe that the oxygen-isotopically labeling method will be widely used in chemistry,biology and medicine fields.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by Natural Science Foundation of Beijing Municipality (No.2222011),National Natural Science Foundation of China (No.22077074) and China Postdoctoral Science Foundation (No.2021M701869).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108454.

    久久97久久精品| av专区在线播放| 精品久久久久久久久av| www.av在线官网国产| 97超碰精品成人国产| 欧美激情极品国产一区二区三区 | 欧美bdsm另类| 欧美精品人与动牲交sv欧美| 精品熟女少妇av免费看| 成年美女黄网站色视频大全免费 | 校园人妻丝袜中文字幕| 亚洲,一卡二卡三卡| 午夜91福利影院| 免费观看的影片在线观看| 一本久久精品| 国产精品久久久久久精品电影小说| 亚洲高清免费不卡视频| 热99国产精品久久久久久7| 中文字幕亚洲精品专区| 看十八女毛片水多多多| 国产一区二区在线观看av| 免费观看性生交大片5| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 亚洲精品一二三| 在线精品无人区一区二区三| 国产精品.久久久| 久久久久久久久久人人人人人人| 欧美激情国产日韩精品一区| 免费av不卡在线播放| 国产有黄有色有爽视频| 91久久精品电影网| 日本与韩国留学比较| 亚洲美女视频黄频| 精品午夜福利在线看| 久久ye,这里只有精品| av国产精品久久久久影院| a级毛片黄视频| 日本欧美视频一区| a级毛片在线看网站| 2018国产大陆天天弄谢| 午夜激情av网站| 亚洲三级黄色毛片| 18在线观看网站| 91久久精品国产一区二区三区| 国产精品熟女久久久久浪| 亚洲国产毛片av蜜桃av| 精品熟女少妇av免费看| 久久人人爽人人爽人人片va| 色婷婷久久久亚洲欧美| 精品视频人人做人人爽| 国产黄频视频在线观看| 91久久精品国产一区二区成人| 天堂俺去俺来也www色官网| 亚洲精品一二三| 只有这里有精品99| xxxhd国产人妻xxx| 日日啪夜夜爽| 亚洲精品aⅴ在线观看| 九色成人免费人妻av| 日韩免费高清中文字幕av| 性色av一级| av线在线观看网站| 免费黄频网站在线观看国产| 国产精品麻豆人妻色哟哟久久| 老熟女久久久| 我的老师免费观看完整版| 又粗又硬又长又爽又黄的视频| 男女国产视频网站| 蜜桃国产av成人99| 免费高清在线观看日韩| 一边亲一边摸免费视频| 久久99热6这里只有精品| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 中文乱码字字幕精品一区二区三区| 91成人精品电影| 插逼视频在线观看| 夫妻午夜视频| 婷婷色av中文字幕| 黑丝袜美女国产一区| 美女国产视频在线观看| av女优亚洲男人天堂| 99精国产麻豆久久婷婷| 日本猛色少妇xxxxx猛交久久| 国产精品熟女久久久久浪| 日韩电影二区| 午夜日本视频在线| 国产黄片视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品人人爽人人爽视色| av免费在线看不卡| av女优亚洲男人天堂| 亚洲精品久久成人aⅴ小说 | 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 免费观看在线日韩| 国产视频首页在线观看| 免费看av在线观看网站| 大陆偷拍与自拍| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 秋霞伦理黄片| 国产国语露脸激情在线看| 午夜91福利影院| 免费少妇av软件| 天堂中文最新版在线下载| 午夜久久久在线观看| 亚洲精品第二区| 中国美白少妇内射xxxbb| 亚洲一区二区三区欧美精品| 一二三四中文在线观看免费高清| 久久久国产欧美日韩av| 久久久午夜欧美精品| 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 国产极品粉嫩免费观看在线 | 三上悠亚av全集在线观看| 免费看不卡的av| 十八禁网站网址无遮挡| 大话2 男鬼变身卡| 少妇丰满av| a级毛片免费高清观看在线播放| 成人漫画全彩无遮挡| 国产精品久久久久成人av| 国产视频内射| 一级爰片在线观看| 五月开心婷婷网| 日产精品乱码卡一卡2卡三| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品女同一区二区软件| 99久久精品国产国产毛片| 99热这里只有精品一区| 