史玉敏 嚴(yán)恒 王俊 陳洪國(guó)
摘要:抗生素是治療細(xì)菌感染的主要手段。然而,由于長(zhǎng)時(shí)間對(duì)其不恰當(dāng)使用甚至濫用,耐藥菌不斷涌現(xiàn),導(dǎo)致傳統(tǒng)抗生素的療效不斷下降。目前,治療耐藥菌感染的療法屈指可數(shù)。因此,耐藥菌已嚴(yán)重威脅人類(lèi)生命健康,開(kāi)發(fā)新型抗耐藥菌藥物勢(shì)在必行。喹諾酮尤其是氟喹諾酮類(lèi)抗生素是僅次于頭孢菌素類(lèi)藥物的第二大類(lèi)抗生素,具有抗菌譜廣、抗菌活性高和毒副作用低等特點(diǎn),在臨床上廣泛用于各種細(xì)菌感染的治療。盡管致病菌對(duì)喹諾酮類(lèi)抗生素也產(chǎn)生了耐藥性,喹諾酮雜合體由于嵌入了其他抗菌藥效團(tuán),可同時(shí)作用于不同的藥物靶點(diǎn),具有克服耐藥性的潛力。本文將著重介紹近5年來(lái)所開(kāi)發(fā)的具有抗耐藥菌活性的喹諾酮雜合體的最新研究進(jìn)展,為進(jìn)一步合理設(shè)計(jì)此類(lèi)雜合體提供一定的理論支持。
關(guān)鍵詞:氟喹諾酮;雜合體;抗菌;耐藥菌;構(gòu)-效關(guān)系
中圖分類(lèi)號(hào):R978.1文獻(xiàn)標(biāo)志碼:A
The anti-drug-resistant bacteria activity of fluoroquinolone hybrids
Shi Yumin1,2, Yan Heng3, Wang Jun1,2, and Chen Hongguo1,2,*
(1 School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, National Forestry and? Grassland Administration Engineering Research Center for Osmanthus fragrans, Xianning 437100; 2 Hubei Engineering
Research Center for Fragrant Plants, Hubei University of Science and Technology, Xianning 437100;
3 Hubei Provincial Institute for Food Supervision and Test, Wuhan 430075)
Abstract Antibiotics are the mainstay for the treatment of bacterial infections. The rapid development of drug-resistant bacteria due to the improper and overuse of antibiotics has been severely affected clinical effectiveness of current available conventional antibiotics. Due to the limitation of effective drugs, drug-resistant bacteria have already become one of the daunting global challenges, calling for novel antibiotics with anti-drug-resistant bacterial potential. Fluoroquinolones possess broad antibacterial spectrum, high activity, and low side effects. Accordingly, fluoroquinolone antibiotics are widely used in clinical treatment of various bacterial infections. Although pathogens have also developed resistance to fluoroquinolone antibiotics, fluoroquinolone hybrids embedding other antibacterial pharmacophores can act on different drug targets at the same time and have the potential to overcome drug resistance. This manuscript discusses the anti-drug-resistant bacteria activity of fluoroquinolone hybrids and summarizes the structure-activity relationship.
