張黃成昊 張朝霞 田小毛 嚴(yán)兵
摘要:惡性腫瘤是威脅人類生命與健康的重要疾病,嚴(yán)重威脅經(jīng)濟(jì)的發(fā)展和社會(huì)穩(wěn)定。治療耐藥和遠(yuǎn)處轉(zhuǎn)移是惡性實(shí)體腫瘤死亡的主要原因,也是目前臨床治療的關(guān)鍵難題。近年來(lái),一些具有抑制細(xì)胞活性的抗生素被注冊(cè)為抗腫瘤藥物,給臨床治療帶來(lái)希望。多西環(huán)素具有良好的組織穿透性,口服吸收良好,沒(méi)有明顯的組織毒性。并且,多項(xiàng)實(shí)驗(yàn)研究表明多西環(huán)素具有抗腫瘤作用。但由于效能低、副作用多等局限性,目前暫時(shí)未用于臨床腫瘤的治療。因此,本文擬對(duì)多西環(huán)素治療惡性實(shí)體腫瘤的研究做一綜述,總結(jié)具體作用、機(jī)制和現(xiàn)階段面臨的問(wèn)題,并對(duì)多西環(huán)素治療惡性實(shí)體腫瘤的應(yīng)用前景提出展望。
關(guān)鍵詞:多西環(huán)素;惡性實(shí)體腫瘤;治療;研究進(jìn)展
中圖分類號(hào):R978.1文獻(xiàn)標(biāo)志碼:A
Research progress of doxycycline in the treatment of malignant solid tumors
Zhang Huangchenghao1,2,Zhang Zhaoxia2, Tian Xiaomao2, and Yan Bing1
(1 Department of Urology, Kunming Childrens Hospital, Yunnan Provincial Key Research Laboratory of Pediatric Major Diseases, Yunnan Provincial Clinical Medical Research Center for Child Health and Diseases, Kunming Children's Solid Tumor Diagnosis and Treatment Center, Kunming 650228; 2 Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Department of Urology, Childrens Hospital of Chongqing Medical University, Chongqing 400015)
Abstract Malignant tumours are important diseases that threaten human life and health and pose a serious threat to economic development and social stability. Treatment resistance and distant metastasis are the main reasons for the high mortality rate of malignant solid tumours and are currently the key challenges in clinical treatment. In recent years, a number of antibiotics with cytostatic activity have been registered as antitumour agents, offering hope for clinical treatment. Doxycycline has good tissue penetration, is well absorbed orally and has no significant tissue toxicity. Moreover, several experimental studies have shown that doxycycline has anti-tumour effects. However, due to the limitations of low efficacy and many side effects, it is not used in clinical tumour treatment for the time being. Therefore, this paper aims to review the research on doxycycline in the treatment of malignant solid tumours, summarise the specific effects, mechanisms and problems faced at this stage, and provide an outlook on the application of doxycycline in the treatment of malignant solid tumours.
Key words Doxycycline; Malignant solid tumors; Treatment; Research progress