另类亚洲欧美激情| 99精国产麻豆久久婷婷| av免费观看日本| 免费av中文字幕在线| 性色avwww在线观看| 91精品国产九色| 欧美老熟妇乱子伦牲交| 天天躁夜夜躁狠狠久久av| 国产伦精品一区二区三区视频9| 亚洲欧洲日产国产| 一本大道久久a久久精品| 欧美成人午夜免费资源| 久久精品国产亚洲av涩爱| 母亲3免费完整高清在线观看 | av在线老鸭窝| 国产永久视频网站| 国产成人a∨麻豆精品| 国产色爽女视频免费观看| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区 | 蜜桃久久精品国产亚洲av| 国产在线免费精品| 国产亚洲欧美精品永久| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂| av在线老鸭窝| 69精品国产乱码久久久| 熟女人妻精品中文字幕| 老司机影院毛片| 少妇的逼好多水| 欧美丝袜亚洲另类| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 亚洲成人一二三区av| 精品国产一区二区三区久久久樱花| 国产精品国产三级国产av玫瑰| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 少妇人妻 视频| 丝袜脚勾引网站| 精品人妻熟女毛片av久久网站| av播播在线观看一区| 久久99热这里只频精品6学生| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 夫妻午夜视频| 涩涩av久久男人的天堂| 插逼视频在线观看| 最近最新中文字幕免费大全7| 精品午夜福利在线看| 久久韩国三级中文字幕| 丝袜脚勾引网站| 亚洲精品乱码久久久v下载方式| a级片在线免费高清观看视频| 日本免费在线观看一区| 日韩大片免费观看网站| av国产久精品久网站免费入址| 天堂俺去俺来也www色官网| 赤兔流量卡办理| 伊人亚洲综合成人网| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 中文字幕亚洲精品专区| 国产欧美亚洲国产| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频| 国产精品久久久久久精品电影小说| 亚洲图色成人| 夫妻性生交免费视频一级片| www.色视频.com| 亚洲五月色婷婷综合| 波野结衣二区三区在线| 日本av手机在线免费观看| 亚洲国产毛片av蜜桃av| 丁香六月天网| 国产午夜精品久久久久久一区二区三区| 免费观看无遮挡的男女| 熟女av电影| av免费在线看不卡| 久热久热在线精品观看| 日本黄大片高清| 黄色怎么调成土黄色| 精品久久久噜噜| 欧美人与性动交α欧美精品济南到 | 免费黄网站久久成人精品| av.在线天堂| 久久久久久久精品精品| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 国产黄色免费在线视频| 亚洲国产色片| 精品国产露脸久久av麻豆| 在线观看国产h片| 一个人免费看片子| 成人国产麻豆网| 亚洲五月色婷婷综合| 人体艺术视频欧美日本| 黄片播放在线免费| 赤兔流量卡办理| 一级毛片 在线播放| 久久99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲最大av| av在线app专区| 91国产中文字幕| 老司机影院成人| 岛国毛片在线播放| 18禁在线播放成人免费| 精品人妻在线不人妻| 九九久久精品国产亚洲av麻豆| 一本一本综合久久| 全区人妻精品视频| 久久午夜福利片| 国产精品不卡视频一区二区| 国产国拍精品亚洲av在线观看| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 大话2 男鬼变身卡| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 亚洲,欧美,日韩| 亚洲天堂av无毛| 欧美日韩视频高清一区二区三区二| 韩国高清视频一区二区三区| 欧美人与善性xxx| 欧美日韩精品成人综合77777| 天美传媒精品一区二区| 欧美 日韩 精品 国产| 国产精品.久久久| 我的女老师完整版在线观看| 99久国产av精品国产电影| 成人综合一区亚洲| 超色免费av| 老司机影院成人| 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 热99久久久久精品小说推荐| 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品电影小说| 亚洲精品美女久久av网站| 国产精品欧美亚洲77777| 久久久国产欧美日韩av| 久久久久久伊人网av| 婷婷成人精品国产| 在线观看免费日韩欧美大片 | 国产精品偷伦视频观看了| 久久久久网色| 在线看a的网站| 亚洲婷婷狠狠爱综合网| av有码第一页| 啦啦啦视频在线资源免费观看| 免费人成在线观看视频色| 精品国产乱码久久久久久小说| 久久 成人 亚洲| 