• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields

    2023-02-20 13:15:58JiaShengDong董家生PengchengLu路鵬程PeiSun孫佩YiQiao喬藝JunpengCao曹俊鵬KunHao郝昆andWenLiYang楊文力
    Chinese Physics B 2023年1期
    關(guān)鍵詞:董家鵬程

    Jia-Sheng Dong(董家生), Pengcheng Lu(路鵬程),2, Pei Sun(孫佩), Yi Qiao(喬藝),Junpeng Cao(曹俊鵬), Kun Hao(郝昆),4,5, and Wen-Li Yang(楊文力),4,5

    1Institute of Modern Physics,Northwest University,Xi’an 710127,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3School of Physics,Northwest University,Xi’an 710127,China

    4Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    5Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China

    6School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    7Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: quantum spin chain,integrable systems,Bethe ansatz

    1. Introduction

    Exact solvable models are an important class of models in physics,which not only explain the mechanisms of many important physical phenomena,[1,2]but also are closely related to many fields in physics, such as quantum optics,[3]statistical physics[4]and the AdS/CFT correspondence.[5]The quantummechanical model of magnetism proposed by Heisenberg[6]was certainly the most important integrable system. Eigenvectors and the corresponding eigenvalues of the completely isotropic spin-1/2 Heisenberg model in one-dimension with periodic boundary condition were found in the pioneering work[7]by Bethe in 1931. After that, there have been many important advances in the study of the model,[8–11]one of which is impressive that the spin chain with arbitrary boundary fields was proven to be integrable.[12]Due to the existence of non-parallel boundary fields,the U(1)symmetry of the model is broken,so the conventional Bethe ansatz methods cannot be used to solve it.[13–15]In 2013,by using the off-diagonal Bethe ansatz method(ODBA),[16,17]the spectrum of this model was given by an inhomogeneousT–Qrelation.[18,19]However,due to the existence of inhomogeneous terms in the Bethe ansatz equations(BAEs),the physical properties of the model cannot be obtained directly by using the thermodynamic Bethe ansatz method(TBA).[20,21]

    In response to this problem,a series of important progress has been made recently.Firstly,Jianget al.[22]showed that for the isotropic spin-1/2 chain with arbitrary boundary fields,the two boundaries are decoupled from each other completely in the thermodynamic limit. In addition, Nepomechieet al.[23]derived an expression for the leading correction to the boundary energy in terms of the boundary parameters. Wenet al.[24]showed that the inhomogeneous term in theT–Qrelation can be ignored in the thermodynamic limit and derived the boundary energy by using the TBA method within a certain boundary parameter region. For theXXZspin chain with arbitrary non-diagonal boundary fields,Qiaoet al.[25]gave the surface energy and elementary excitations by using the zero roots of the transfer matrix. For the antiperiodicXXZspin chain, Leet al.[26]proposed an analytic method to derive the patterns of the zero roots of the transfer matrix in the thermodynamic limit. These methods made it possible to study the surface energy and elementary excitations of the quantum integrable systems without U(1)symmetry.

    In this paper, we shall investigate some physical properties of theXXXspin-1/2 chain with arbitrary non-diagonal boundary fields. We find that with the analysis of the BAEs (32), we can get the general zero root patterns of the transfer matrix. Then, according to the numerical analysis of the exact diagonalization of the model, we give the specific distribution of the zero roots corresponding to the ground state of the model under different boundary field conditions in Table 1.Based on these,as well as a set of auxiliary inhomogeneity parameters and the relations(23)satisfied by the eigenvalue of the transfer matrix, we obtain the surface energy and elementary excitations of the model. This paper is organized as follows. We briefly give some reviews about the integrability of the isotropic spin-1/2 chain with arbitrary non-diagonal boundary fields in Section 2. In Section 3, we consider the case of diagonal boundary fields and analyze the root patterns of the eigenvalue of the transfer matrix. Then, we calculate the corresponding ground state energy. In Section 4 we consider the case of arbitrary boundary fields and solve the surface energy and elementary excitations of the model. Finally,we summarize our work in Section 5.

    2. Integrability

    Throughout,Vdenotes a two-dimensional linear space and let{|m〉,m=0,1}be an orthogonal basis of it. We shall adopt the standard notations:for any matrixA ∈End(V),Ajis an embedding operator in the tensor spaceV ?V ?···,which acts asAon thej-th space and as identity on the other factor spaces. ForB ∈End(V ?V),Bi jis an embedding operator ofBin the tensor space, which acts as identity on the factor spaces except for thei-th andj-th ones.