Key words Fluoroquinolone; Hybrid; Antibacterial; Drug-resistant bacteria; Structure-activity relationship
抗生素按照化學(xué)結(jié)構(gòu)可分為喹諾酮類(lèi)抗生素、β-內(nèi)酰胺類(lèi)抗生素、大環(huán)內(nèi)酯類(lèi)、四環(huán)素類(lèi)、磺胺類(lèi)、糖肽類(lèi)和氨基糖苷類(lèi)抗生素等[1-2]。自1928年發(fā)現(xiàn)青霉素以來(lái),于20世紀(jì)40年代開(kāi)啟了抗生素研發(fā)的黃金時(shí)代,各種抗生素不斷問(wèn)世[3-4]??股馗淖兞爽F(xiàn)代醫(yī)學(xué),拯救了無(wú)數(shù)人的生命、使人類(lèi)的平均壽命得到了顯著延長(zhǎng)[5-6]。因此,抗生素的應(yīng)用被認(rèn)為是20世紀(jì)最大的醫(yī)學(xué)突破,尤其是1962年發(fā)現(xiàn)首個(gè)喹諾酮類(lèi)藥物萘啶酸[7-8]之后。經(jīng)過(guò)60年的發(fā)展,這類(lèi)藥物日新月異,具有抗菌譜廣、抗菌活性強(qiáng)、口服吸收好、組織濃度比較高和不良反應(yīng)較低等諸多優(yōu)點(diǎn),廣泛用于各種致病菌引起的尿路、腸道、呼吸道以及皮膚軟組織、腹腔、骨關(guān)節(jié)等感染的治療[9-10]。
盡管目前抗生素種類(lèi)繁多,致病菌一旦對(duì)某種藥物耐藥,就有可能對(duì)有同樣作用機(jī)制的一類(lèi)藥物耐藥[11-12]。由于長(zhǎng)時(shí)間不恰當(dāng)使用甚至濫用,致病菌對(duì)幾乎所有類(lèi)型的抗生素均產(chǎn)生了不同程度的耐藥性且耐藥菌不斷涌現(xiàn),導(dǎo)致傳統(tǒng)抗生素的療效不斷下降[13-14]。氟喹諾酮類(lèi)藥物的靶酶為細(xì)菌的DNA回旋酶及拓?fù)洚悩?gòu)酶Ⅳ,對(duì)包括耐甲氧西林金葡菌(MRSA)在內(nèi)的多種耐藥菌具有良好的療效[15-16]。但是,和其他抗生素一樣,氟喹諾酮的耐藥性問(wèn)題日益嚴(yán)重[17-18]。因此,開(kāi)發(fā)對(duì)耐藥菌有效的新型氟喹諾酮類(lèi)抗菌藥勢(shì)在必行。
氟喹諾酮雜合體是將氟喹諾酮母核與其他抗菌藥效團(tuán)結(jié)合所形成的一類(lèi)新型化合物。這類(lèi)化合物由于可同時(shí)作用于致病菌的多個(gè)靶點(diǎn),可發(fā)揮多重抗菌作用,故氟喹諾酮類(lèi)雜合體具有改善藥動(dòng)學(xué)性質(zhì)、降低毒副作用、提高藥效、拓展抗菌譜和克服耐藥性的潛力[19-20]。因此,氟喹諾酮雜合體將是尋找新型抗耐藥菌藥物的潛力分子。近年來(lái),藥物化學(xué)家設(shè)計(jì)、合成了多個(gè)系列氟喹諾酮雜合體,并評(píng)價(jià)了它們的抗耐藥菌活性。本文將著重介紹2018—2022年間所研發(fā)的具有抗耐藥菌活性的氟喹諾酮雜合體的研究進(jìn)展,為進(jìn)一步合理設(shè)計(jì)此類(lèi)雜合體提供一定的理論支持。
1 氟喹諾酮雜合體的抗耐藥菌活性
1.1 氟喹諾酮-三苯基膦/磷酸酯/磺酰胺/-β-內(nèi)酰胺/妥布霉素/葡萄糖/靛紅雜合體(圖1)
環(huán)丙沙星-三苯基膦雜合體1[最小抑菌濃度(MIC) 1.39~22.5 μg/mL]的抗3株MRSA、萬(wàn)古霉素中介耐藥的金葡菌(VISA)和異質(zhì)的VISA活性?xún)?yōu)于環(huán)丙沙星(MIC 0.5~128 μg/mL),且作用機(jī)制研究表明,該雜合體可通過(guò)抑制細(xì)胞膜的合成發(fā)揮抗菌活性[21]。環(huán)丙沙星-磷酸酯雜合體2(MIC 0.5~1.0 μg/mL)對(duì)所測(cè)3株MRSA臨床分離株的活性與環(huán)丙沙星(MIC 0.5~1.0 μg/mL)相當(dāng)[22],而4-喹諾酮-磷酸酯雜合體3(MIC 6.4 μg/mL)對(duì)2株耐氟喹諾酮大腸埃希菌的活性明顯優(yōu)于諾氟沙星(MIC>50 μg/mL) [23]。因此,這類(lèi)雜合體可作為先導(dǎo)物進(jìn)一步研究。
