吳紅寧, 林超龍, 黃承浩
巨噬細(xì)胞極化中糖代謝重編程的研究進(jìn)展*
吳紅寧, 林超龍, 黃承浩△
(廈門大學(xué)國(guó)家傳染病診斷試劑與疫苗工程技術(shù)研究中心,福建 廈門 361102)
巨噬細(xì)胞;糖代謝;代謝重編程;腫瘤微環(huán)境
在細(xì)胞的生命活動(dòng)中,代謝調(diào)控貫徹著整個(gè)生命反應(yīng)的始終。隨著細(xì)胞代謝組學(xué)技術(shù)的不斷發(fā)展,對(duì)調(diào)控免疫細(xì)胞生命活動(dòng)代謝網(wǎng)絡(luò)的研究也更加深入。免疫細(xì)胞(如淋巴和髓系細(xì)胞)作為機(jī)體的重要組成部分,代謝調(diào)控是如何決定其命運(yùn)及功能是值得關(guān)注的一個(gè)問題,對(duì)此問題的探究形成了一個(gè)被稱為免疫代謝的研究領(lǐng)域[1-2]。免疫細(xì)胞中代謝途徑及功能效應(yīng)的變化不僅存在于微生物感染、自身免疫等過程中,研究表明免疫細(xì)胞代謝重編程也參與了腫瘤的進(jìn)展。因此,人為干預(yù)免疫細(xì)胞的代謝活動(dòng),恢復(fù)其正常免疫功能,將會(huì)為炎癥及惡性腫瘤的治療提供新的治療策略[3]。巨噬細(xì)胞是免疫細(xì)胞的重要組成部分,作為機(jī)體免疫的第一道防線,在防御病原體、維持機(jī)體穩(wěn)態(tài)中發(fā)揮關(guān)鍵作用。在機(jī)體發(fā)育過程中,造血祖細(xì)胞分化而來(lái)的巨噬細(xì)胞分布于全身各處,如血液中的外周巨噬細(xì)胞,腹膜巨噬細(xì)胞,肺部巨噬細(xì)胞,肝臟巨噬細(xì)胞等,巨噬細(xì)胞分布的廣泛性也反應(yīng)了其強(qiáng)大的可塑性[4]。在接收到微生物刺激或者組織損傷等危險(xiǎn)信號(hào)后,巨噬細(xì)胞迅速的重塑自身代謝過程,以時(shí)空依賴的方式激活下游關(guān)鍵基因轉(zhuǎn)錄,迅速有效的發(fā)揮其內(nèi)吞、吞噬、分泌細(xì)胞因子和調(diào)節(jié)免疫反應(yīng)等功能。
目前認(rèn)為激活的巨噬細(xì)胞有兩個(gè)表型,在不同階段發(fā)揮不同作用:(1)促炎表型,由脂多糖(lipopolysaccharide, LPS)、干擾素γ(interferon-γ, IFN-γ)、腫瘤壞死因子(tumor necrosis factor, TNF)、粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF)等通過經(jīng)典激活途徑激活的M1型巨噬細(xì)胞,產(chǎn)生白細(xì)胞介素6(interleukin-6, IL-6)、TNF、IL-1β、IFN-β、IL-12等促炎細(xì)胞因子,在炎癥反應(yīng)的早期階段,對(duì)感染和組織損傷做出快速反應(yīng);(2)抑炎表型,由IL-4、IL-13、IL-10、巨噬細(xì)胞集落刺激因子(macrophage colony-stimulating factor, M-CSF)、IgG等通過替代激活途徑激活的M2型巨噬細(xì)胞,產(chǎn)生IL-10、IL-1受體拮抗劑(IL-1 receptor antagonist, IL-1RA)、轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor-β, TGF-β)等抑炎細(xì)胞因子,在炎癥反應(yīng)的晚期階段,幫助修復(fù)因炎癥反應(yīng)而引發(fā)的組織損傷。巨噬細(xì)胞表型隨著機(jī)體應(yīng)激情況的不同而發(fā)生改變,這種促炎或抑炎表型的平衡,使得巨噬細(xì)胞在面對(duì)感染時(shí)能夠迅速的做出反應(yīng)又能夠適時(shí)的中止來(lái)維持機(jī)體穩(wěn)態(tài)(圖1)[5-7]。然而,在腫瘤發(fā)生的過程中,狡猾的腫瘤細(xì)胞通過腫瘤微環(huán)境(tumor microenvironment, TME)挾持巨噬細(xì)胞,重塑巨噬細(xì)胞代謝表型來(lái)打破這種平衡,進(jìn)而促進(jìn)自身的發(fā)展。腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages, TAMs)是TME中的一群先天性免疫細(xì)胞群體,其中包含了發(fā)揮抑瘤作用的M1型巨噬細(xì)胞和發(fā)揮促瘤作用的M2型巨噬細(xì)胞。M1表型的極化伴隨著CD80、CD86、II類主要組織相容性復(fù)合體(major histocompatibility complex class II, MHCII)和CD68等分子的上調(diào)表達(dá),可以通過吞噬腫瘤細(xì)胞和招募T細(xì)胞等方式抑制腫瘤生長(zhǎng);而M2表型極化的特征是CD206、CD204、血管內(nèi)皮生長(zhǎng)因子、CD163和精氨酸酶1(arginase 1, Arg1)等分子的上調(diào)表達(dá),能夠分泌多種細(xì)胞因子、抑制T細(xì)胞活化等促進(jìn)腫瘤進(jìn)展[8-9]。TME形成后,TAMs主要表現(xiàn)為M2型,通過自身代謝重編程來(lái)滿足免疫抑制表型。如何人為干預(yù)TAMs代謝,進(jìn)而恢復(fù)巨噬細(xì)胞免疫功能已經(jīng)成為腫瘤免疫治療的新方向[10-11]。在細(xì)胞能量代謝環(huán)節(jié)中,糖代謝處于中心地位,依賴葡萄糖的代謝占整個(gè)碳通量的90%以上。有研究表明,TME中髓系細(xì)胞比腫瘤細(xì)胞相攝取了更多的葡萄糖,在葡萄糖進(jìn)入細(xì)胞后,通過糖代謝生成ATP和各種中間代謝物,參與了巨噬細(xì)胞極化的代謝重塑[12-13]。本文對(duì)不同表型巨噬細(xì)胞中的糖代謝重編程及針對(duì)TAMs的相關(guān)免疫療法進(jìn)行了綜述,以期為腫瘤和代謝性相關(guān)疾病的防治提供參考資料。