    Let us introduce theR-matrixR0,j(u)∈End(V0?Vj)

    whereuis the spectral parameter. TheR-matrix (1) satisfies the following relations:

    whereφ(u)=η2-u2,t0(ortj) denotes the transposition in the spaceV0(orVj)andP0,jis the permutation operator possessing the property

    TheR-matrix(1)satisfies the quantum Yang–Baxter equation(QYBE)

    We define the monodromy matrices as

    whereV0is the auxiliary space,V1?V2?···?VNis the physical or quantum space,Nis the number of sites and{θj|j=1,···,N}are the inhomogeneity parameters.

    The reflection matricesK±(u)read

    whereηis the crossing parameter,andp,q,ξare the boundary parameters associated with the boundary fields. TheKmatricesK±(u)satisfy the reflection equation(RE)

    and the dual reflection equation(dual RE)

    The reflection matrices have the following crossing relations:

    Now we introduce the double-row monodromy matrixU0(u)

    It can be demonstrated thatU0(u)also satisfies the RE

    The corresponding transfer matrix is given by

    Using the crossing symmetry(2),(10)of theR-matrix and the reflection matrices,we can get

    The QYBE and REs lead to that the transfer matrices with different spectral parameters commute mutually, i.e.,[t(u),t(v)]=0,which ensures the integrability of model(15).Therefore, the transfer matrixt(u) is the generating function of all the conserved quantities of the system.

    The Hamiltonian of the quantumXXXspin-1/2 chain(or Heisenberg chain)with arbitrary boundary fields is given by

    Combining Eqs.(13)and(15),the above Hamiltonian can be expressed by

    For imaginaryη,to ensure a Hermitian Hamiltonian(15),the boundary parameters should be taken as follows:

    For subsequent convenience,we define

    Using the properties of theR-matrix (2), we can obtain the following operator identities:

    where

    From the definition(13)), we know that the transfer matrixt(u) is a polynomial operator ofuwith degree 2N+2.Denote the eigenvalue of the transfer matrixt(u)asΛ(u).

    Combining Eqs.(13),(14)and(18),the eigenvalueΛ(u)satisfies

    Therefore, for a given set of inhomogeneity parameters,Eqs. (21)–(23) can determine the roots{zj|j=1,...,N+1}completely. Now we can parameterize the eigenvalueΛ(u)by its rootszjas In the homogeneous limit{θj=0|j=1,...,N},Eq.(23)can be replaced by[17]

    where the superscript (n) indicates then-th order derivative andn=0,1,...,N-1.

    The eigenvalue of Hamiltonian(15)now can be expressed in terms of zero roots{zj|j=1,...,N+1}as follows:

    3. Diagonal boundary case

    For the diagonal boundary case(ξ=0), the constrained equations(21)and(23)become

    The aboveN+1 equations determineN+1 zeros totally. To give the patterns of zero roots, it is necessary to analyse the distribution of the Bethe roots.

    3.1. Patterns of zero roots

    Relations(1)and(7)imply that

    Combining the imaginary{θj|j=1,...,N},we can get a hermitian transfer matrix

    Combining Eqs.(24)and(29),we know that ifzjis a root ofΛ(u),thenmust be the root.

    Firstly, we consider the parallel boundary case (ξ=0).We try to give all possible patterns of the zero roots with the help of the Bethe roots. It is known that the eigenvalue of transfer matrix(13)can be expressed by[18]

    where

    The corresponding Bethe ansatz equation can be written as

    In the thermodynamic,the Bethe roots are real or form string structures{Im(ul) =ηn/2|n= 0,±1,±2...}.[21]Ifujis a Bethe root, thenmust also be a Bethe root. Combining Eqs. (24) and (30) atu=zj-η/2, we can also find that the zero roots satisfy the Bethe-ansatz-like equations

    The above equation shows that the zero roots are constrained by the Bethe roots.

    3.1.1. Bulk string

    Equation (32) shows that for Im(zj)>0, ifulis one of the Bethe roots, then±ul+ηis the corresponding zero roots. Considering{Im(ul) =ηn/2|n= 0,±1,±2...}, the imaginary parts of the zero roots can be written as{Im(zl)=ηn/2|n=0,±1,±2,±3...}.

    However, forn=1 (uj=α-η/2), the corresponding zero root iszp=α+η/2. This configuration is actually impossible, because=α+η/2 is also a Bethe root, and the zero roots cannot be equal to the Bethe roots, which meanszp/=uj.[17]This is because if we define

    forzp=uj,F(u) is the 2-degree zero point atuj, it requires an additional derivative equation of the BAEs. In this case,the BAEs are overdetermined, so we cannot give general solutions. Foruj=α-η/2, by considering the singularity of Eq. (32), we can give the correct zero roots. Supposing Im(zj)<0, together with a similar analysis, we can obtain that the corresponding zero root iszp=α-3η/2.