環(huán)丙沙星-磺酰胺雜合體4(MIC<1.16 μg/mL)具有良好的抗MRSA活性[24],而雜合體CSG-20(5, MIC 0.5~1.0 μg/mL)對(duì)耐藥大腸埃希菌、銅綠假單胞菌、溶血性鏈球菌和MRSA顯示出良好的抗菌活性,且活性?xún)?yōu)于母藥環(huán)丙沙星(MIC 4.0~32 μg/mL)[25]。4-喹諾酮-β-內(nèi)酰胺雜合體6a,b(MIC 1.03和1.12 μg/mL)
對(duì)耐氟喹諾酮大腸埃希菌活性是環(huán)丙沙星(MIC
27.76 μg/mL)、左氧氟沙星(MIC 22.41 μg/mL)和加替沙星(MIC 23.70 μg/mL)的20倍左右[26],而環(huán)丙沙星-頭孢菌素雜合體7(MIC 0.04~0.18 μg/mL)具有良好的抗產(chǎn)β-內(nèi)酰胺酶CTX-M-1大腸埃希菌、產(chǎn)金屬-β-內(nèi)酰胺酶1大腸埃希菌和產(chǎn)碳青霉烯酶肺炎克雷伯菌活性[27]。
環(huán)丙沙星-妥布霉素雜合體8(MIC 16~>128 μg/mL)盡管對(duì)所測(cè)的多重耐藥銅綠假單胞菌、大腸埃希菌、肺炎克雷伯菌、鮑曼不動(dòng)桿菌和陰溝腸桿菌僅顯示出弱到中等強(qiáng)度的抗菌活性,但該雜合體與絲裂霉素C顯示出協(xié)同作用[28]。諾氟沙星-葡萄糖雜合體9(MIC 93.7 μg/mL)的抗耐氟喹諾酮大腸埃希菌活性與諾氟沙星(MIC 93.7 μg/mL)相當(dāng),可作為先導(dǎo)物進(jìn)一步優(yōu)化[29]。
環(huán)丙沙星/加替沙星/莫西沙星-靛紅雜合體(MIC≤0.03~64 μg/mL)對(duì)包括MRSA和耐甲氧西林表葡球菌(MRSE)在內(nèi)的多種致病菌具有廣譜活性,且構(gòu)-效關(guān)系顯示,氟喹諾酮的種類(lèi)及靛紅C-3和C-5位的取代基與抗菌活性息息相關(guān)[30-33]。其中,代表物10 (MIC 0.06和1.0 μg/mL)的抗MRSA和MRSE活性是環(huán)丙沙星(MIC 0.5和64 μg/mL)的8和64倍,值得進(jìn)一步研究。
1.2 氟喹諾酮-吡啶/喹啉/嘧啶/大環(huán)內(nèi)酯雜合體(圖2)
巴洛沙星-吡啶雜合體11(MIC 0.078 μg/mL)的抗MRSA活性與母藥巴洛沙星(MIC 0.078 μg/mL)相當(dāng),而環(huán)丙沙星-吡啶雜合體12(MIC 12.5 μg/mL)的抗MRSA活性弱于環(huán)丙沙星(MIC 6.25 μg/mL),提示氟喹諾酮母核對(duì)抗MRSA活性至關(guān)重要[34-35]。環(huán)丙沙星-吡啶雜合體13(MIC<0.016 μg/mL)和14(MIC<0.016 μg/mL)具有良好的抗MRSA活性,且活性與環(huán)丙沙星(MIC<0.016 μg/mL)相當(dāng),但二者(MIC>128 μg/mL)對(duì)耐環(huán)丙沙星銅綠假單胞菌未顯示出任何活性,提示這類(lèi)雜合體與環(huán)丙沙星有交叉耐藥性[36]。
環(huán)丙沙星-喹啉雜合體15(MIC 0.125~16 μg/mL)對(duì)包括MRSA和耐萬(wàn)古霉素腸球菌(VRE)在內(nèi)的22株致病菌顯示出潛在的活性,但活性弱于母藥環(huán)丙沙星(MIC≤0.03~4.0 μg/mL)[37]。而環(huán)丙沙星-喹啉雜合體16(MIC 1.0 μg/mL)的抗耐氟喹諾酮淋球菌活性也弱于環(huán)丙沙星(MIC 0.25 μg/mL)[38]。由此可見(jiàn),將喹諾酮與喹啉或異喹啉-5,8-二酮雜合似乎對(duì)抗耐藥菌活性不利。