惡性實(shí)體腫瘤由于其居高不下的發(fā)病率以及治療上的困難,嚴(yán)重威脅人類生命與健康,影響經(jīng)濟(jì)發(fā)展和社會(huì)穩(wěn)定。現(xiàn)階段,包括膀胱癌(bladder cancer, BLCA)、前列腺癌(prostate adenocarcinoma, PRAD)、乳腺癌(breast cancer, BRCA)、結(jié)腸癌(colon adenocarcinoma, COAD)和腎癌(renal cell carcinoma, RCC)等在內(nèi)的多種惡性實(shí)體腫瘤,仍采取手術(shù)結(jié)合化療或放療的綜合治療模式[1]。
并且,針對(duì)轉(zhuǎn)移性腫瘤,化療仍是目前最重要的治療手段之一,化療藥物可以通過(guò)抑制腫瘤細(xì)胞的有絲分裂從而抑制惡性實(shí)體腫瘤的發(fā)展[2]。但是,化療藥物對(duì)快速增殖的正常細(xì)胞也具有抑制作用,例如毛囊、骨髓和胃腸道細(xì)胞等。另外,常規(guī)化療藥物的毒副作用較大,包括心臟毒性、骨髓抑制等[3]。腫瘤轉(zhuǎn)移與對(duì)化療藥物的抵抗是導(dǎo)致抗腫瘤治療失敗的關(guān)鍵原因。因此,尋找新的抗腫瘤藥物至關(guān)重要。
大多惡性實(shí)體腫瘤患者死于腫瘤的遠(yuǎn)處轉(zhuǎn)移。因此,防治轉(zhuǎn)移是提高治愈率最重要的因素[1]?;|(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)被認(rèn)為是促進(jìn)癌細(xì)胞侵襲和轉(zhuǎn)移的關(guān)鍵因素之一[4]。許多惡性腫瘤的遷移和侵襲都離不開(kāi)MMPs的作用,如BRCA、RCC、肝癌(liver cancer)等[5-7]。因此,從20世紀(jì)90年代到2000年初,基質(zhì)金屬蛋白酶抑制劑(matrix metalloproteinase inhibitors,MMPIs)被廣泛用于抗腫瘤研究[8-9]。然而,這些研究由于療效不佳和嚴(yán)重的副作用而終止。多西環(huán)素(doxycycline,DOX)作為第二代四環(huán)素代表土霉素(terramycin)的半合成衍生物被開(kāi)發(fā)并作為臨床用藥(圖1)。其毒性明顯低于第一代四環(huán)素[10]。DOX具有廣譜抗生素的特性,對(duì)于革蘭陽(yáng)性和革蘭陰性細(xì)菌感染都具有良好效果,包括許多呼吸道病原體。最初被廣泛用于治療患有上呼吸道感染(upper respiratory tract infection, URTI)的兒童。
由于DOX對(duì)MMPs的活性有明顯的抑制作用,因此被認(rèn)為具有作為抗腫瘤藥物的潛力[11]。更重要的是,DOX被報(bào)道對(duì)多種實(shí)體惡性腫瘤具有細(xì)胞毒性和抗增殖活性[12-14]。且DOX的口服吸收度較好,幾乎可以完全被胃腸道吸收[15]。此外,DOX還具有穿過(guò)血腦屏障(blood-brain barrier, BBB)的能力。雖然,多西環(huán)素作為一種治療惡性實(shí)體腫瘤的藥物具有潛在的可行性,對(duì)臨床治療具有重要意義;但是,目前關(guān)于多西環(huán)素抗腫瘤研究大部分在II期臨床試驗(yàn)就宣告失敗,證明其用于腫瘤治療仍舊存在很多問(wèn)題及局限性。因此,本文將總結(jié)DOX在多種惡性實(shí)體腫瘤中的研究進(jìn)展,包括抗腫瘤作用及相關(guān)機(jī)制,并尋找多西環(huán)素抗腫瘤治療中存在的問(wèn)題,總結(jié)相關(guān)文獻(xiàn),以期提出相應(yīng)的解決方案,為多西環(huán)素后續(xù)的抗腫瘤研究提供更加充實(shí)的理論依據(jù)。
1 DOX在惡性實(shí)體腫瘤中的基礎(chǔ)研究
DOX在多種惡性實(shí)體腫瘤中被廣泛研究,并且顯示出良好的抑癌效果。在此,本文簡(jiǎn)要綜述了DOX在包括BRCA、COAD、PRAD和黑色素瘤等臨床常見(jiàn)實(shí)體腫瘤中的應(yīng)用情況。
1.1 乳腺癌
在BRCA的相關(guān)研究中,DOX主要通過(guò)靶向乳腺癌干細(xì)胞(breast cancer stem cells, BCSCs),從而抑制腫瘤的增殖、遷移和侵襲。研究表明,DOX可以抑制乳腺癌細(xì)胞和BCSCs的增殖活性,下調(diào)干細(xì)胞因子Oct4,Sox2,Nanog和CD44的表達(dá)。從而降低BCSCs成球效率、遷移和侵襲以及乳腺癌細(xì)胞的上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)[16]。Lin等[17]也發(fā)現(xiàn),DOX可以作為線粒體抑制劑,有效靶向BCSCs,顯著降低了 HER2+和三陰性乳腺癌 (triple negative breast cancer, TNBC) 亞型中醛脫氫酶陽(yáng)性(aldehyde dehydrogenase+, ALDH+)BCSCs的頻率以及成球效率。另外,作為MMPs抑制劑,DOX與抑制腫瘤的轉(zhuǎn)移息息相關(guān)。