    With the above analysis, we conclude that the imaginary parts of the zero roots for the bulk string are{Im(zl)=ηn/2|n=0,±2,±3...}.

    3.1.2. Boundary string

    3.1.3. Additional roots

    Besides these regular zero roots,we should note that there are additional roots, which means that a conjugate pair with imaginary parts neither around±ηn/2 (n ≥2) nor having a simple relation with boundary parameters. These roots are closely related with Eq. (21) and distributed at the boundary of the bulk string. They appear in two cases: (i) they appear symmetrically as pure real roots on the left and right sides of the bulk string and they tend to infinity in the thermodynamic limit; (ii) they appear symmetrically as pure imaginary roots on the upper and lower sides of the bulk string and they have no simple relation with the boundary parameters. Since the energy-related conclusions obtained afterwards are not related to them, we name them here as additional roots for convenience.

    In summary, the possible structures of the zero roots are the combination of the bulk string,boundary string and the additional roots. Once we fix the structure of the bulk string and boundary string,the additional roots can be fixed by Eqs.(26)and(27)easily. In the next section,we will show that by solving Eq.(26)we can obtain the relation between the density of zero roots for the bulk string and the additional roots related to. Then jointly with Eq.(27)we can obtain another condition that constrains the additional roots to determine the relation between the additional roots and the boundary field parameters. In Fig. 1, we give some numerical results of the distributions of the Bethe roots and zero roots for large system size(N=100) at different parameter regions in the ground state.Moreover we can show that the possible structures of zero roots are exactly the same as that we have discussed above.Next we will study the structures of zero roots meticulously for the ground state.

    Fig.1. Some numerical results of the distributions of the Bethe roots and zero roots on the complex plane for large system size(N=100)in the ground state. (a)and(c)The Bethe roots of the ground state corresponding to the select boundary parameters,respectively. (b)and(d)The zero roots of the ground state,respectively.

    3.2. Ground state energy

    A plausible fact is that by choosing a tunable set of nonzero inhomogeneity parameters, we can find that the zero root distributions show stable patterns. For imaginaryη, we choose all{θj}≡{iˉθj}to be imaginary. As shown in Fig.2,we adjust the distribution of the inhomogeneity parameters{θj}from the all-zero case to the non-zero case while the boundary field parametersp,q,ξare fixed. And we find that the zero roots for the bulk string keep a stable 2-strings structure with the introduce of this set of non-zero inhomogeneity parameters,while the real parts of these roots change slightly.By using the Fourier transformation of the auxiliary functionσ(ˉθ), a density of the given inhomogeneity, the distribution of the zero roots of this inhomogeneous system along the 2-strings allows us to derive the density of the zero roots for the bulk string of the corresponding homogeneous system. The density of zero roots for the bulk string of the corresponding homogeneous system can then be obtained by taking the homogeneous limitσ(ˉθ)→δ(ˉθ). And the corresponding homogeneous system is exactly the model we consider.

    In summary,in Fig.3 and Table 1 we give the phase diagram of the configuration of the zero roots for the ground state in different boundary parameter. We should note that there is always a pair of special additional zero roots constrained by Eq. (21). In the following parts, we will show that the unknown pair roots related to ?zxwill not appear in the final result of energy.

    Fig.2. Exact numerical diagonalization results of the zero root distributions in the ground state for N =8. (a) The red asterisks indicateˉz-roots for {ˉθj =0|j=1,...,N} and the blue circles specify the zero roots with the inhomogeneity parameters {ˉθj =0.05 j|j=1,...,N}.(b)The red asterisks indicate the zero roots for{ˉθj =0|j=1,...,N}and the blue circles specify ˉz-roots with the inhomogeneity parameters{ˉθj =0.1j|j=1,...,N}.

    Fig.3. The phase diagram of the configuration of the zero roots for the ground state in the different regions of boundary parameters ?p and ?q with ?η =1.

    Table 1. The patterns of zero roots for the ground state in different regions,where the roots related to ?z0 or ?zx are the additional roots,the roots related to ?zj are the the bulk string, ?z0 is a real number greater than the maximum value in{?zj}and ?zx is a real number greater than ?η/2,and{?zj}are all real.

    where

    So the ground state energy in region F can be written as

    We find that the appearance of the pure imaginary additional roots changes the 2-strings density byδρ,but the energy change caused byδρand the contribution of the additional roots itself cancel each other out exactly. Thus, the ground state energy of region F is equal to that given by Eq. (36).Combining Eq.(37),the specific value of the pair of additional roots related tocan be constrained by Eq. (27) in the thermodynamic limit as

    Through numerical analysis,we find that this pair of additional roots related todoes not change with the number of sitesN.As for other parameter regions, the calculation is exactly the same. Finally,we conclude that the ground state energy for all parameter regions has the same expression as Eq. (36). The result shows that the contributions of the two boundary fields to the surface energy are additive.