1.1糖酵解重編程促使巨噬細(xì)胞向M1表型極化M1表型極化過程中增加葡萄糖攝取,依靠有氧糖酵解來(lái)產(chǎn)生ATP,但三羧酸(tricarboxylic acid, TCA)循環(huán)受損;相反,M2則保持完整的TCA循環(huán),極化過程中氧化磷酸化和脂肪酸氧化顯著增強(qiáng)。巨噬細(xì)胞在激活過程中采用不同的能量代謝模型,以激發(fā)隨后的免疫反應(yīng)[14]。葡萄糖是TCA循環(huán)的關(guān)鍵碳源,維持著巨噬細(xì)胞中代謝的平衡,但在不能獲得足夠的葡萄糖作為碳源的條件下,巨噬細(xì)胞能夠發(fā)揮自身的代謝靈活性,動(dòng)態(tài)調(diào)節(jié)代謝途徑來(lái)維持細(xì)胞功能[15]。在剝奪葡萄糖的條件下,LPS刺激后的促炎性單核細(xì)胞的糖酵解過程受到顯著抑制,但能夠通過谷氨酰胺途徑代償TCA循環(huán)通量,分泌IL-6、TNF、IL-1β等炎癥因子維持細(xì)胞正常功能[16]。
參與有氧糖酵解過程的代謝酶,在M1表型極化過程中能夠動(dòng)態(tài)調(diào)節(jié)其炎癥因子的產(chǎn)生。葡萄糖通過己糖激酶(hexokinase, HK)轉(zhuǎn)化為葡萄糖-6-磷酸(glucose-6-phosphate, G6P)進(jìn)入糖酵解產(chǎn)生能量,G6P也可通過磷酸戊糖途徑產(chǎn)生合成代謝所需的中間體。在炎癥因子刺激下,細(xì)胞內(nèi)HK1的mRNA水平上調(diào),HK1參與的糖酵解又促進(jìn)了細(xì)胞炎癥小體的激活[17-18]。HK1蛋白的N末端含有線粒體結(jié)合結(jié)構(gòu)域(mitochondrial binding domain, MBD),通過MBD結(jié)合于線粒體的HK1催化G6P通過糖酵解進(jìn)行代謝。當(dāng)HK1與從線粒體解離后使得G6P向磷酸戊糖途徑代謝轉(zhuǎn)移,導(dǎo)致誘導(dǎo)型一氧化氮合酶(inducible nitric oxide synthase, iNOS)依賴性的甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)的失活,促進(jìn)了IL-6、IL-1β等炎癥因子的產(chǎn)生;同時(shí)發(fā)現(xiàn)在LPS刺激下,缺乏HK1 MBD序列的小鼠產(chǎn)生了炎癥因子風(fēng)暴[19]。KLFs是一類轉(zhuǎn)錄因子,能夠參與細(xì)胞增殖、分化和凋亡等生物學(xué)過程,KLF14能夠抑制HK2的轉(zhuǎn)錄,抑制炎癥細(xì)胞因子的分泌[20]。糖酵解過程中另一個(gè)關(guān)鍵的限速酶是磷酸果糖激酶1(phosphofructokinase 1, PFK1),其活性受到PFK2的調(diào)控,有研究表明Zhx2 (zinc fingers and homeoboxes 2)通過與啟動(dòng)子結(jié)合,上調(diào)PFK2的轉(zhuǎn)錄來(lái)增強(qiáng)糖酵解代謝,缺失使得M1型巨噬細(xì)胞分泌的炎癥因子IL-6和IL-1β顯著減少[21]。丙酮酸激酶催化丙酮酸生成,是糖酵解過程中的第三個(gè)限速酶。丙酮酸激酶同工酶M2(pyruvate kinase M2, PKM2)參與的糖酵解不僅誘導(dǎo)pro-IL-1β的表達(dá),而且能夠促進(jìn)炎癥小體對(duì)IL-1β的激活[22]。丙酮酸在丙酮酸脫氫酶復(fù)合體(pyruvate dehydrogenase complex, PDC)催化下轉(zhuǎn)化為乙酰輔酶A供應(yīng)TCA循環(huán),是聯(lián)系糖酵解和氧化磷酸化之間的關(guān)鍵酶,其活性受丙酮酸脫氫酶激酶所調(diào)控。二氯乙酸是丙酮酸脫氫酶激酶的抑制劑,能夠激活M1型巨噬細(xì)胞中的PDC,誘導(dǎo)M1型巨噬細(xì)胞中的糖酵解向氧化磷酸化轉(zhuǎn)變[23]。乙酰輔酶A進(jìn)入TCA循環(huán)后,會(huì)生成檸檬酸供應(yīng)于TCA循環(huán),也能夠經(jīng)由檸檬酸穿梭途徑輸出線粒體,在ATP-檸檬酸裂解酶作用下重新生成乙酰輔酶A,繼而轉(zhuǎn)化為丙二酰輔酶A。丙二酰輔酶A可以使M1型巨噬細(xì)胞中的GAPDH發(fā)生丙二?;?,增強(qiáng)其糖酵解活性及IL-1β和IL-6炎癥因子的產(chǎn)生(圖2)[24]。
Figure 2. Reprogramming of glucose metabolism during M1 polarization.