在人乳腺癌 MDA-MB-231細(xì)胞的實(shí)驗(yàn)性骨轉(zhuǎn)移小鼠模型中,DOX治療導(dǎo)致總腫瘤負(fù)荷減少達(dá)70%,還可以增強(qiáng)骨質(zhì)吸收,說(shuō)明DOX治療可能使患有溶骨性骨轉(zhuǎn)移或有溶骨性骨轉(zhuǎn)移風(fēng)險(xiǎn)的乳腺癌患者獲益[18]。但是,也有研究認(rèn)為,DOX聯(lián)合治療并不能緩解乳腺癌骨轉(zhuǎn)移患者的骨痛癥狀,骨轉(zhuǎn)移標(biāo)志物也沒(méi)有顯著改變[19]。在關(guān)于機(jī)制的研究中,Zhong等[13]研究證實(shí)了DOX通過(guò)直接靶向蛋白酶激活受體1(protease-activated receptor 1, PAR-1)來(lái)抑制乳腺癌的進(jìn)展,并且發(fā)現(xiàn)miR-17在體內(nèi)和體外均可以逆轉(zhuǎn)DOX對(duì)乳腺癌的部分抑制作用。
1.2 結(jié)直腸癌
結(jié)直腸癌(colorectal cancer, CRC)是人類發(fā)病率第二的實(shí)體惡性腫瘤。其中,腫瘤轉(zhuǎn)移為主要死亡原因,被認(rèn)為是CRC治療的主要挑戰(zhàn)[20]。在這種情況下,對(duì)人類HT29結(jié)直腸癌細(xì)胞系的研究表明,DOX可以通過(guò)對(duì)腫瘤細(xì)胞的細(xì)胞毒性作用、抑制MMPs和誘導(dǎo)細(xì)胞凋亡來(lái)抑制腫瘤的生長(zhǎng)和進(jìn)展[21]。同時(shí),DOX還可以通過(guò)靶向線粒體,降低HT 29細(xì)胞的凋亡閾值,從而促進(jìn)結(jié)直腸癌細(xì)胞的凋亡[22]。此外,研究發(fā)現(xiàn)在CRC中,DOX協(xié)同其他抗腫瘤藥物,抗血管生成因子和抗檢查點(diǎn)阻滯劑聯(lián)合治療,可以抑制腫瘤進(jìn)展[23]。而在基因治療方面,DOX可以調(diào)節(jié)人類白細(xì)胞介素12(interleukin 12, IL-12)基因的表達(dá),能夠在CRC中實(shí)現(xiàn)精確的目標(biāo)細(xì)胞因子的高表達(dá)。說(shuō)明DOX-腺病毒載體系統(tǒng)在基因治療CRC和其他惡性腫瘤中的重要潛力[24]。
1.3 前列腺癌
PRAD是老年男性中最常見(jiàn)的癌癥類型。研究發(fā)現(xiàn),在用DOX處理的人前列腺癌細(xì)胞系LNCaP中證實(shí)了凋亡細(xì)胞的增多,表明DOX可能在前列腺癌的治療中具有潛在作用[25]。DOX聯(lián)合阿霉素可顯著抑制2D和3D培養(yǎng)基中的PC3細(xì)胞株,增強(qiáng)細(xì)胞凋亡,并增加G2/M期的細(xì)胞周期阻滯。聯(lián)合治療后,RT-PCR和Western blot檢測(cè)顯示Bcl-2的下調(diào)和Bax的上調(diào),表明DOX與阿霉素聯(lián)合對(duì)PC3細(xì)胞具有協(xié)同作用,并可能為治療去勢(shì)抵抗性前列腺癌(castration-resistant prostate cancer,CRPC)提供潛在的新策略[25]。研究結(jié)果表明,DOX可抑制PC3細(xì)胞株中NLR家族Pyrin結(jié)構(gòu)域蛋白3(NLR family pyrin domain containing protein 3,NLRP3)的啟動(dòng),并通過(guò)增加腫瘤細(xì)胞的早期細(xì)胞凋亡從而緩解PRAD的進(jìn)展[26]。Ogut等[27]
也發(fā)現(xiàn),在使用DOX干預(yù)PC3細(xì)胞系后發(fā)現(xiàn)核因子 kappa B(nuclear factor kappa-B,NF-κB)和MMPs相關(guān)蛋白明顯下調(diào),證明了DOX可能通過(guò)抑制NF-κB信號(hào)通路,進(jìn)而抑制MMPs的表達(dá)。
1.4 骨肉瘤
骨肉瘤(osteosarcoma)是一種具有高度侵襲性的原發(fā)性骨腫瘤,中青年為主要發(fā)病人群。研究表明,DOX通過(guò)抑制MMPs阻斷細(xì)胞外基質(zhì)(extracellular matrix, ECM)和膜降解。使骨肉瘤細(xì)胞失去侵襲和遷移能力[28]。此外,DOX通過(guò)其抗血管生成作用消除了血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)的分泌,并剝奪營(yíng)養(yǎng)物質(zhì)的供應(yīng)[29]。在人骨肉瘤OSA細(xì)胞系中,DOX干預(yù)可抑制細(xì)胞增殖和MMPs活性,并誘導(dǎo)OSA細(xì)胞凋亡。證據(jù)表明,這種耐受性良好的口服藥物可能對(duì)骨肉瘤的臨床治療有效[30]。
1.5 口腔鱗狀細(xì)胞癌