    4. Off-diagonal boundary case

    The constrained equations(21)and(23)become

    The only difference between the constrain equations(40),(41)and(26),(27)is a constant coefficient.

    4.1. Surface energy

    Through the previous discussion,we can find that in this case the boundary parameterplays the same role withqin the diagonal boundary case. We can guess that this similarity also existed in the distributions of zero roots for the ground state. The numerical results for the distributions in this case coincide with this guess. In Fig.4,we give some numerical result of the distribution form forN=10 at different parameter regions for the ground state.

    Through the same numerical method and derivation process in theξ/=0 case, we can get the patterns of zero roots corresponding to the ground state with different boundary parameter regions as shown in Fig.3 and Table 1 which take ?pas the horizontal axis and ?qas the vertical axis in this case, and the ground state energy takes

    which is defined byEb=Eg-Ep,whereEgis the ground state energy of the present system andEpis the ground state energy of the corresponding periodic chain.[14]This result indicates that the contributions of the two boundaries to the surface energy are also additive in this case. The DMRG results and our analytic results are shown in Figs.5 and 6. The present result also coincides exactly with that derived in Ref[24].

    Fig.5. Our analytic results of the surface energy for η =1i,ξ =0.

    Fig.6. Comparison of the DMRG results and our analytic results of the surface energy. (a) The DMRG results for N =200 expressed by the red points and our analytic results expressed by the curve for η =1i,p=-4i,ξ =0. (b)The DMRG results for N=200 expressed by the red points and our analytic results expressed by the curve for η =1i,p=1i,q=-0.75i.

    Through the previous analysis of the structure of zero roots, it can be found that the distribution of zero roots on the complex plane can be divided into several categories. By performing different kinds of fine-tuning on the zero roots distribution of the eigenvalue of the transfer matrix corresponding to the ground state,the zero roots distribution of the eigenvalue of the transfer matrix corresponding to the low-energy excited state can be found,and then several possible excitations can be calculated. At the same time,we also verified the existence of the guessed low-energy excited state through numerical analysis. Here we summarize some kinds of excitations.

    4.1.1. Elementary excitation 1

    Comparing with the zero roots distribution of the eigenvalue of the transfer matrix corresponding to the ground state,the two pairs of conjugate pairs{,}will disappear in the zero roots distribution of the eigenvalue of the transfer matrix corresponding to the first kind of low-energy excited state shown in Fig. 7, and two pairs of real numbers{}will appear.For real numbers,the resulting change in the density of the 2-strings is

    The energy of the corresponding excitation is

    Fig.7. The distribution of zero roots at a low-lying excited state of type 1 corresponding to the ground state in Fig.4(a).

    4.1.2. Elementary excitation 2

    The energy of the corresponding excitation is

    In the same way, the excitations caused by the change of the boundary string related topcan be obtained.

    Fig.8. (a)The distributions of zero roots for the ground state with the parameters N=8, ?η=1, ?p=1, ?q=-3,ξ =9.95 and ?q=0.3. (b)The distributions of zero roots for the corresponding low-lying excited state of type 2.

    In addition, compared with the zero roots distribution of the eigenvalue of the transfer matrix corresponding to the ground state and the zero roots distribution of the eigenvalue of the transfer matrix corresponding to other low-energy excited states,two pairs of conjugate pairs{,}may transition to the higher 2-strings and become{,}, wherenis an integer greater than 2, or transition on the imaginary axis and become{)i,±(+}. When the number of sites in the model is limited,we find the energy of these kinds of excitations is not zero through numerical analysis. But in the thermodynamic limit,the energy of excitations of these types is zero.

    5. Conclusion

    We obtain the surface energy and elementary excitations of theXXXspin-1/2 chain with arbitrary non-diagonal boundary fields through a combination of numerical analysis and analytical derivation. Firstly, through the analysis of the BAEs(32),the general patterns of zero roots of eigenvalue of the transfer matrix are obtained in Section 3.Then by using the numerical analysis,the zero roots structure of the ground state and various low-energy excited states are determined. Finally,the zero roots density is determined by the relations(23)satisfied by the eigenvalue of the transfer matrix,while the surface energy and elementary excitations of the model are solved in the thermodynamic limit. The method used here can be generalized to other integrable models solved via the off-diagonal Bethe ansatz.[17,27–30]

    Acknowledgements

    We would like to thank Professor Y. Wang for his valuable discussions and continuous encouragement. The financial supports from the National Key R&D Program of China(Grant No. 2021YFA1402104), the National Natural Science Foundation of China (Grant Nos. 12074410, 12047502,12147160, 11934015, 11975183, and 11947301), Major Basic Research Program of Natural Science of Shaanxi Province,China (Grant Nos. 2021JCW-19 and 2017ZDJC-32), Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000),Double First-Class University Construction Project of Northwest University,and the fellowship of China Postdoctoral Science Foundation (Grant Nos. 2020M680724 and 2022M712580) are gratefully acknowledged.