諾氟沙星-嘧啶雜合體17a,b(MIC 1.0 μg/mL)和環(huán)丙沙星-嘧啶雜合體18(MIC 1.0 μg/mL)的抗MRSA活性是環(huán)丙沙星(MIC 2.0 μg/mL)和諾氟沙星(MIC 8.0 μg/mL)的2和8倍[39]。作用機(jī)制研究發(fā)現(xiàn),雜合體17a不僅可抑制細(xì)胞膜的生成,而且可與DNA形成17a-DNA復(fù)合物,進(jìn)而發(fā)揮抗菌活性。環(huán)丙沙星-嘧啶酮雜合體19a,b (MIC 0.016和0.024 μg/mL)的抗MRSA活性是環(huán)丙沙星(MIC 0.18 μg/mL)的11.2和7.5倍,且作用機(jī)制研究表明,二者對(duì)可同時(shí)作用于DNA促旋酶和拓?fù)洚悩?gòu)酶IV[40]。環(huán)丙沙星-喹唑啉酮雜合體20a~c(MIC 0.016、0.031和0.031 μg/mL)顯示出良好的抗MRSA活性,且活性是環(huán)丙沙星(MIC 0.49 μg/mL)的16~32倍[41]。
環(huán)丙沙星-大環(huán)內(nèi)酯雜合體21(MIC≤0.008~4.0 μg/mL)對(duì)紅霉素敏感型肺炎鏈球菌、產(chǎn)紅霉素核糖體甲基化酶(Erm)肺炎鏈球菌、外排大環(huán)內(nèi)酯(Mef)肺炎鏈球菌、大環(huán)內(nèi)酯類(lèi)-林可霉素類(lèi)-鏈陽(yáng)菌素耐藥B結(jié)構(gòu)性耐藥(c-MLSB)化膿鏈球菌和大環(huán)內(nèi)酯類(lèi)-林可霉素類(lèi)-鏈陽(yáng)菌素耐藥B誘導(dǎo)性耐藥(i-MLSB)MRSA等致病菌的活性不弱于克拉霉素(MIC 0.03~512 μg/mL)和環(huán)丙沙星(MIC 0.03~32 μg/mL)[42]。莫西沙星-康樂(lè)霉素雜合體22(MIC 0.5, 0.5和8.0 μg/mL)對(duì)所測(cè)的野生型金葡菌、ParCS80F/GyrAS84L突變的耐環(huán)丙沙星金葡菌和RpoBH481Y突變的耐利福平金葡菌顯示出潛在的活性,其中,抗ParCS80F/GyrAS84L突變的耐環(huán)丙沙星金葡菌活性是莫西沙星(MIC 1.0 μg/mL)和環(huán)丙沙星(MIC 32 μg/mL)的2和64倍[43]。此外,該雜合體(半數(shù)毒性濃度/CC50>64 μg/mL)對(duì)正常HEK293細(xì)胞未顯示出任何毒性,安全性良好。
1.3 氟喹諾酮-噻唑/噻唑啉酮/惡唑烷酮雜合體(圖3)
環(huán)丙沙星-氨基噻唑雜合體23a~e(MIC 15~? ? 20 μg/mL)和24a~b (MIC 9.0和14 μg/mL)的抗MRSA活性高于諾氟沙星(MIC 25 μg/mL)和氯新霉素(MIC 50 μg/mL),且作用機(jī)制研究表明,這類(lèi)雜合體可通過(guò)抑制拓?fù)洚悩?gòu)酶IV和DNA促旋酶發(fā)揮抗菌活性[44-45]。不僅如此,這類(lèi)雜合體不易產(chǎn)生耐藥性,值得深入研究。含有肟基的環(huán)丙沙星-噻唑雜合體25a,b (MIC 0.25~0.50 μg/mL)對(duì)包括MRSA在內(nèi)的多種致病菌具有廣譜抗菌活性,且雜合體25a可破壞MRSA細(xì)胞膜進(jìn)而發(fā)揮抗菌活性[46]。環(huán)丙沙星-噻唑啉酮雜合體26a~c(MIC 0.003 μg/mL)具有良好的抗MRSA活性,但活性弱于環(huán)丙沙星(MIC 0.0002 μg/mL)[47]。雜合體27a,b(MIC 1.03 和1.12 μg/mL)的抗耐氟喹諾酮大腸埃希菌活性是環(huán)丙沙星(MIC 27.76 μg/mL)、左氧氟沙星(MIC 22.41 μg/mL)和加替沙星(MIC 23.70 μg/mL)的20余倍,可作為候選物進(jìn)一步研究[48]。