口腔鱗狀細(xì)胞癌(oral squamous-cell carcinoma, OSCC)的區(qū)域淋巴結(jié)和遠(yuǎn)處器官轉(zhuǎn)移與MMPs的表達(dá)增加密切相關(guān),而DOX作為MMPs的抑制劑對(duì)于OSCC的治療具有得天獨(dú)厚的優(yōu)勢(shì)。在2010年,Shen等[31]首次提出DOX對(duì)OSCC的治療作用與抑制MMPs表達(dá)有關(guān)。在體外實(shí)驗(yàn)中,DOX被發(fā)現(xiàn)可以通過(guò)下調(diào)MMP-2和MMP-9的表達(dá),抑制SCC-15細(xì)胞株的侵襲和遷移。但是,與此相反,也有研究表明,DOX誘導(dǎo)的外源性B細(xì)胞特異性莫洛尼鼠白血病病毒整合位點(diǎn)1(B cell-specific moloney murine leukemia virus integration site 1,Bmi-1)表達(dá)增強(qiáng)了OSCC轉(zhuǎn)基因小鼠系 KrTBmi-1模型中的腫瘤形成[32]。
1.6 肺癌
數(shù)據(jù)證明,DOX對(duì)轉(zhuǎn)錄因子的功能性靶向逆轉(zhuǎn)EMT,并抑制人小細(xì)胞肺癌細(xì)胞株NCI-H446的增殖和遷移[33]。因此,DOX選擇性地靶向惡性腫瘤并降低其轉(zhuǎn)移潛力,同時(shí)在肺癌(lung cancer)患者中具有較低的細(xì)胞毒性[33]。值得注意的是,小細(xì)胞肺癌(small cell lung cancer,SCLC)是具有很強(qiáng)侵襲性且預(yù)后不良的腫瘤類別,DOX呈劑量依賴性地抑制人SCLC H446細(xì)胞株的增殖、集落形成、遷移和侵襲,以及通過(guò)上調(diào)caspase-3和bax的表達(dá),以及下調(diào)survivin和bcl-2的表達(dá)誘導(dǎo)細(xì)胞凋亡。這些發(fā)現(xiàn)支持進(jìn)一步研究DOX作為治療SCLC的候選藥物的潛力[34]。
1.7 黑色素瘤
通過(guò)皮下注射B16黑色素瘤細(xì)胞懸液建立小鼠皮下荷瘤模型,發(fā)現(xiàn)DOX與內(nèi)皮抑素聯(lián)合治療黑色素瘤可通過(guò)抑制MMPs的表達(dá),影響黑色素瘤內(nèi)皮依賴性血管、鑲嵌血管和血管生成擬態(tài)的3種微循環(huán)模式的形成,使腫瘤體積縮小、生長(zhǎng)速度減慢[35]。在國(guó)內(nèi)也有學(xué)者得出相同結(jié)論,在體外實(shí)驗(yàn)中發(fā)現(xiàn),DOX和內(nèi)皮抑素能夠抑制MMPs的表達(dá),從而抑制B16黑素瘤的生長(zhǎng)[36]。值得注意的是,DOX還抑制黏著斑激酶(focal adhesion kinase,F(xiàn)AK)的表達(dá)和磷酸化,這是一種參與調(diào)節(jié)細(xì)胞黏附和遷移的蛋白酪氨酸激酶。DOX極有可能通過(guò)抑制FAK 信號(hào)通路發(fā)揮其抗腫瘤的作用[37]。這些結(jié)果提供了DOX在抗腫瘤治療中的潛在應(yīng)用前景廣闊,值得進(jìn)一步研究。
1.8 卵巢癌
卵巢癌(ovarian cancer)因其典型的侵襲性轉(zhuǎn)移和治療抵抗往往出現(xiàn)預(yù)后不良。研究表明,DOX不僅對(duì)上皮性卵巢癌細(xì)胞系SKOV3有抑制作用,還能增加SKOV3對(duì)順鉑的敏感性。 SDF-1α/CXCR4調(diào)節(jié)的AKT和ERK 1/2信號(hào)通路激活可能參與DOX對(duì)SKOV3細(xì)胞的抗腫瘤作用[38]。另外,有學(xué)者通過(guò)用DOX誘導(dǎo)的Krüppel樣因子4(kruppel-like factor 4, KLF4)慢病毒載體轉(zhuǎn)導(dǎo)卵巢癌細(xì)胞系SKOV3和OVCAR3來(lái)研究KLF4在卵巢癌細(xì)胞中的作用。發(fā)現(xiàn)KLF4抑制轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor beta, TGF-β)誘導(dǎo)的卵巢癌細(xì)胞EMT[39]。
1.9 胰腺癌
在人胰腺癌(pancreatic cancer)細(xì)胞系PANC-1的體外實(shí)驗(yàn)中,DOX持續(xù)激活p53、p21和級(jí)聯(lián)相關(guān)基因的轉(zhuǎn)錄,同時(shí)降低 Bcl-2、Mcl-1和紫杉醇誘導(dǎo)的IL-8的表達(dá)。 在小鼠異種移植模型中,DOX治療可抑制80%的腫瘤生長(zhǎng)。表明DOX通過(guò)激活促凋亡基因、抑制IL-8表達(dá)和抑制抗凋亡基因發(fā)揮抗胰腺癌的作用[40]。
從TCGA獲得的胰腺癌患者數(shù)據(jù)表明,高PAR1和FAK蛋白的表達(dá)提示患者預(yù)后不良。而PAR1可以調(diào)節(jié)人胰腺癌細(xì)胞系A(chǔ)SPC-1和PANC-1中的FAK、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)磷酸化和EMT。DOX作為PAR1抑制劑,可以有效抑制胰腺癌細(xì)胞的CSCs樣特性和FAK/PI3K/AKT通路的激活[41]。吉西他濱通常被推薦作為轉(zhuǎn)移性胰腺癌患者的一線治療,而DOX可增強(qiáng)吉西他濱對(duì)細(xì)胞周期的影響,削弱胰腺癌細(xì)胞的耐藥性[42]。
然而,需要更多的研究來(lái)評(píng)估DOX和吉西他濱協(xié)同作用的機(jī)制,這可能會(huì)為胰腺癌帶來(lái)新的治療選擇。
1.10 其他惡性實(shí)體腫瘤