    猜你喜歡
    董家鵬程
    董家鴻院士
    閆鵬程作品
    大眾文藝(2023年11期)2023-06-16 11:49:14
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*
    在傳統(tǒng)與創(chuàng)新中尋求制衡點
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles
    郭鵬程教授
    久久精品国产亚洲av高清一级| 日韩中文字幕欧美一区二区| 老汉色∧v一级毛片| 午夜精品国产一区二区电影| 丁香六月天网| 极品少妇高潮喷水抽搐| 巨乳人妻的诱惑在线观看| 青春草视频在线免费观看| 国产精品自产拍在线观看55亚洲 | 亚洲精品成人av观看孕妇| 999久久久国产精品视频| 99re6热这里在线精品视频| 久久天躁狠狠躁夜夜2o2o| 十八禁人妻一区二区| av又黄又爽大尺度在线免费看| 91av网站免费观看| 麻豆国产av国片精品| 久久午夜综合久久蜜桃| 国产精品国产三级国产专区5o| 日本欧美视频一区| 亚洲av欧美aⅴ国产| 一本色道久久久久久精品综合| 丝袜美足系列| 新久久久久国产一级毛片| 美女高潮到喷水免费观看| 亚洲美女黄色视频免费看| 一本—道久久a久久精品蜜桃钙片| 中文字幕av电影在线播放| 动漫黄色视频在线观看| 捣出白浆h1v1| 亚洲天堂av无毛| 国产一区二区 视频在线| 久热爱精品视频在线9| 美女中出高潮动态图| 狠狠婷婷综合久久久久久88av| 亚洲伊人久久精品综合| 我要看黄色一级片免费的| 十八禁高潮呻吟视频| 精品人妻熟女毛片av久久网站| 久久精品亚洲av国产电影网| 久久久久精品国产欧美久久久 | 国产男女超爽视频在线观看| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 久久久久久人人人人人| 免费在线观看完整版高清| 视频区欧美日本亚洲| a在线观看视频网站| 免费av中文字幕在线| 欧美成狂野欧美在线观看| 国产男女内射视频| 久久青草综合色| 丝袜脚勾引网站| 男人添女人高潮全过程视频| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看 | av有码第一页| 99香蕉大伊视频| 精品国产乱子伦一区二区三区 | 亚洲av男天堂| 岛国在线观看网站| 日韩欧美一区二区三区在线观看 | 国产又色又爽无遮挡免| 欧美成狂野欧美在线观看| 人人澡人人妻人| 亚洲三区欧美一区| 欧美黄色片欧美黄色片| bbb黄色大片| 日日摸夜夜添夜夜添小说| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 热99re8久久精品国产| 一级毛片精品| www.自偷自拍.com| 国产伦人伦偷精品视频| 可以免费在线观看a视频的电影网站| 高清欧美精品videossex| 涩涩av久久男人的天堂| 天天操日日干夜夜撸| 欧美中文综合在线视频| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 午夜老司机福利片| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩亚洲国产一区二区在线观看 | 国产成人影院久久av| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 久久天堂一区二区三区四区| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 国产麻豆69| 久久精品国产综合久久久| www.自偷自拍.com| 亚洲欧美一区二区三区黑人| 国产人伦9x9x在线观看| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 人妻人人澡人人爽人人| 他把我摸到了高潮在线观看 | 久久久久精品国产欧美久久久 | 永久免费av网站大全| 免费久久久久久久精品成人欧美视频| 狂野欧美激情性bbbbbb| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久电影网| 女性被躁到高潮视频| 日韩精品免费视频一区二区三区| tocl精华| 精品久久久精品久久久| 国产主播在线观看一区二区| 男人操女人黄网站| av电影中文网址| 天天影视国产精品| 亚洲精品日韩在线中文字幕| 淫妇啪啪啪对白视频 | 国产福利在线免费观看视频| 国产一区二区 视频在线| 亚洲精品中文字幕在线视频| 99国产综合亚洲精品| 精品久久蜜臀av无| 精品少妇一区二区三区视频日本电影| 少妇被粗大的猛进出69影院| 一进一出抽搐动态| 国产精品久久久久久精品电影小说| 欧美午夜高清在线| 国产av又大| 亚洲中文日韩欧美视频| 久热这里只有精品99| 国产黄频视频在线观看| av在线播放精品| 国产精品影院久久| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 国产精品熟女久久久久浪| 