1.2糖酵解重編程調(diào)控了M2型巨噬細(xì)胞的極化過程糖酵解不僅是M1型巨噬細(xì)胞的代謝樞紐,它對(duì)IL-4誘導(dǎo)的M2表型極化也至關(guān)重要[25]。2-脫氧葡萄糖(2-deoxyglucose, 2-DG)抑制巨噬細(xì)胞的糖酵解過程,使用2-DG處理巨噬細(xì)胞可以降低M2表型基因、、和的表達(dá),表明糖酵解途徑參與了M2表型的極化過程[26-27]。但2-DG對(duì)于糖酵解的抑制會(huì)產(chǎn)生脫靶效應(yīng),機(jī)制研究表明2-DG能夠抑制JAK-STAT6信號(hào)通路的激活,破壞糖酵解、氧化磷酸化代謝過程,同時(shí)也抑制了谷氨酰胺代謝對(duì)于氧化磷酸化的補(bǔ)充。但通過剝奪葡萄糖或用半乳糖作為碳源來(lái)抑制糖酵解,細(xì)胞內(nèi)谷氨酰胺補(bǔ)償代謝不會(huì)受到影響,氧化磷酸化仍然保持完整,IL-4誘導(dǎo)的M2表型極化正常進(jìn)行。這表明細(xì)胞內(nèi)氧化磷酸化如果處于活躍的狀態(tài),M2表型極化就不依賴糖酵解的參與[28]。因此,關(guān)于糖酵解在M2表型極化過程中的作用,還存在諸多未知,仍需深入探究。
2.1M1表型極化過程中TCA循環(huán)阻滯巨噬細(xì)胞激活過程中涉及到能量代謝的復(fù)雜重編程,TCA循環(huán)作為能量代謝過程的核心指導(dǎo)細(xì)胞內(nèi)代謝調(diào)節(jié)并啟動(dòng)相關(guān)下游信號(hào)[29]。在M1表型極化期間,TCA循環(huán)中兩個(gè)代謝斷點(diǎn)的出現(xiàn)導(dǎo)致其氧化代謝受到抑制。
第一個(gè)斷點(diǎn)發(fā)生在異檸檬酸脫氫酶(isocitrate dehydrogenase, IDH)的催化過程中,IDH活性的抑制導(dǎo)致了檸檬酸及下游代謝物(如烏頭酸)的大量積累,是M1表型極化中的主要代謝標(biāo)志[29-30]。檸檬酸經(jīng)由檸檬酸載體(citrate carrier, CIC)運(yùn)輸?shù)郊?xì)胞質(zhì),代謝產(chǎn)生的NADPH導(dǎo)致NADPH氧化酶和iNOS產(chǎn)生活性氧(reactive oxygen species, ROS)和一氧化氮(nitric oxide, NO),NO水平的上升抑制IDH活性,進(jìn)一步促進(jìn)檸檬酸及下游烏頭酸的積累[1]。烏頭酸脫羧酶1(aconitate decarboxylase 1, ACOD1)催化烏頭酸生成抗炎代謝物衣康酸(itaconic acid, ITA)。在LPS刺激的巨噬細(xì)胞中,ACOD1迅速被誘導(dǎo)表達(dá),催化烏頭酸脫羧來(lái)產(chǎn)生高濃度的ITA。同時(shí),ITA既可以由巨噬細(xì)胞通過正向氧化型TCA循環(huán)提供,也可通過反向TCA循環(huán)經(jīng)由IDH還原α-酮戊二酸(α-ketoglutaric acid, α-KG)生成檸檬酸來(lái)提供[31]。ITA能抑制琥珀酸脫氫酶(succinate dehydrogenase, SDH)活性,抑制SDH介導(dǎo)的反向電子傳遞,從而降低線粒體ROS的產(chǎn)生,也可以激活核因子E2相關(guān)因子2(nuclear factor E2-related factor 2, NRF2)和轉(zhuǎn)錄激活因子3的轉(zhuǎn)錄來(lái)抑制炎癥基因的表達(dá),發(fā)揮其抗炎作用[15, 32-34]。ITA也通過與α-KG競(jìng)爭(zhēng)結(jié)合Tet甲基胞嘧啶雙加氧酶2(Tet methylcytosine dioxygenase 2, TET2)的方式,抑制TET2的活性來(lái)調(diào)控炎癥基因的表達(dá),其中72.5%的炎癥基因被ITA-TET2軸調(diào)控,證明TET2是ITA抗炎的重要功能靶標(biāo)。ITA在巨噬細(xì)胞中存在兩種異構(gòu)體:中康酸和檸康酸,它們同樣能夠調(diào)節(jié)細(xì)胞內(nèi)炎癥基因的表達(dá),檸康酸是第一種天然的ACOD1抑制劑,可減少ITA的產(chǎn)生[35]。ITA也可抑制果糖二磷酸醛縮酶A、乳酸脫氫酶(lactate dehydrogenase, LDH)和PKM2的活性來(lái)抑制糖酵解,抑制巨噬細(xì)胞的炎癥反應(yīng)[36-37]。4-辛基衣康酸鹽會(huì)抑制GAPDH活性,也能夠激活NRF2來(lái)發(fā)揮其抗炎效應(yīng)[38-41]。雖然ITA可以抑制炎癥反應(yīng),但它的產(chǎn)生是以TCA循環(huán)的“燃料泄漏”為代價(jià)的,在M1型巨噬細(xì)胞中,抑制CIC可以阻斷檸檬酸的線粒體輸出,促進(jìn)TCA循環(huán)中的代謝通量,減少線粒體檸檬酸和琥珀酸的積累,在保持TCA循環(huán)完整的條件下抑制巨噬細(xì)胞向炎癥表型極化[42-43]。