夜夜爽夜夜爽视频| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 亚洲国产精品999| 国产伦精品一区二区三区视频9| 亚洲精品久久午夜乱码| 十分钟在线观看高清视频www| 欧美精品一区二区免费开放| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 美女大奶头黄色视频| 国模一区二区三区四区视频| 免费少妇av软件| 国产精品国产三级专区第一集| 欧美性感艳星| 久久久a久久爽久久v久久| 国产精品国产三级专区第一集| 国产av国产精品国产| 一个人免费看片子| 日本av免费视频播放| av不卡在线播放| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| 国产精品久久久久久精品电影小说| 少妇的逼水好多| 精品国产乱码久久久久久小说| 欧美 亚洲 国产 日韩一| 亚洲国产精品999| 国产成人免费观看mmmm| 国产视频内射| 午夜福利在线观看免费完整高清在| 777米奇影视久久| 婷婷成人精品国产| 欧美日韩综合久久久久久| 午夜久久久在线观看| 亚洲精品456在线播放app| 美女脱内裤让男人舔精品视频| av免费观看日本| 高清黄色对白视频在线免费看| 哪个播放器可以免费观看大片| 久久人人爽av亚洲精品天堂| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 一本—道久久a久久精品蜜桃钙片| 中文字幕精品免费在线观看视频 | 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 欧美少妇被猛烈插入视频| 亚洲国产成人一精品久久久| 男女免费视频国产| 欧美国产精品一级二级三级| 久热久热在线精品观看| 18在线观看网站| 午夜激情福利司机影院| 亚洲av中文av极速乱| 欧美xxxx性猛交bbbb| 亚洲精品aⅴ在线观看| 女性被躁到高潮视频| 寂寞人妻少妇视频99o| 人妻人人澡人人爽人人| 中文字幕人妻丝袜制服| 中文乱码字字幕精品一区二区三区| 99视频精品全部免费 在线| 丝袜美足系列| 99精国产麻豆久久婷婷| 插阴视频在线观看视频| 纯流量卡能插随身wifi吗| av在线观看视频网站免费| 麻豆乱淫一区二区| 91国产中文字幕| 天堂俺去俺来也www色官网| 久久99精品国语久久久| 天堂俺去俺来也www色官网| 在线观看免费日韩欧美大片 | 国产极品粉嫩免费观看在线 | 亚洲激情五月婷婷啪啪| 三级国产精品片| 汤姆久久久久久久影院中文字幕| 简卡轻食公司| 男女边摸边吃奶| 51国产日韩欧美| 日韩一本色道免费dvd| 51国产日韩欧美| 久久久午夜欧美精品| 国产视频内射| 少妇被粗大猛烈的视频| 国产深夜福利视频在线观看| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品| 精品国产乱码久久久久久小说| 久久精品国产亚洲网站| 视频在线观看一区二区三区| 一边摸一边做爽爽视频免费| 日本色播在线视频| 欧美成人午夜免费资源| 亚洲精品乱久久久久久| 日韩一区二区视频免费看| 丰满乱子伦码专区| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三| 午夜福利视频精品| 久久久久久久久久人人人人人人| 亚洲国产最新在线播放| 亚洲av日韩在线播放| 亚洲欧美中文字幕日韩二区| 蜜臀久久99精品久久宅男| 妹子高潮喷水视频| 最新中文字幕久久久久| 极品少妇高潮喷水抽搐| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 成人漫画全彩无遮挡| 国产探花极品一区二区| 啦啦啦视频在线资源免费观看| 黄色配什么色好看| 午夜老司机福利剧场| 久久久久久久久久人人人人人人| 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 中文字幕精品免费在线观看视频 | 自拍欧美九色日韩亚洲蝌蚪91| av在线老鸭窝| 男女边吃奶边做爰视频| 欧美激情 高清一区二区三区| 日韩强制内射视频| 国产一区二区三区综合在线观看 | 内地一区二区视频在线| 国产成人免费观看mmmm| 亚洲丝袜综合中文字幕| 国产日韩一区二区三区精品不卡 | 免费久久久久久久精品成人欧美视频 | 国产精品久久久久久精品古装| 国产精品成人在线| av线在线观看网站| 大片电影免费在线观看免费| 中国美白少妇内射xxxbb| xxxhd国产人妻xxx| 精品国产露脸久久av麻豆| 日韩亚洲欧美综合| 久久99精品国语久久久| 成年av动漫网址| 成人国产av品久久久| 中国三级夫妇交换| 两个人免费观看高清视频| 18禁在线播放成人免费| 国产成人精品在线电影| 男人爽女人下面视频在线观看| 插逼视频在线观看| 精品卡一卡二卡四卡免费| 久久国内精品自在自线图片| 国产 一区精品| 黄色视频在线播放观看不卡| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 制服人妻中文乱码| 