午夜福利乱码中文字幕| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| kizo精华| 免费不卡黄色视频| 麻豆乱淫一区二区| 国产精品自产拍在线观看55亚洲 | 18禁黄网站禁片午夜丰满| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三 | 国产精品免费视频内射| 国产欧美亚洲国产| 亚洲精品乱久久久久久| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久久久99蜜臀| 女警被强在线播放| 亚洲欧美一区二区三区久久| 一区二区日韩欧美中文字幕| 久久精品亚洲av国产电影网| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| √禁漫天堂资源中文www| 91麻豆精品激情在线观看国产 | 高清黄色对白视频在线免费看| 十分钟在线观看高清视频www| 精品久久久精品久久久| 亚洲全国av大片| 少妇精品久久久久久久| 免费高清在线观看日韩| 免费人妻精品一区二区三区视频| 国产精品亚洲av一区麻豆| 在线 av 中文字幕| 午夜福利视频在线观看免费| 国产亚洲欧美在线一区二区| 这个男人来自地球电影免费观看| 婷婷丁香在线五月| 欧美日韩国产mv在线观看视频| 亚洲欧美激情在线| 在线观看免费视频网站a站| 老汉色av国产亚洲站长工具| 高清黄色对白视频在线免费看| 婷婷丁香在线五月| 欧美人与性动交α欧美软件| 飞空精品影院首页| 在线观看一区二区三区激情| 久久久国产精品麻豆| 久9热在线精品视频| 欧美中文综合在线视频| 亚洲欧美清纯卡通| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一青青草原| 电影成人av| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 成年av动漫网址| 99国产极品粉嫩在线观看| 国产精品久久久av美女十八| 天天操日日干夜夜撸| 国产成人欧美在线观看 | 人人妻人人澡人人爽人人夜夜| 免费高清在线观看视频在线观看| 女警被强在线播放| 亚洲欧美日韩高清在线视频 | 悠悠久久av| 日本精品一区二区三区蜜桃| 国产黄频视频在线观看| 男女国产视频网站| 久久久久国产精品人妻一区二区| 国产精品麻豆人妻色哟哟久久| 国内毛片毛片毛片毛片毛片| 色婷婷av一区二区三区视频| 中文字幕av电影在线播放| 丝袜在线中文字幕| 啦啦啦 在线观看视频| 精品熟女少妇八av免费久了| 少妇猛男粗大的猛烈进出视频| 成人国产一区最新在线观看| 男女之事视频高清在线观看| 免费不卡黄色视频| 一级黄色大片毛片| 日本a在线网址| 人人妻人人添人人爽欧美一区卜| av欧美777| bbb黄色大片| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 欧美久久黑人一区二区| avwww免费| 一区二区av电影网| 国产精品国产三级国产专区5o| 91av网站免费观看| 亚洲成人手机| 捣出白浆h1v1| av一本久久久久| 亚洲少妇的诱惑av| 别揉我奶头~嗯~啊~动态视频 | 后天国语完整版免费观看| 免费在线观看视频国产中文字幕亚洲 | 夜夜夜夜夜久久久久| 黄网站色视频无遮挡免费观看| 91成年电影在线观看| 成人影院久久| 男女无遮挡免费网站观看| 中文字幕人妻熟女乱码| 色老头精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 法律面前人人平等表现在哪些方面 | 人成视频在线观看免费观看| 午夜福利影视在线免费观看| 久久精品人人爽人人爽视色| 色视频在线一区二区三区| 国产在线观看jvid| 亚洲国产av影院在线观看| 建设人人有责人人尽责人人享有的| 男女之事视频高清在线观看| 99九九在线精品视频| 正在播放国产对白刺激| 搡老乐熟女国产| 中文字幕人妻熟女乱码| 一级毛片电影观看| 欧美日韩av久久| 久久久欧美国产精品| 欧美日韩成人在线一区二区| 国产99久久九九免费精品| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| 丝袜脚勾引网站| 人人妻人人爽人人添夜夜欢视频| bbb黄色大片| 高清欧美精品videossex| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 啦啦啦啦在线视频资源| 女性生殖器流出的白浆| 亚洲第一欧美日韩一区二区三区 | av一本久久久久| 少妇粗大呻吟视频| 国产一区二区三区在线臀色熟女 | 欧美精品啪啪一区二区三区 | 久久香蕉激情| 国产亚洲精品一区二区www | 欧美激情久久久久久爽电影 | 9热在线视频观看99| 18禁国产床啪视频网站| 视频区图区小说| 色婷婷久久久亚洲欧美| 国产伦理片在线播放av一区| 在线观看免费午夜福利视频| 中文字幕精品免费在线观看视频| tube8黄色片| 日韩大码丰满熟妇| 欧美大码av| 