第二個(gè)斷點(diǎn)發(fā)生在SDH催化延胡索酸生成階段。琥珀酸通過SDH氧化代謝使得二氫泛醌大量合成,繼而導(dǎo)致線粒體膜電位升高,促使線粒體內(nèi)復(fù)合物I進(jìn)行反向電子運(yùn)輸,驅(qū)動(dòng)ROS、缺氧誘導(dǎo)因子1α(hypoxia-inducible factor-1α, HIF-1α)和IL-1β的生成,同時(shí)抑制IL-1RA及IL-10產(chǎn)生。SDH活性的抑制增加了M1型巨噬細(xì)胞內(nèi)琥珀酸、HIF-1α和IL-1β的水平,而外源給予糖皮質(zhì)激素來(lái)促進(jìn)琥珀酸消耗,使得M1向M2表型極化,證實(shí)了琥珀酸對(duì)于M1表型極化的重要性[15, 39, 44-46]。M1表型極化過程中,精氨琥珀酸代謝會(huì)得到增強(qiáng),促進(jìn)精氨酸、延胡索酸和蘋果酸的生成。精氨酸代謝產(chǎn)物NO的生成會(huì)抑制SDH活性,這可能是M1型巨噬細(xì)胞琥珀酸氧化代謝受損的原因[34, 47-48]。ITA也能夠抑制SDH參與的反向電子傳遞,降低線粒體ROS的產(chǎn)生來(lái)發(fā)揮多種抗炎作用,是M1表型極化中琥珀酸氧化代謝受損的另一原因[26, 32]。在M1表型極化過程中,HIF-1α被認(rèn)為是關(guān)鍵的調(diào)控因子,因代謝中斷所積累的琥珀酸及因谷氨酰胺代謝增強(qiáng)所積累的草酰乙酸均能夠穩(wěn)定HIF-1α蛋白水平,增強(qiáng)IL-1β的分泌[45, 49];HIF-1α也能夠與PKM2相互作用,來(lái)增強(qiáng)糖酵解酶以及炎癥因子的轉(zhuǎn)錄[50]。延胡索酸在M1表型極化過程中也會(huì)增加。Hooftman等[51]利用延胡索酸水合酶(fumarate hydratase, FH)抑制劑FH-IN-1和基因敲除小鼠模型來(lái)評(píng)價(jià)FH活性對(duì)M1表型極化的影響,結(jié)果表明LPS刺激下的巨噬細(xì)胞在FH活性受到抑制后,胞內(nèi)ERK1/2級(jí)聯(lián)和PI3K信號(hào)途徑被下調(diào)進(jìn)而減少了IL-10的產(chǎn)生;FH活性的抑制也增加了線粒體RNA驅(qū)動(dòng)的炎癥因子IFN-β的產(chǎn)生。同時(shí),延胡索酸也可以修飾GAPDH和LDH影響其活性來(lái)調(diào)節(jié)巨噬細(xì)胞的糖酵解反應(yīng)(圖2)[37]。代謝物之間的調(diào)控是雙向的,可以形成復(fù)雜的調(diào)控循環(huán)。在炎癥反應(yīng)的早期階段,SDH活性抑制使得琥珀酸和ITA水平升高,導(dǎo)致HIF-1α水平上調(diào);在炎癥反應(yīng)的晚期階段,HIF-1α水平的上升促進(jìn)了丙酮酸脫氫酶激酶的轉(zhuǎn)錄,這使丙酮酸脫氫酶活性受到抑制致使琥珀酸和ITA表達(dá)下降,HIF-1α水平恢復(fù)正常[1, 52-53]。這表明在巨噬細(xì)胞行使功能的過程中,代謝產(chǎn)物之間的動(dòng)態(tài)平衡使得細(xì)胞更好的發(fā)揮其生理功能。
2.2M2表型極化過程中TCA循環(huán)的重編程M2表型極化過程中保持完整的TCA循環(huán),細(xì)胞內(nèi)氧化磷酸化代謝水平顯著增強(qiáng)[14]。M2表型極化過程中氧化代謝的增強(qiáng)主要是由谷氨酰胺代謝輸入TCA循環(huán)導(dǎo)致的,其TCA循環(huán)代謝物中三分之一的碳來(lái)源于谷氨酰胺,缺乏谷氨酰胺會(huì)使TCA循環(huán)受到抑制[34]。谷氨酰胺代謝產(chǎn)生的α-KG能夠維持M2表型基因等的表達(dá),促進(jìn)M2表型巨噬細(xì)胞的激活[54]。α-KG也可以促進(jìn)M2表型極化過程中脂肪酸氧化的水平,通過提供表觀遺傳重編程所需要的的乙酰輔酶A來(lái)增強(qiáng)M2表型基因的表達(dá)。(圖3)[14, 55]。然而,目前對(duì)于脂肪酸氧化在M2極化中的作用還有待進(jìn)一步的探究。