左氧氟沙星-惡唑烷酮雜合體OBP-4(28, MIC 0.031, 0.25和0.5 μg/mL)和OBP-5(29, MIC 0.031, 0.5和0.5 μg/mL)的抗耐左氧氟沙星牛無(wú)乳鏈球菌、VRE和MRSA活性是利奈唑胺(MIC 1.0, 2.0和4.0 μg/mL)和莫西沙星(MIC 4.0, 64 和8.0 μg/mL)的4~128倍[49]。進(jìn)一步研究發(fā)現(xiàn),OBP-4(MIC≤0.0625~1.0 μg/mL)和OBP-5(MIC≤0.0625~0.25 μg/mL)對(duì)臨床分離的MRSA、MRSE、耐環(huán)丙沙星金葡菌、耐環(huán)丙沙星溶血葡萄球菌、耐利奈唑胺糞腸球菌、耐利奈唑胺和喹諾酮屎腸球菌、耐萬(wàn)古霉素和喹諾酮腸球菌和耐萬(wàn)古霉素和喹諾酮肺炎鏈球菌具有良好的抗菌活性,且活性?xún)?yōu)于利奈唑胺(MIC 0.25~16 μg/mL)和萬(wàn)古霉素(MIC 0.25~>32 μg/mL)。不僅如此,當(dāng)口服給藥2000 mg/kg,OBP-4和OBP-5未顯示出任何體內(nèi)毒性?;诖?,OBP-4和OBP-5可作為候選物進(jìn)行深入的臨床前研究。
2 結(jié)束語(yǔ)
氟喹諾酮可作用于DNA促旋酶和拓?fù)洚悩?gòu)酶Ⅳ,對(duì)包括耐藥菌在內(nèi)的多種致病菌引起的感染具有良好的廣譜活性。然而,和其他抗生素一樣,細(xì)菌對(duì)氟喹諾酮也產(chǎn)生了不同程度的耐藥性。耐氟喹諾酮細(xì)菌引起的感染已嚴(yán)重威脅人類(lèi)生命健康,故亟須開(kāi)發(fā)新型藥物。
值得一提的是,氟喹諾酮雜合體可同時(shí)作用于致病菌的多個(gè)靶點(diǎn),具有發(fā)揮多重抗菌作用和克服耐藥性的潛力。因此,氟喹諾酮雜合體將是尋找新型抗耐藥菌藥物的潛力分子。近年來(lái),藥物化學(xué)家設(shè)計(jì)、合成了多個(gè)系列氟喹諾酮雜合體,并評(píng)價(jià)了它們的抗耐藥菌活性。其中的某些雜合體左氧氟沙星-惡唑烷酮雜合體OBP-4和OBP-5等顯示出良好的活性,可作為候選物進(jìn)一步研究。
本文總結(jié)了近5年來(lái)所開(kāi)發(fā)的對(duì)耐藥菌有抗菌活性的氟喹諾酮雜合體研究進(jìn)展,為深入的藥物評(píng)價(jià)提供候選物,為進(jìn)一步的藥物設(shè)計(jì)提供了思路。
參 考 文 獻(xiàn)
Al-Tawfiq J A, Momattin H, Al-Ali A Y, et al. Antibiotics in the pipeline: A literature review (2017-2020)[J]. Infection, 2022, 50(3): 553-564.
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents[J]. Clin Microbiol Infect, 2020, 26(5): 596-603.
王玉麗, 張洪兵, 劉昌孝, 等. 回顧分析:2011—2020年美國(guó)批準(zhǔn)上市的抗感染藥物[J]. 中國(guó)抗生素雜志, 2022, 47(1): 1-14.
楊欣巍, 秦志偉. 基于微生物天然產(chǎn)物來(lái)源的抗菌類(lèi)藥物基礎(chǔ)研究簡(jiǎn)介[J]. 國(guó)外醫(yī)藥抗生素分冊(cè), 2017, 38 (6): 248-252.
Parreira P, Martins M C L. The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy[J]. Cell Surf, 2021, 7: e100048.
Vila J, Moreno-Morales J, Ballesté-Delpierre C. Current landscape in the discovery of novel antibacterial agents[J]. Clin Microbiol Infect, 2020, 26(5): 596-603.