DOX還減少了不同其他來(lái)源癌細(xì)胞的增殖、遷移、侵襲和EMT等生物學(xué)過(guò)程。在宮頸癌(cervical cancer)中,DOX在體外和體內(nèi)抑制人宮頸癌細(xì)胞系 HeLa-CSCs的增殖、侵襲和分化,使干細(xì)胞標(biāo)志物 SOX-2、OCT-4、NANOG、NOTCH和BMI-1減少,并誘導(dǎo)細(xì)胞凋亡[43]。在BLCA中,Li等[44]創(chuàng)建了四環(huán)素誘導(dǎo)的雙小發(fā)夾RNA(shRNA)載體,以劑量依賴性方式控制多西環(huán)素誘導(dǎo)的BLCA細(xì)胞系CCAT2的表達(dá)水平。以響應(yīng)不同濃度的DOX,抑制BLCA細(xì)胞的發(fā)展。而在黏液表皮樣癌(mucoepidermoid cancer)轉(zhuǎn)染的PTEN基因或單獨(dú)使用DOX治療的癌細(xì)胞端粒酶活性下降,而聯(lián)合組端粒酶活性下降更明顯。表明PTEN基因與DOX聯(lián)合治療對(duì)癌細(xì)胞端粒酶活性有顯著抑制作用[45]。在十二指腸腺癌(duodenal adenocarcinoma)中,DOX干預(yù)HuTu-80十二指腸腺癌細(xì)胞系,并在免疫缺陷小鼠模型中確定了其抗腫瘤作用。10 ?mol/mL(4.4 ?g/mL)濃度的DOX能夠引起90%的癌細(xì)胞凋亡[46]。DOX在不同惡性實(shí)體腫瘤細(xì)胞系中的研究詳情進(jìn)展見(jiàn)表1。綜上所述,DOX的抗癌作用機(jī)制涉及多條信號(hào)通路和多種細(xì)胞因子,已成為一系列臨床試驗(yàn)的關(guān)鍵和基礎(chǔ),具體研究機(jī)制總結(jié)為圖2。
2 DOX用于治療惡性實(shí)體腫瘤的臨床試驗(yàn)
近年來(lái),隨著基礎(chǔ)研究的不斷深入,為DOX的臨床應(yīng)用奠定理論基礎(chǔ)。因此,關(guān)于DOX用于治療惡性實(shí)體腫瘤的臨床試驗(yàn)也逐漸增多。
本文通過(guò)檢索中國(guó)臨床實(shí)驗(yàn)注冊(cè)中心(Chinese Clinical Trial Registry,CCTR)(http://www.chictr.org.cn/index.aspx)和國(guó)際臨床試驗(yàn)注冊(cè)平臺(tái)(International Clinical Trial Registry Platform,ICTRP)(https://trialsearch.who.int/Default.aspx),檢索“多西環(huán)素(doxycycline)”AND“腫瘤(tumor)”O(jiān)R“癌癥(cancer)”關(guān)鍵詞,篩選到10項(xiàng)DOX治療惡性實(shí)體腫瘤的臨床研究(表2)。
在10項(xiàng)臨床研究中,僅1項(xiàng)公布了實(shí)驗(yàn)結(jié)果(NCT01590082)(https://clinicaltrials.gov/ct2/show/results/NCT01590082?view=results)。具體實(shí)驗(yàn)方案為口服DOX劑量200 mg,每日兩次,在第1療程開(kāi)始前的1周和開(kāi)始后的第6天。隨后在每21天周期的第1天使用伊匹單抗3 mg靜脈推注,共4個(gè)周期,口服替莫唑胺200 mg/m2,每21 d周期的第1~4天,共4個(gè)周期。共有9位招募對(duì)象完成了該項(xiàng)研究。雖然,沒(méi)有嚴(yán)重不良事件的發(fā)生(0/9),但是其他副反應(yīng)的發(fā)生使實(shí)驗(yàn)無(wú)法進(jìn)入第二階段,包括貧血(5/9)、非心源性胸痛(1/9)、內(nèi)分泌紊亂(2/9)、視力模糊(3/9)、頭痛(6/9)、皮膚瘙癢(6/9)、下肢浮腫(6/9)、厭食癥(7/9)、嘔吐(9/9)等。但是由于實(shí)驗(yàn)招募的人數(shù)較少,并且研究中DOX與伊匹單抗、替莫唑胺等多種藥物聯(lián)合應(yīng)用,所以無(wú)法得到DOX在惡性實(shí)體腫瘤臨床治療中的確切效果。DOX用于臨床實(shí)體腫瘤患者的可行性,還有待更多大樣本臨床試驗(yàn)結(jié)果的公布。
3 目前DOX研究的局限性
研究表明,DOX可沉積在牙齒和骨骼中,致牙齒產(chǎn)生不同程度的黃染、牙釉質(zhì)發(fā)育不良及齲齒,并可致骨發(fā)育不良。并且,DOX所導(dǎo)致的兒童皮膚損害也不容忽視,所以12歲以下的兒童不應(yīng)使用[49]。
此外,由于DOX主要經(jīng)胃腸吸收和代謝,不會(huì)造成腎臟累計(jì)毒性效應(yīng)。同時(shí),會(huì)對(duì)胃腸道造成一定影響,有報(bào)道稱,使用DOX可能會(huì)發(fā)生胃腸道疾病,如胃腸道刺激、食管潰瘍和食管炎等[50]。并且,孕婦也是DOX使用的禁忌人群,除非在特殊和緊急情況下。因?yàn)樵袐D更容易受DOX的影響而造成肝脂肪變性。動(dòng)物研究也表明,DOX可以通過(guò)胎盤(pán)屏障,破壞胎兒骨骼的生長(zhǎng)和發(fā)育。