肉堿棕櫚酰轉(zhuǎn)移酶2(carnitine palmitoyl transferase 2, Cpt2)可調(diào)控脂肪酸轉(zhuǎn)運(yùn)到線粒體基質(zhì),在缺陷的巨噬細(xì)胞中IL-4依然能夠誘導(dǎo)M2極化,表明M2極化不需要脂肪酸氧化的參與,或者存在其他碳底物(如谷氨酰胺)的補(bǔ)償代謝。因此,需要更多的證據(jù)來(lái)闡明脂肪酸氧化對(duì)M2極化的貢獻(xiàn)[56]。M1極化產(chǎn)生的抗炎代謝物ITA也調(diào)控了M2的極化過程,ITA可以通過降低氧化磷酸化水平來(lái)抑制M2極化。同時(shí),M2極化過程中分泌的IL-10可抑制M1的葡萄糖攝取和糖酵解,并提高其氧化磷酸化代謝水平[57-58]。這些結(jié)果表明在M1/M2極化過程中存在代謝物之間的相互調(diào)節(jié),共同調(diào)控巨噬細(xì)胞極化來(lái)維持機(jī)體的穩(wěn)態(tài)。
Figure3. Reprogramming of glucose metabolism during M2 polarization.
TAMs幾乎存在于所有腫瘤中,是TME的重要組成部分。TAMs包括抗腫瘤M1型和促腫瘤M2型巨噬細(xì)胞。TME中的信號(hào)分子調(diào)節(jié)TAMs,使其在M1型或M2型巨噬細(xì)胞之間進(jìn)行極化轉(zhuǎn)變,但研究表明大部分TAMs具有M2型的表型。M1型TAMs通過分泌炎癥細(xì)胞因子,促進(jìn)腫瘤細(xì)胞壞死和TME中免疫細(xì)胞浸潤(rùn)來(lái)抑制腫瘤進(jìn)展。而M2型TAMs表現(xiàn)出強(qiáng)大的促瘤功能,通過降解腫瘤細(xì)胞外基質(zhì)、破壞基底膜、促進(jìn)血管生成、募集免疫抑制細(xì)胞等促進(jìn)腫瘤進(jìn)展。通過干預(yù)糖代謝重編程逆轉(zhuǎn)TAMs表型來(lái)重塑腫瘤微環(huán)境是腫瘤免疫治療的新方向,因此了解TAMs的糖代謝偏好對(duì)理解其參與的免疫逃逸機(jī)制至關(guān)重要[11, 59-60]。
為了探究TAMs亞群的糖代謝特征,Geeraerts等[61]利用轉(zhuǎn)錄組學(xué)和代謝組學(xué)技術(shù)觀察不同TAMs亞群的代謝特點(diǎn),結(jié)果表明促炎型MHCIIhighTAMs的TCA循環(huán)受阻,而抑炎型MHCIIlowTAMs的氧化磷酸化顯著增強(qiáng),這與M1/M2巨噬細(xì)胞的表型如出一轍,但不同的是MHCIIlowTAMs高表達(dá)葡萄糖轉(zhuǎn)運(yùn)體1,表現(xiàn)出較高的糖酵解速率,是TME中葡萄糖攝取能力最強(qiáng)的免疫細(xì)胞亞群[61-62]。因此人為干預(yù)促瘤性M2型巨噬細(xì)胞的糖代謝過程,使其擺脫TME的“挾持”向M1型巨噬細(xì)胞極化,是一種重要的腫瘤免疫療法。Gu等[10]顯示鐵基金屬有機(jī)框架納米顆粒和鐵死亡誘導(dǎo)劑能夠協(xié)同重編程TAM糖代謝過程,使得巨噬細(xì)胞中線粒體氧化磷酸化向糖酵解轉(zhuǎn)變,驅(qū)動(dòng)多種炎癥信號(hào)通路,顯著增強(qiáng)其腫瘤殺傷活性。CpG-DNA是一種免疫刺激性DNA序列,聯(lián)合IL-10受體抗體可促進(jìn)M1極化。Han等[59]構(gòu)建了一種搭載CpG的新型納米配合物,M2型巨噬細(xì)胞攝取這些配合物后釋放的CpG將M2型巨噬細(xì)胞轉(zhuǎn)化為M1型巨噬細(xì)胞,并進(jìn)一步分泌炎癥細(xì)胞因子,活化后的M1型巨噬細(xì)胞繼而向T細(xì)胞呈遞抗原,進(jìn)一步刺激抗腫瘤免疫反應(yīng)[59, 63]。腫瘤細(xì)胞快速增殖的過程中會(huì)利用Warburg代謝產(chǎn)生能量,同時(shí)產(chǎn)生過量的乳酸,乳酸支持M2極化過程中的代謝重編程并誘導(dǎo)M2相關(guān)基因表達(dá)[61, 64]。腫瘤來(lái)源的外泌體可通過以糖酵解為主的代謝重編程增加巨噬細(xì)胞內(nèi)乳酸的水平,乳酸又反饋于NF-κB通路增加細(xì)胞表面程序性細(xì)胞死亡配體1表達(dá)水平,使其向免疫抑制表型分化[65]。針對(duì)腫瘤進(jìn)展中乳酸的大量積累,Ling[64]等利用模擬LDH的SnSe(硒化錫)納米載體,負(fù)載碳酸酐酶IX抑制劑來(lái)重塑TME,激活M1型巨噬細(xì)胞來(lái)恢復(fù)巨噬細(xì)胞腫瘤殺傷活性。這些研究表明在腫瘤免疫治療過程中,針對(duì)TAMs代謝重塑這一免疫療法的可行性,在此基礎(chǔ)上開發(fā)的靶向TAMs治療藥物將為癌癥患者的臨床治療提供更多選擇。