欧美成人午夜精品| 国产伦理片在线播放av一区| 桃红色精品国产亚洲av| 黄色a级毛片大全视频| 亚洲伊人色综图| 亚洲av日韩在线播放| 欧美精品av麻豆av| 亚洲全国av大片| 国产免费福利视频在线观看| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| 国产欧美亚洲国产| 中文字幕色久视频| 在线观看www视频免费| 国产免费现黄频在线看| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 90打野战视频偷拍视频| 欧美中文综合在线视频| 建设人人有责人人尽责人人享有的| 成人免费观看视频高清| 各种免费的搞黄视频| 丰满饥渴人妻一区二区三| 叶爱在线成人免费视频播放| av在线播放精品| 高清视频免费观看一区二区| 丰满迷人的少妇在线观看| 在线永久观看黄色视频| 精品一区在线观看国产| 他把我摸到了高潮在线观看 | 侵犯人妻中文字幕一二三四区| 国产福利在线免费观看视频| 手机成人av网站| 日本a在线网址| 国产在视频线精品| 成年美女黄网站色视频大全免费| 王馨瑶露胸无遮挡在线观看| 美女脱内裤让男人舔精品视频| 啦啦啦中文免费视频观看日本| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 久热这里只有精品99| 国产男女内射视频| 国产免费av片在线观看野外av| 色综合欧美亚洲国产小说| 国产在线观看jvid| 欧美另类亚洲清纯唯美| 一区二区日韩欧美中文字幕| av一本久久久久| 久久精品国产亚洲av香蕉五月 | 亚洲免费av在线视频| 自线自在国产av| 女警被强在线播放| 亚洲伊人色综图| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 建设人人有责人人尽责人人享有的| 久久久久国内视频| 九色亚洲精品在线播放| 国产黄色免费在线视频| 一边摸一边做爽爽视频免费| 欧美成狂野欧美在线观看| 妹子高潮喷水视频| 成人黄色视频免费在线看| 在线观看www视频免费| 中文欧美无线码| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 一区二区三区乱码不卡18| 美女午夜性视频免费| 老汉色∧v一级毛片| 成年人免费黄色播放视频| 国产免费福利视频在线观看| 国产97色在线日韩免费| netflix在线观看网站| 精品一区二区三卡| 免费看十八禁软件| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 各种免费的搞黄视频| 蜜桃国产av成人99| 日本a在线网址| 热re99久久国产66热| 国产精品国产av在线观看| av片东京热男人的天堂| 另类精品久久| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 精品一品国产午夜福利视频| 精品一区二区三区四区五区乱码| 天堂俺去俺来也www色官网| 男女之事视频高清在线观看| 窝窝影院91人妻| 国产精品国产av在线观看| av片东京热男人的天堂| 婷婷色av中文字幕| 亚洲国产欧美一区二区综合| 午夜91福利影院| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 香蕉丝袜av| 国产精品熟女久久久久浪| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 亚洲av电影在线进入| 一本久久精品| 亚洲欧美一区二区三区黑人| 久久国产精品影院| 免费观看a级毛片全部| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 日韩 欧美 亚洲 中文字幕| 国产精品欧美亚洲77777| kizo精华| 亚洲色图综合在线观看| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | av有码第一页| 高潮久久久久久久久久久不卡| 天天影视国产精品| 欧美少妇被猛烈插入视频| 久久天堂一区二区三区四区| 一区二区三区四区激情视频| 亚洲九九香蕉| 97人妻天天添夜夜摸| 汤姆久久久久久久影院中文字幕| 午夜视频精品福利| 操美女的视频在线观看| 一区福利在线观看| 91老司机精品| 久久国产精品大桥未久av| 欧美性长视频在线观看| 18在线观看网站| 国产成人欧美| 亚洲免费av在线视频| 男人添女人高潮全过程视频| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 丰满少妇做爰视频| 亚洲黑人精品在线| 亚洲精品在线美女| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| 正在播放国产对白刺激| 性高湖久久久久久久久免费观看| 一级毛片精品| 成年美女黄网站色视频大全免费| 99热全是精品| 欧美日韩福利视频一区二区| 国产一区有黄有色的免费视频| 高清av免费在线| 热99久久久久精品小说推荐| 黄色毛片三级朝国网站| 