隨著制藥技術(shù)的進(jìn)步,腸溶膠囊的普及,已經(jīng)把粉劑造成的胃腸道副作用明顯減輕。研究表明,相比較于粉劑,DOX腸溶膠囊產(chǎn)生的惡心、嘔吐、腹部不適和食欲下降的次數(shù)在統(tǒng)計(jì)學(xué)上顯著減少[51]。另外,隨著鹽酸多西環(huán)素(doxycycline hydrochloride, DCH)等DOX衍生物的出現(xiàn),胃腸相關(guān)副作用也得到明顯的緩解。在一項(xiàng)對(duì)12名人體志愿者的研究結(jié)果顯示,DCH相比較于DOX,具有更低的食管癌發(fā)生率[52]。目前研究熱點(diǎn)致力于使用納米載體包裹DOX,從而減輕其毒副作用。納米粒子包裹藥物技術(shù)可以增強(qiáng)藥物的特性,例如提高靶向性和降低毒副作用等。聚合物納米顆粒(polymer nanoparticles, PRNPs)依賴于藥物在聚合物基質(zhì)中的分散。PRNPs能夠提高DOX安全性,并有效的抑制腫瘤活性[53]。目前有研究者已經(jīng)成功制備了包裹DOX的納米粒子(doxycycline polymeric nanoparticles, DOX-PNPs),在小鼠體內(nèi)顯示出對(duì)實(shí)體艾氏瘤(solid ehrlich carcinoma, SEC)巨大的抗腫瘤潛力,顯示出納米材料包裹DOX的巨大應(yīng)用前景[54]。
4 總結(jié)與展望
綜上所述,DOX具有良好的細(xì)胞內(nèi)滲透能力,可以與血漿蛋白結(jié)合,幾乎可以100%被胃腸道吸收[8]。DOX的抗癌作用機(jī)制涉及多條信號(hào)通路和細(xì)胞因子,在BRCA、COAD、PRAD等多種惡性實(shí)體腫瘤中已被證實(shí)。隨著社會(huì)的進(jìn)步和醫(yī)學(xué)的發(fā)展,目前開(kāi)發(fā)的DCH衍生物、腸溶膠囊和PRNPs包裹藥物等技術(shù),已經(jīng)在動(dòng)物模型中改善了DOX造成的胃腸道癥狀、皮膚毒性等一系列副作用[54]。據(jù)我們所知,DOX具有抗MMP的作用。由于這一功能,它不僅可以作為抗生素藥物,還有作為輔助和新輔助化療藥物的潛力。DOX作為一種MMPs抑制劑,可以阻斷實(shí)體惡性腫瘤細(xì)胞系的增殖和侵襲,以及腫瘤新血管的形成,并有望改善惡性實(shí)體腫瘤患者的生存率[29]。
在未來(lái)的研究中,應(yīng)該設(shè)計(jì)進(jìn)一步的臨床試驗(yàn),特別是高質(zhì)量的Ⅱ-Ⅲ期人體臨床實(shí)驗(yàn)研究,以評(píng)估DOX作為一種抗惡性實(shí)體腫瘤藥物的臨床應(yīng)用可行性和安全性。相信在不遠(yuǎn)的將來(lái),DOX將會(huì)為惡性實(shí)體腫瘤的臨床治療帶來(lái)新的曙光。
參 考 文 獻(xiàn)
Barata P C, Rini B I. Treatment of renal cell carcinoma:? current status and future directions[J]. CA Cancer J Clin. 2017, 67(6): 507-524.
Jayson G C, Kerbel R, Ellis L M, et al. Antiangiogenic therapy in oncology:? current status and future directions[J]. Lancet, 2016, 388(10043): 518-529.
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 9(3): 52-79.
Zhanghuang C, Zhang Z, Mi T, et al. Doxycycline hydrochloride regulates cytoskeletal rearrangement and epithelial-to-mesenchymal transition in malignant rhabdoid tumour of the kidney[J]. Biomed Res Int, 2022, (11)9: 2760744.
Shah M A, Hamid A, Faheem H I, et al. Uncovering the anticancer potential of polydatin: A mechanistic insight[J]. Molecules, 2022, 27(21): 7175.
Hashmi F, Mollapour M, Bratslavsky G, et al. MMPs, tyrosine kinase signaling and extracellular matrix proteolysis in kidney cancer[J]. Urol Oncol, 2021, 39(6): 316-321.
Peltonen R, Hagstr?m J, Tervahartiala T, et al. High expression of MMP-9 in primary tumors and high preoperative MPO in serum predict improved prognosis in colorectal cancer with operable liver metastases[J]. Oncology, 2021, 99(3): 144-160.