巨噬細(xì)胞極化過程中伴隨著糖代謝重編程,代謝產(chǎn)物的偏好積累反過來(lái)調(diào)控其極化的進(jìn)程。巨噬細(xì)胞依靠?jī)蓚€(gè)相互關(guān)聯(lián)的糖代謝程序產(chǎn)生能量以實(shí)現(xiàn)細(xì)胞功能:胞質(zhì)糖酵解和線粒體氧化磷酸化,M1或M2型巨噬細(xì)胞在激活過程中偏向性的利用這兩種代謝程序,以激發(fā)隨后的免疫反應(yīng)。經(jīng)典的巨噬細(xì)胞極化模型認(rèn)為,激活后的巨噬細(xì)胞分為明確的兩種類型,且采用不同的能量代謝過程。即M1型巨噬細(xì)胞依賴糖酵解代謝,而M2型巨噬細(xì)胞依賴線粒體代謝[30]。在機(jī)體遭受疾病威脅時(shí),巨噬細(xì)胞通過糖代謝重編程極化成為不同類型的細(xì)胞,在疾病反應(yīng)的不同階段發(fā)揮其特有的效應(yīng)功能,迅速清除威脅又及時(shí)“止損”來(lái)維持機(jī)體的穩(wěn)態(tài)。然而在癌癥發(fā)展的過程中,腫瘤細(xì)胞通過快速增殖建立了高度免疫抑制性的TME,誘導(dǎo)TAMs向M2巨噬細(xì)胞極化,促進(jìn)腫瘤向惡性發(fā)展[9, 11]。針對(duì)TAMs免疫抑制性特征,目前也已經(jīng)開發(fā)了一些靶向TAMs代謝重編程的治療方法,包括促使M2向M1轉(zhuǎn)變或者激活TME中的M1巨噬細(xì)胞功能等,使得免疫抑制性巨噬細(xì)胞重新發(fā)揮其免疫效應(yīng)。隨著對(duì)巨噬細(xì)胞糖代謝重編程研究的不斷深入,越來(lái)越多靶向巨噬細(xì)胞糖代謝的診斷和治療方法將會(huì)應(yīng)用到腫瘤患者的臨床治療當(dāng)中去。
根據(jù)腫瘤背景和進(jìn)展階段的不同,可塑性的巨噬細(xì)胞能夠同時(shí)表現(xiàn)出抗腫瘤和促腫瘤特性[53]。IL-33激活的巨噬細(xì)胞表現(xiàn)出一種不同于IL-4或LPS處理后的極化特征,IL-33/IL-1RL1軸特異性誘導(dǎo)了促炎和抗炎基因的同時(shí)表達(dá),表明機(jī)體可能存在IL-33誘導(dǎo)的分子開關(guān),在某些疾病條件下(如腫瘤、感染等),以時(shí)空依賴的方式觸發(fā)M1與M2表型的相互轉(zhuǎn)變[50],反映出機(jī)體內(nèi)代謝調(diào)節(jié)的動(dòng)態(tài)變化和復(fù)雜的信號(hào)聯(lián)通網(wǎng)絡(luò)。同時(shí),對(duì)于機(jī)體整體代謝是如何平衡細(xì)胞個(gè)體代謝并最終導(dǎo)致細(xì)胞內(nèi)代謝途徑的重編程,也是值得我們探究的一個(gè)問題。因此,需要更多工作來(lái)探究干預(yù)巨噬細(xì)胞代謝途徑作為免疫療法的前景??傮w而言,隨著轉(zhuǎn)錄組學(xué)和代謝組學(xué)等實(shí)驗(yàn)技術(shù)的不斷發(fā)展,巨噬細(xì)胞能量代謝的復(fù)雜機(jī)制將逐步的被研究人員所發(fā)現(xiàn),以期為巨噬細(xì)胞依賴性免疫代謝相關(guān)疾病提供新的治療手段。
[1] Muri J, Kopf M. Redox regulation of immunometabolism [J]. Nat Rev Immunol, 2021, 21(6):363-381.
[2]王艷麗,劉春花,潘潔,等. 基于細(xì)胞代謝組學(xué)的藥物研究方法及應(yīng)用[J]. 中國(guó)病理生理雜志, 2022, 38(12):2258-2267.
Wang YL, Liu CH, Pan J, et al. Methods and application of cell metabolomics in drug research[J]. Chin J Pathophysiol, 2022, 38(12):2258-2267.
[3] Sun L, Kees T, Almeida AS, et al. Activating a collaborative innate-adaptive immune response to control metastasis[J]. Cancer Cell, 2021, 39(10):1361-1374.e9.
[4] Gordon S, Plüddemann A, Estrada FM. Macrophage heterogeneity in tissues: phenotypic diversity and functions[J]. Immunol Rev, 2014, 262(1):36-55.