汪阿鵬, 馮連順, 劉明亮, 等. 氟喹諾酮類(lèi)抗菌藥的最新研究進(jìn)展[J]. 國(guó)外醫(yī)藥抗生素分冊(cè), 2019, 40(3): 171-179.
馬超, 馮連順, 劉明亮, 等. 喹諾酮衍生物及其抗革蘭陰性菌活性[J]. 國(guó)外醫(yī)藥抗生素分冊(cè), 2018, 39(4): 336-342.
Pham T D M, Ziora Z M, Blaskovich M A T. Quinolone antibiotics[J]. Med Chem Comm, 2019, 10: 1719-1739.
Ezelarab H A A, Abbas S H, Hassan H A, et al. Recent updates of fluoroquinolones as antibacterial agents[J]. Arch Pharm, 2018, 351(9): e1800141.
Urban-Chmiel R, Marek A, St?pień-Py?niak D, et al. Antibiotic resistance in bacteria-A review[J]. Antibiot, 2022, 11(8): e1079.
潘智宇, 印尤強(qiáng), 蘇玉斌. 常見(jiàn)抗生素與新型抗菌藥物在臨床上的研究應(yīng)用進(jìn)展[J]. 中國(guó)抗生素雜志, 2022, 47(9): 865-871.
Sushma S, Venkatesh A, Sasanka L K, et al. Antibiotic use and antimicrobial resistance-A review[J]. Int J Pharm Res, 2021, 13(1): 1851-1855.
Roca I, Akova M, Baquero F, et al. The global threat of antimicrobial resistance: Science for intervention[J]. New Microb New Infect, 2015, 6: 22-29.
Kaur P, Anuradha C, Chandra A, et al. Emerging quinoline- and quinolone-based antibiotics in the light of epidemics[J]. Chem Biol Drug Design, 2022, 100(6): 765-785.
Jia Y S, Zhao L Y. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021)[J]. Eur J Med Chem, 2021, 224: e113741.
Redgrave L S, Sutton S B, Webber M A, et al. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success[J]. Trends Microbiol, 2014, 22(8): 438-445.
周珊, 劉家云, 曲芬, 等. 喹諾酮類(lèi)藥物對(duì)2018-2020年多中心臨床分離菌的耐藥性分析[J]. 中國(guó)抗生素雜志, 2021, 46(11): 985-993.
Lungu I A, Moldovan O L, Biri? V, et al. Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance[J]. Pharmaceutics, 2022, 14(8): e1749.
Fedorowicz J, S?czewski J. Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules[J]. Monatsh Chem, 2018, 149(7): 1199-1245.
Hur J K, Jung Y, Kang S, et al. Membrane-targeting triphenylphosphonium functionalized ciprofloxacin for methicillin-resistant Staphylococcus aureus(MRSA)[J]. Antibiotics, 2020, 9(11): e758.
Bukharov S V, Bulatova E S, Burilov A R, et al. Synthesis and antibacterial activity of fluoroquinolones with sterically hindered phenolic moieties[J]. Russ Chem Bull, 2022, 71(3): 508-516.
Yang J Q, Che W L, Wang W, et al. Synthesis and antibacterial activity of novel 7-phosphoryl quinolone derivatives[J]. Chin Pharm J, 2019, 54(2): 86-90.
Kulaba? N, Türe A, Bozdeveci A, et al. Novel fluoroquinolones containing 2-arylamino-2-oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies[J]. J Heterocyclic Chem, 2022, 59(5): 909-926.
Ahir S, Mahmood T, Dastgir F, et al. Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria[J]. Eur J Med Chem, 2019, 166: 224-231.
Balasubramaniyan S, Irfan N, Senthilkumar C, et al. The synthesis and biological evaluation of virtually designed fluoroquinolone analogs against fluoroquinolone-resistant: Escherichia coli intended for UTI treatment[J]. New J Chem, 2020, 44(31): 13308-13318.
Evans L E, Krishna A, Ma Y, et al. Exploitation of antibiotic resistance as a novel drug target: Development of a β-lactamase-activated antibacterial prodrug[J]. J Med Chem, 2019, 62(9): 4411-4425.
Domalaon R, Ammeter D, Brizuela M, et al. Repurposed antimicrobial combination therapy: Tobramycin-ciprofloxacin hybrid augments activity of the anticancer drug mitomycin C against multidrug-resistant Gram-negative bacteria[J]. Front Microbiol, 2019, 10: e1556.