日本a在线网址| 亚洲精品第二区| 一区在线观看完整版| 老熟女久久久| 国产男人的电影天堂91| 亚洲国产精品999| 在线观看免费高清a一片| 叶爱在线成人免费视频播放| 狂野欧美激情性bbbbbb| 日韩有码中文字幕| 少妇精品久久久久久久| 青春草亚洲视频在线观看| 国产欧美亚洲国产| 超碰成人久久| 国产精品偷伦视频观看了| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9 | 97精品久久久久久久久久精品| 麻豆国产av国片精品| 涩涩av久久男人的天堂| 国产激情久久老熟女| 青春草视频在线免费观看| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 精品熟女少妇八av免费久了| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 男男h啪啪无遮挡| 亚洲精品粉嫩美女一区| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 中文字幕色久视频| 丝袜在线中文字幕| 香蕉国产在线看| 狂野欧美激情性bbbbbb| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 成人国产av品久久久| 婷婷成人精品国产| 视频在线观看一区二区三区| 午夜激情av网站| 欧美在线一区亚洲| 超碰成人久久| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 日韩三级视频一区二区三区| 青春草亚洲视频在线观看| 91麻豆精品激情在线观看国产 | 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 亚洲精品中文字幕在线视频| 如日韩欧美国产精品一区二区三区| 一边摸一边做爽爽视频免费| 久久久久国内视频| 又紧又爽又黄一区二区| 亚洲激情五月婷婷啪啪| 九色亚洲精品在线播放| av网站免费在线观看视频| 欧美性长视频在线观看| 91成年电影在线观看| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产淫语在线视频| 人妻久久中文字幕网| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 国产精品影院久久| 久久性视频一级片| 妹子高潮喷水视频| 香蕉国产在线看| 国产成人欧美| 亚洲人成电影免费在线| 国产一级毛片在线| 国产欧美日韩一区二区精品| 蜜桃国产av成人99| 欧美人与性动交α欧美精品济南到| a 毛片基地| 最近最新免费中文字幕在线| av免费在线观看网站| 日本a在线网址| a 毛片基地| 国产精品偷伦视频观看了| 久久人人97超碰香蕉20202| 亚洲精品乱久久久久久| 他把我摸到了高潮在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 91九色精品人成在线观看| 汤姆久久久久久久影院中文字幕| 极品少妇高潮喷水抽搐| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| www.精华液| 色94色欧美一区二区| 一二三四在线观看免费中文在| 女警被强在线播放| 国产欧美日韩一区二区三 | 亚洲精品粉嫩美女一区| 午夜激情av网站| 亚洲国产av影院在线观看| 1024香蕉在线观看| 亚洲欧美清纯卡通| 国产欧美日韩一区二区精品| h视频一区二区三区| 丁香六月欧美| 中国美女看黄片| 99久久人妻综合| 成人18禁高潮啪啪吃奶动态图| 少妇裸体淫交视频免费看高清 | 亚洲精品自拍成人| 亚洲伊人色综图| 亚洲情色 制服丝袜| 成年美女黄网站色视频大全免费| 免费在线观看影片大全网站| 亚洲国产中文字幕在线视频| 啦啦啦 在线观看视频| 国产精品一区二区精品视频观看| 色婷婷av一区二区三区视频| 一本一本久久a久久精品综合妖精| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久小说| 男人添女人高潮全过程视频| 啦啦啦视频在线资源免费观看| 麻豆av在线久日| 国产亚洲av片在线观看秒播厂| 亚洲精品久久午夜乱码| cao死你这个sao货| 亚洲伊人色综图| 人人澡人人妻人| 欧美精品一区二区大全| av线在线观看网站| 黑人欧美特级aaaaaa片| 在线看a的网站| 丝瓜视频免费看黄片| 成人影院久久| 亚洲七黄色美女视频| 91字幕亚洲| 精品第一国产精品| 永久免费av网站大全| 人人妻,人人澡人人爽秒播| 青青草视频在线视频观看| 亚洲av欧美aⅴ国产| 99久久人妻综合| 色视频在线一区二区三区| 天堂中文最新版在线下载| 成年av动漫网址| 伦理电影免费视频| 亚洲欧美精品自产自拍| 欧美+亚洲+日韩+国产| 搡老乐熟女国产| 国产精品.久久久| av不卡在线播放| 国产色视频综合| 日本欧美视频一区| 在线观看免费高清a一片| 99国产精品一区二区蜜桃av | 亚洲专区字幕在线| 中文欧美无线码|