[5] Wang J, Bai J, Wang Y, et al. Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization[J]. Int J Biol Macromol, 2022, 194:993-1001.
[6] Kolliniati O, Leronymaki E, Vergadi E, et al. Metabolic regulation of macrophage activation[J]. J Innate Immun, 2022, 14(1):51-68.
[7]辛嘉萁,許小凡,段麗芳,等. 小鼠骨髓源性巨噬細(xì)胞極化的體外誘導(dǎo)方法探究[J]. 中國(guó)病理生理雜志, 2022, 38(2):375-384.
Xin JQ, Xu XF, Duan LF, et al. Methods ofinduction of polarization from mouse bone marrow-derived macrophages[J]. Chin J Pathophysiol, 2022, 38(2):375-384.
[8] Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8):1148-1156.
[9] Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis[J]. Cell, 2010, 141(1):39-51.
[10] Gu Z, Liu T, Liu C, et al. Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities[J]. Nano Lett, 2021, 21(15):6471-6479.
[11] Wang S, Liu G, Li Y, et al. Metabolic reprogramming induces macrophage polarization in the tumor microenvironment[J]. Front Immunol, 2022, 13:840029.
[12] Reinfeld BI, Madden MZ, Wolf MM, et al. Cell-programmed nutrient partitioning in the tumour microenvironment[J]. Nature,2021, 593(7858):282-288.
[13] Chen XW, Ding GJ, Xu L, et al. A glimpse at the metabolic research in China [J]. Cell Metab, 2021, 33(11):2122-2125.
[14] Liu PS, Wang HP, Li XY, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming[J]. Nat Immunol, 2017, 18(9):985-994.
[15] Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages[J]. Cell, 2016, 167(2):457-470.e13.
[16] Jones N, Blagih J, Zani F, et al. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation[J]. Nat Commun, 2021, 12(1):1209.
[17] Nishizawa T, Kanter JE, Kramer F, et al. Testing the role of myeloid cell glucose flux in inflammation and atherosclerosis[J]. Cell Rep, 2014, 7(2):356-365.
[18] Moon JS, Hisata S, Park MA, et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation[J]. Cell Rep, 2015, 12(1):102-115.
[19] Jesus AD, Keyhani-nejad F, Pusec CM, et al. Hexokinase 1 cellular localization regulates the metabolic fate of glucose[J]. Mol Cell, 2022, 82(7):1261-1277.
[20] Yuan Y, Fan GJ, Liu YQ, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J]. Cell Mol Immunol, 2022, 19(5):504-515.
[21] Wang Z, Kong L, Tan S, et al. Zhx2 accelerates sepsis by promoting macrophage glycolysis via Pfkfb3[J]. J Immunol, 2021, 206(12):3083-3084.
[22] Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation[J]. Nat Commun, 2016, 7:13280.
[23] van Doorn CLR, Schouten GK, Veen SV, et al. Pyruvate dehydrogenase kinase inhibitor dichloroacetate improves host control ofSerovar Typhimurium infection in human macrophages[J]. Front Immunol, 2021, 12:739938.
[24] Diskin C, Ryan TAJ, O'Neill LAJ. Modification of proteins by metabolites in immunity[J]. Immunity, 2021, 54(1):19-31.
[25] van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)?[J]. Trends Immunol, 2017, 38(6):395-406.
[26] Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages[J]. Cell Rep, 2016, 17(3):684-696.
[27] Covarrubias AJ, Aksoylar HI, Yu JJ, et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation[J]. Elife, 2016, 5:11612.
[28] Wang F, Zhang S, Vuckovic I, et al. Glycolytic stimulation is not a requirement for M2 macrophage differentiation[J]. Cell Metab, 2018, 28(3):463-475.e4.
[29] Ryan DG, O'Neill LAJ. Krebs cycle reborn in macrophage immunometabolism[J]. Annu Rev Immunol, 2020, 38:289-313.
[30] Olson GS, Murray TA, Jahn AN, et al. Type I interferon decreases macrophage energy metabolism during mycobacterial infection[J]. Cell Rep, 2021, 35(9):109195.
[31] Heinz A, Nonnenmacher Y, Henne A, et al. Itaconate controls its own synthesis via feedback-inhibition of reverse TCA cycle activity at IDH2[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(12):166530.
[32] Murphy MP, O'Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers[J]. Cell, 2018, 174(4):780-784.
[33] Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal[J]. Eur J Immunol, 2016, 46(1):13-21.
[34] Jha AK, Huang SCC, Sergushichev A, et al. Network integration of parallel metabolic and tanscriptional data reveals metabolic modules that regulate macrophage polarization[J]. Immunity, 2015, 42(3):419-430.
[35] Chen F, Elgaher WAM, Winterhoff M, et al. Citraconate inhibits ACOD1 (IRG1) catalysis, reduces interferon responses and oxidative stress, and modulates inflammation and cell metabolism[J]. Nat Metab, 2022, 4(5):534-546.
[36] Qin W, Qin K, Zhang YL, et al.-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate[J]. Nat Chem Biol, 2019, 15(10):983-991.
[37] Peace CG, O'Neill LAJ. The role of itaconate in host defense and inflammation[J]. J Clin Invest, 2022, 132(2):e148548.
[38] Liao ST, Han C, Xu DQ, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects[J]. Nat Commun, 2019, 10(1):5091.
[39] Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation[J]. Cell Mol Life Sci, 2018, 75(12):2093-2109.