Silva S, Cavaco A, Basso B, et al. Therapeutic potential of deflamin against colorectal cancer development and progression[J]. Cancers (Basel), 2022, 14(24): 6182.
Yamaguchi K, Yoshihiro T, Ariyama H, et al. Potential therapeutic targets discovery by transcriptome analysis of an in vitro human gastric signet ring carcinoma model[J]. Gastric Cancer, 2022, 25(5): 862-878.
Considine B, Hurwitz ME. Current status and future directions of immunotherapy in renal cell carcinoma[J]. Curr Oncol Rep, 2019, 21(4): 34.
Dapporto M, Tavoni M, Restivo E, et al. Strontium-doped apatitic bone cements with tunable antibacterial and antibiofilm ability[J]. Front Bioeng Biotechnol, 2022, 9(10): 969641.
Wang Y L, Han Q Q, Gong W Q, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats [J]. J Neuroinflammation , 2018, 15(1): 21.
Ben-Azu B, Omogbiya I A, Aderibigbe A O, et al. Doxycycline prevents and reverses schizophrenic-like behaviors induced by ketamine in mice via modulation of oxidative, nitrergic and cholinergic pathways[J]. Brain Res Bull, 2018, 139: 114-124.
Henehan M, Montuno M, De Benedetto A. Doxycycline as an anti-inflammatory agent: Updates in dermatology[J].J Eur Acad Dermatol Venereol, 2017, 31(11): 1800-1808.
Pei J, Li F, Xie Y, et al. Microbial and metabolomic analysis of gingival crevicular fluid in general chronic periodontitis patients: Lessons for a predictive, preventive, and personalized medical approach[J]. EPMA J, 2020, 11(2): 197-215.
Zhang L, Xu L, Zhang F, et al. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer[J]. Cell Cycle, 2017, 16(8): 737-745.
Lin C C, Lo M C, Moody R R, et al. Doxycycline targets aldehyde dehydrogenasepositive breast cancer stem cells[J]. Oncol Rep, 2018, 39(6): 3041-3047.
Wong M N, Braswell L E, Murakami J W. Doxycycline sclerotherapy of cervical spine aneurysmal bone cysts:? single-institution 13-year experience[J]. Pediatr Radiol, 2022, 52(8): 1528-1538.
Addison C L, Simos D, Wang Z, et al. A phase 2 trial exploring the clinical and correlative effects of combining doxycycline with bone-targeted therapy in patients with metastatic breast cancer[J]. J Bone Oncol, 2016, 5(4): 173-179.
El Zarif T, Yibirin M, De Oliveira-Gomes D, et al. Overcoming therapy resistance in colon cancer by drug repurposing[J]. Cancers (Basel), 2022, 14(9): 2105.
Onoda T, Ono T, Dhar D K, et al. Tetracycline analogues (doxycycline and COL-3) induce caspase-dependent and -independent apoptosis in human colon cancer cells[J]. Int J Cancer, 2006, 118(5): 1309-1315.
Sagar J, Sales K, Taanman J W, et al. Lowering the apoptotic threshold in colorectal cancer cells by targeting mitochondria[J]. Cancer Cell Int, 2010, 10: 31.
Ghasemi K, Ghasemi K. A Brief look at antitumor effects of doxycycline in the treatment of colorectal cancer and combination therapies[J]. Eur J Pharmacol, 2022, 916: 174593.
Yan X, Jiao S C, Zhang G Q, et al. Tumor-associated immune factors are associated with recurrence and metastasis in non-small cell lung cancer[J]. Cancer Gene Ther, 2017, 24(2): 57-63.
Chakraborty S, Jiang C, Gau D, et al. Profilin-1 deficiency leads to SMAD3 upregulation and impaired 3D outgrowth of breast cancer cells[J]. Br J Cancer, 2018, 119(9): 1106-1117.
Alsaadi M, Tezcan G, Garanina E E, et al. Doxycycline attenuates cancer cell growth by suppressing NLRP3-mediated inflammation[J]. Pharmaceuticals (Basel), 2021, 14(9): 852.
Ogut D, Reel B, Gonen Korkmaz C, et al. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells[J]. Folia Histochem Cytobiol, 2016, 54(4): 171-180.
Cui N, Hu M, Khalil R A. Biochemical and biological attributes of matrix metalloproteinases[J]. Prog Mol Biol Transl Sci, 2017, 147: 1-73.
Hadjimichael A C, Foukas A F, Savvidou O D, et al. The anti-neoplastic effect of doxycycline in osteosarcoma as a metalloproteinase (MMP) inhibitor:? A systematic review[J]. Clin Sarcoma Res, 2020, 10: 7.
Fife R S, Rougraff B T, Proctor C, et al.? Inhibition of proliferation and induction of apoptosis by doxycycline in cultured human osteosarcoma cells[J]. J Lab Clin Med, 1997, 130(5): 530-534.
Shen L C, Chen Y K, Lin L M, et al. Anti-invasion and anti-tumor growth effect of doxycycline treatment for human oral squamous-cell carcinoma-in vitro and in vivo studies[J]. Oral Oncol, 2010, 46(3): 178-184.