Mohammed A A M, Suaifan G A R Y, Shehadeh M B, et al. Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivative[J]. Eur J Med Chem, 2020, 202: e112513.
Wang R, Yin X, Zhang Y, et al. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids[J]. Eur J Med Chem, 2018, 156: 580-586.
Gao F, Ye L, Kong K, et al. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids[J]. Bioorg Chem, 2019, 91: e103162.
Guo H. Design, synthesis, and antibacterial evaluation of propylene-tethered 8-methoxyl ciprofloxacin-isatin hybrids[J]. J Heterocyclic Chem, 2018, 55(10): 2434-2440.
Guo H. Design, synthesis, and in vitro antibacterial activities of propylene-tethered gatifloxacin-isatin hybrids[J]. J Heterocyclic Chem, 2018, 55(8): 1899-1905.
Mahdavi M, Mostafavi H, Shahbazi A, et al. Novel N-4-piperazinyl ciprofloxacin-ester hybrids: Synthesis, biological evaluation, and molecular docking studies[J]. Russ J Gen Chem, 2020, 90(8): 1558-1565.
Hong G, Li W T, Mao L, et al. Synthesis and antibacterial activity evaluation of N (7) position-modified balofloxacins[J]. Front Chem, 2022, 10: e963442.
Chen P T, Lin W P, Lee A R, et al. New 7-[4-(4-(un)substituted)piperazine-1-carbonyl]-piperazin-1-yl] derivatives of fluoroquinolone: Synthesis and antimicrobial evaluation[J]. Molecules, 2013, 18(7): 7557-7569.
Fu H G, Li Z W, Hu X X, et al. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents[J]. Molecules, 2019, 24(3): e548.
Adhel E, Anquetin G, Duong N T H, et al. Modified fluoroquinolones as antimicrobial compounds targeting Chlamydia trachomatis[J]. Int J Mol Sci, 2022, 23(12): e6741.
Tan Y M, Li D, Li F F, et al. Pyrimidine-conjugated fluoroquinolones as new potential broad-spectrum antibacterial agents[J]. Bioorg Med Chem Lett, 2022, 73: e128885.
Samir M, Ramadan M, Abdelrahman M H, et al. New potent ciprofloxacin-uracil conjugates as DNA gyrase and topoisomerase IV inhibitors against methicillin-resistant Staphylococcus aureus[J]. Bioorg Med Chem, 2022, 73: e117004.
Norouzbahari M, Salarinejad S, Güran M, et al. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety[J]. DARU J Pharm Sci, 2020, 28(2): 661-672.
Liu X P, Lv W, Zhao F, et al. Design and synthesis of novel macrolones bridged with linkers from 11,12-positions of macrolides[J]. Bioorg Med Chem Lett, 2022, 68: e128761.
Xue W, Li X, Ma G, et al. N-Thiadiazole-4-hydroxy-2-quinolone-3-carboxamides bearing heteroaromatic rings as novel antibacterial agents: Design, synthesis, biological evaluation and target identification[J]. Eur J Med Chem, 2020, 188: e112022.
Wang L L, Battini N, Bheemanaboina R R Y, et al. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation[J]. Eur J Med Chem, 2019, 167, 105-123.
Wang L L, Battini N, Bheemanaboina R R Y, et al. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV[J]. Eur J Med Chem, 2019, 179: 166-181.
Chen J P, Battini N, Ansari M F, et al. Membrane active 7-thiazoxime quinolones as novel DNA binding agents to decrease the genes expression and exert potent anti-methicillin-resistant Staphylococcus aureus activity[J]. Eur J Med Chem, 2021, 217: e113340.
Aziz H A, El-Saghier A M M, Badr M, et al. Thiazolidine-2,4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities[J]. Mol Diversity, 2022, 26(3): 1743-1759.
Balasubramaniyan S, Irfan N, Senthilkumar C, et al. The synthesis and biological evaluation of virtually designed fluoroquinolone analogs against fluoroquinolone-resistant: Escherichia coli intended for UTI treatment[J]. New J Chem, 2020, 44(31): 13308-13318.
Liu L L, Shao L P, Li J, et al. Synthesis, antibacterial activities, mode of action and acute toxicity studies of new oxazolidinone-fluoroquinolone hybrids[J]. Molecules, 2019, 24(8): e1641.