[40] Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1[J]. Nature, 2018, 556(7699):113-117.
[41] He RY, Liu BH, Xiong R, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury[J]. Cell Death Discov, 2022, 8(1):43.
[42] Lauterbach MA, Hanke JE, Serefidou M, et al. Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase[J]. Immunity, 2019, 51(6):997-1011.e7.
[43] Li Y, Li YC, Liu XT, et al. Blockage of citrate export prevents TCA cycle fragmentation via Irg1 inactivation[J]. Cell Rep, 2022, 38(7):110391.
[44] Stifel U, Wolfschmitt EM, Vogt J, et al. Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle[J]. Mol Metab, 2022, 57:101424.
[45] Roca FJ, Whitworth LJ, Prag HA, et al. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport[J]. Science, 2022, 376(6600):eabh2841.
[46] Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444):238-242.
[47] Mao YX, Shi D, Li G, et al. Citrulline depletion by ASS1 is required for proinflammatory macrophage activation and immune responses[J]. Mol Cell, 2022, 82(3):527-541.
[48] Jiang QK, Shi LB. Coordination of the uptake and metabolism of amino acids in mycobacterium tuberculosis-infected macrophages[J]. Front Immunol, 2021, 12:711462.
[49] Di Gioia M, Spreafico R, Springstead JR, et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation[J]. Nat Immunol, 2020, 21(1):42-53.
[50] Palsson-Mcdermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21(1):65-80.
[51] Hooftman A, Peace CG, Ryan DG, et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production[J]. Nature, 2023, 615(7952):490-498.
[52] SeimGL, FanJ. A matter of time: temporal structure and functional relevance of macrophage metabolic rewiring[J]. Trends Endocrinol Metab, 2022, 33(5):345-358.
[53] Sica A, Mantovani A. Macrophage plasticity and polarization:veritas[J]. J Clin Invest, 2012, 122(3):787-795.
[54] Raines LN, Zhao HX, Wang YZ, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages[J]. Nat Immunol, 2022, 23(3):431-445.
[55] Noe JT, Rendon BE, Geller AE, et al. Lactate supports a metabolic-epigenetic link in macrophage polarization[J]. Sci Adv, 2021, 7(46):eabi8602.
[56] Yan JW, Horng T. Lipid metabolism in regulation of macrophage functions[J]. Trends Cell Biol, 2020, 30(12):979-989.
[57] Ip W KE, Hoshi N, Shouval DS, et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356(6337):513-519.
[58] Runtsch MC, Angiari S, Hooftman A, et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages[J]. Cell Metab, 2022, 34(3):487-501.
[59] Han SL, Wang WJ, Wang SF, et al. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes[J]. Theranostics, 2021, 11(6):2892-2916.
[60] Li H, Somiya M, Kuroda S. Enhancing antibody-dependent cellular phagocytosis by re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes[J]. Biomaterials, 2021, 268:120601.
[61] Geeraerts X, Fernandez-Garcia J, Hartmann FJ, et al. Macrophages are metabolically heterogeneous within the tumor microenvironment[J]. Cell Rep, 2021, 37(13):110171.
[62] Shi Q, Shen Q, Liu Y, et al. Increased glucose metabolism in TAMs fuels-GlcNAcylation of lysosomal cathepsin B to promote cancer metastasis and chemoresistance [J]. Cancer Cell, 2022, 40(10):1207-1222.e10.
[63] Yuan RF, Li SF, Geng H, et al. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis[J]. Int Immunopharmacol, 2017, 49:30-37.
[64] Ling JB, Chang YZ, Yuan ZW, et al. Designing lactate dehydrogenase-mimicking SnSe nanosheets to reprogram tumor-associated macrophages for potentiation of photothermal immunotherapy[J]. ACS Appl Mater Interfaces, 2022, 14(24):27651-27665.
[65] Morrissey SM, Zhang F, Ding CL, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming[J]. Cell Metab, 2021, 33(10):2040-2058.
Research progress of glucose metabolism reprogramming in macrophage polarization
WU Hongning, LIN Chaolong, HUANG Chenghao△
(,,361102,)
Macrophages play a crucial role in the immune system, and glucose metabolism reprogramming is involved in the whole process of macrophage polarization. This reprogramming is governed by a complex interplay between enzymes and metabolites, which determines the functional fate of the macrophages upon activation. There are two types of activated macrophages: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. M1 macrophages rely on cytoplasmic glycolysis while M2 macrophages utilize mitochondrial metabolism to maintain cell function. Nevertheless, the highly immunosuppressive tumor microenvironment (TME) reprograms the glucose metabolism process of tumor-associated macrophages (TAMs) and drives TAMs towards an anti-inflammatory phenotype (M2) to promote tumor malignancy. Thus, intervention of glucose metabolism reprogramming of macrophages to reverse the phenotype of TAMs and remodel the TME is a promising approach for tumor treatment. This review presents a systematic overview of the glucose metabolism process of different macrophage phenotypes and a summary of prospective immunotherapies to reverse the immunosuppressive phenotype of TAMs, aiming to provide new insights into inflammatory metabolic diseases and tumor-related immunometabolism diseases.
macrophage; glucose metabolism; metabolic reprogramming; tumor microenvironment
R730.2; R363
A
10.3969/j.issn.1000-4718.2023.09.014
1000-4718(2023)09-1650-08
2022-12-15
2023-04-04
國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 32100732)
Tel: 0592-2880659; E-mail: huangchenghao@xmu.edu.cn
(責(zé)任編輯:李淑媛,羅森)