Kalish J M, Tang X H, Scognamiglio T, et al. Doxycycline-induced exogenous Bmi-1 expression enhances tumor formation in a murine model of oral squamous cell carcinoma[J]. Cancer Biol Ther, 2020, 21(5): 400-411.
Qin Y, Zhang Q, Lee S, et al. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells[J]. Oncotarget, 2015, 6(38): 40667-40679.
Wang S Q, Zhao B X, Liu Y, et al. New application of an old drug:? Antitumor activity and mechanisms of doxycycline in small cell lung cancer[J]. Int J Oncol, 2016, 48(4): 1353-1360.
Rok J, Karkoszka M, Rzepka Z, et al. Cytotoxic and proapoptotic effect of doxycycline - An in vitro study on the human skin melanoma cells[J]. Toxicol In Vitro, 2020, 65: 104790.
孫保存, 張?jiān)娢洌?齊麗莎, 等. 內(nèi)皮抑素和多西環(huán)素抑制黑色素瘤浸潤(rùn)轉(zhuǎn)移相關(guān)蛋白表達(dá)的研究[J]. 中華病理學(xué)雜志, 2006(11): 677-680.
Sun T, Zhao N, Ni C S, et al. Doxycycline inhibits the adhesion and migration of melanoma cells by inhibiting the expression and phosphorylation of focal adhesion kinase (FAK)[J]. Cancer Lett, 2009, 285(2): 141-150.
Wu W, Yu L H, Ma B, et al. The inhibitory effect of doxycycline on cisplatin-sensitive and -resistant epithelial ovarian cancer[J]. PLoS One, 2014, 9(3): e89841.
Chen Z, Wang Y, Liu W, et al. Doxycycline inducible krüppel-like factor 4 lentiviral vector mediates mesenchymal to epithelial transition in ovarian cancer cells[J]. PLoS One, 2014, 9(8): e105331.
Son K, Fujioka S, Iida T, et al. Doxycycline induces apoptosis in PANC-1 pancreatic cancer cells[J]. Anticancer Res, 2009, 29(10): 3995-4003.
Liu H, Tao H, Wang H, et al. Doxycycline inhibits cancer stem cell-like properties via PAR1/FAK/PI3K/AKT Pathway in Pancreatic Cancer[J]. Front Oncol, 2021, 10: 619317.
Yi Y W, Park N Y, Park J I, et al. Doxycycline potentiates the anti-proliferation effects of gemcitabine in pancreatic cancer cells[J]. Am J Cancer Res, 2021, 11(7): 3515-3536.
Yang B, Lu Y, Zhang A, et al. Doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells[J]. PLoS One, 2015, 10(6): e0129138.
Li J, Zhuang C, Liu Y, et al. shRNA targeting long non-coding RNA CCAT2 controlled by tetracycline-inducible system inhibits progression of bladder cancer cells[J]. Oncotarget, 2016, 7(20): 28989-28997.
劉斌, 吳軍正, 關(guān)素敏, 等. PTEN基因聯(lián)合多西環(huán)素抑制黏液表皮樣癌細(xì)胞系端粒酶活性的研究[J]. 華西口腔醫(yī)學(xué)雜志, 2010, 28(5): 532-534.
Galván-Salazar H R, Soriano-Hernández A D, Montes-Galindo D A, et al. Preclinical trial on the use of doxycycline for the treatment of adenocarcinoma of the duodenum[J]. Mol Clin Oncol, 2016, 5(5): 657-659.
Chen Y F, Yang Y N, Chu H R, et al. Role of Integrin αvβ3 in doxycycline-induced anti-proliferation in breast cancer cells[J]. Front Cell Dev Biol, 2022, 10: 829788.
Roomi M W, Kalinovsky T, Rath M, et al. In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors[J]. Int J Oncol, 2014, 44(1): 27-34.
鄒青, 卜艷麗, 騰洪松. 多西環(huán)素不良反應(yīng)文獻(xiàn)概述[J]. 中國(guó)藥物濫用防治雜志, 2016, 22(6): 366-367.
Berger R S. A double-blind, multiple-dose, placebo-controlled, cross-over study to compare the incidence of gastrointestinal complaints in healthy subjects given Doryx R and Vibramycin R[J]. J Clin Pharmacol, 1988, 28(4): 367-370.
Malmborg A S. Bioavailability of doxycycline monohydrate. a comparison with equivalent doses of doxycycline hydrochloride[J]. Chemotherapy, 1984, 30(2): 76-80.
Wulff H, Krieger T, Krüger K, et al. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline-suppressible expression of bioactive human single-chain interleukin 12 in colon cancer[J]. BMC Biotechnol, 2007, 7: 35.
Alshaman R, Alattar A, El-Sayed R M, et al. Formulation and characterization of doxycycline-loaded polymeric nanoparticles for testing antitumor/antiangiogenic action in experimental colon cancer in mice[J]. Nanomaterials (Basel), 2022, 12(5): 857.
Gardouh A R, Attia M A, Enan E T, et al. Synthesis and antitumor activity of doxycycline polymeric nanoparticles:? effect on tumor apoptosis in solid ehrlich carcinoma[J]. Molecules, 2020, 25(14): 3230.