久热这里只有精品99| 大码成人一级视频| 极品少妇高潮喷水抽搐| 精品久久久久久电影网| 免费人成在线观看视频色| 国产日韩一区二区三区精品不卡 | 日本色播在线视频| 97在线人人人人妻| 国国产精品蜜臀av免费| 国产探花极品一区二区| 最近手机中文字幕大全| 久久久午夜欧美精品| 在线亚洲精品国产二区图片欧美 | 久久这里有精品视频免费| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 99久久精品国产国产毛片| a级毛片在线看网站| 国产一级毛片在线| 18禁裸乳无遮挡动漫免费视频| 大又大粗又爽又黄少妇毛片口| 2018国产大陆天天弄谢| 国产精品99久久久久久久久| 日韩欧美精品免费久久| 男女啪啪激烈高潮av片| 欧美亚洲日本最大视频资源| 成人国语在线视频| 日韩在线高清观看一区二区三区| 日本爱情动作片www.在线观看| 成人免费观看视频高清| 亚洲欧美中文字幕日韩二区| av免费观看日本| 久久久a久久爽久久v久久| av一本久久久久| www.av在线官网国产| 国内精品宾馆在线| 91国产中文字幕| 欧美成人午夜免费资源| 日韩av免费高清视频| 蜜桃在线观看..| 高清不卡的av网站| 欧美xxⅹ黑人| 免费看av在线观看网站| 国产精品秋霞免费鲁丝片| 久久久久久久久久久丰满| 亚洲综合色惰| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频| 观看av在线不卡| 国产成人aa在线观看| 国产女主播在线喷水免费视频网站| 欧美日韩视频高清一区二区三区二| 日韩电影二区| 日韩av免费高清视频| 青春草视频在线免费观看| 久久人人爽人人爽人人片va| 欧美97在线视频| 久久久国产一区二区| 亚洲丝袜综合中文字幕| 有码 亚洲区| 热99久久久久精品小说推荐| 男人操女人黄网站| 青青草视频在线视频观看| 伦精品一区二区三区| 91精品国产国语对白视频| 99视频精品全部免费 在线| 亚洲精品日本国产第一区| 亚洲精品视频女| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 欧美日韩av久久| av在线观看视频网站免费| 国产精品蜜桃在线观看| 最新中文字幕久久久久| 十八禁高潮呻吟视频| 爱豆传媒免费全集在线观看| 国产一区有黄有色的免费视频| 国产欧美日韩综合在线一区二区| 中文字幕制服av| 日本wwww免费看| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 丝瓜视频免费看黄片| 亚洲国产欧美在线一区| 欧美变态另类bdsm刘玥| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 一级毛片我不卡| 国产免费一级a男人的天堂| 九色亚洲精品在线播放| 久久久午夜欧美精品| 超碰97精品在线观看| 美女主播在线视频| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 另类精品久久| 街头女战士在线观看网站| 妹子高潮喷水视频| 婷婷色综合大香蕉| 国产爽快片一区二区三区| 少妇人妻 视频| 丁香六月天网| 国产成人精品婷婷| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 欧美老熟妇乱子伦牲交| 国产成人av激情在线播放 | 两个人的视频大全免费| 国产精品久久久久成人av| 亚洲精品自拍成人| 欧美3d第一页| 亚洲欧洲国产日韩| 丁香六月天网| 午夜激情久久久久久久| a级片在线免费高清观看视频| 国产视频首页在线观看| 国产精品.久久久| 婷婷色综合www| 母亲3免费完整高清在线观看 | 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 视频在线观看一区二区三区| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 久久精品夜色国产| 国产精品成人在线| 中文字幕制服av| 久久久久久久久大av| 午夜福利视频在线观看免费| 久久久国产一区二区| 久久久欧美国产精品| 日本av手机在线免费观看| 久久精品人人爽人人爽视色| 国产在视频线精品| 边亲边吃奶的免费视频| 人妻系列 视频| 久久精品国产自在天天线| 亚洲美女搞黄在线观看| 十分钟在线观看高清视频www| 少妇精品久久久久久久| 久久久国产一区二区| 熟女av电影| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 亚洲综合精品二区| 亚洲精品aⅴ在线观看| 丝袜在线中文字幕| 2018国产大陆天天弄谢| 亚洲成人av在线免费| 欧美3d第一页| 男女边吃奶边做爰视频| 在线天堂最新版资源| 18禁动态无遮挡网站| 日韩强制内射视频| 日本黄大片高清| av线在线观看网站| 色视频在线一区二区三区| a级毛片在线看网站| 国产高清三级在线| 久久97久久精品| 亚洲精品日韩在线中文字幕| 国产日韩欧美在线精品| 亚洲成人手机| 成人黄色视频免费在线看|