• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*

    2021-07-30 07:39:46JingChunLi李景春JiaQiDong董家齊XiaoQuanJi季小全andYouJunHu胡友俊
    Chinese Physics B 2021年7期
    關(guān)鍵詞:董家

    Jing-Chun Li(李景春) Jia-Qi Dong(董家齊) Xiao-Quan Ji(季小全) and You-Jun Hu(胡友俊)

    1Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen 518000,China

    2University of California,Irvine,California 92697,USA

    3Southwestern Institute of Physics,Chengdu 610041,China

    4Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,China

    Keywords: neoclassical tearing mode,magnetic island,electron cyclotron current drive,numerical modelling

    1. Introduction

    Tearing modes are instabilities caused by magnetic reconnection. Neoclassical tearing mode (NTM) is a new tearing instability in toroidal plasma,which appears and is recognized as a factor to degrade plasma performance and may even lead to disruptions when the driven force of bootstrap current is considered.[1-4]So far,people have come up with many ways to inhibit NTM,including the use of electron cyclotron current drive (ECCD),[5,6]lower hybrid current drive,[7,8]externally applied resonant magnetic perturbations,[9,10]neutral beam injection,as well as using plasma rotation.Among those,ECCD is one of the most effective ways since it can deposit current in plasma region flexibly,and the current drive efficiency can reach a high level as well.[11]This paper will focus on NTM stabilization by ECCD in HL-2M tokamak configuration.

    Presently, many devices such as DIII-D, ASDEX Upgrade,[12,13]and JT-60U[14]have shown the suppression of neoclassical tearing modes (NTM) with ECCD. The tearing mode was successfully suppressed on the HL-2A device.[15]Investigation onm/n= 1/1 internal mode coupling to produce NTM is also carried out on EAST.[16]Since 2012, research on real-time control of NTM has been conducted on DIII-D. In this case, the gyrotron remains closed until NTM is detected. The gyrotron is immediately opened to suppress NTM when NTM is detected. If detection and alignment are early enough,this technique could quickly suppress NTM.Experiments have found that an increase in the fusion gain factor,Q, can be observed when NTM plus ECCD is applied.[17]In addition,recent experiments show that fueling deuterium pellets can partially stabilize them/n=2/1 NTM. Corresponding Modified Rutherford’s equation(MRE)calculations show that the ECCD current required for complete NTM stabilization will be greatly reduced when transportation is enhanced atO-point.[18]Theoretically,there are three ways to study the NTM and its suppression by ECCD.One is to use the generalized Rutherford equation(GRE)[19,20]to study the evolution of the island widthw, and the effect of ECCD on NTM. The second to solve the nonlinear MHD equation to describe the island behavior.[21,22]The third is to use the Vlasov gyro-kinetic code to study non-linear evolution of a magnetic island.[23]The magnetic island is a system with multiple spatial scales for the third case. In tokamak,the poloidal wavelength of the island is the order of the minor radius, and its width can be order of the ion Larmor radius or smaller. For this reason,the dynamic of tearing mode has been studied in the past using gyro-kinetic theory. Recent gyrokinetic study also has found that turbulence can provide seed magnetic islands for NTM by creating magnetic structures of ion gyroradius scale in radial direction, and NTM can bypass the linear growth phase.However, in general, for the suppression of NTM, the fluid model is sufficiently accurate.[24]In addition, since the time scale is quite large when calculating the evolution of NTM using gyrokinetics, the simulation of kinetics will consume considerable computing resources. In addition,the calculation accuracy is also particularly high in order to ensure the convergence of long-term calculations. Surely, the advantage of kinetic simulation is that it can accurately study the evolution of the magnetic island in high-temperature plasma,and study the influence of kinetic effects of ions on the evolution of the magnetic island.[25]

    HL-2M is a new medium-sized tokamak being manufactured by SWIP.It is committed to supporting the key physics and technology research of ITER and CFETR[26]. The first discharge was carried out at the end of 2020. HL-2M is designed to have highβvalue, and it takes advantage of the separable toroidal field (TF) coil to improve the plasma performance,thus exploring the technical and engineering potential of ITER and future fusion reactors.[27,28]Since HL-2M is expected to have high fraction of bootstrap current,the NTM on it will be extremely destructive. Currently, the NTM realtime control system on HL-2M is also under construction.It is necessary to simulate the evolution and suppression of NTM before the experiment to provide a certain reference to the upcoming experiments.

    In this paper, we will study the NTM and its stabilization with coupling ray-tracing code and MHD code. It is found that the deposition location can be effectively controlled by changing the poloidal angle. We show that 3.0 MW and 2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2) NTMs, respectively. The non-modulated ECCD, radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization. The time required for suppression of(3,2)mode is shorter than that required for the suppression of (2,1) mode. In addition, the time needed for complete stabilization at different initial island width has also been quantitatively presented.

    The rest of this paper is organized as follows. The model of ray-tracing code and NTM fluid equation is introduced in Section 2. In Section 3, we report the results of numerical study for electron cyclotron wave heating and current drive,and the process of NTM stabilization in HL-2M configuration.Brief conclusions are given in Section 4.

    2. Modeling

    2.1. TORAY code

    We use the TORAY code to calculate the trajectories of the electron cyclotron wave and the driven current. TORAY uses the dispersion relation of cold plasma to simulate wave trajectories. Two models(Cohen and Lin-Liuet al.[29])could be used to calculate ECCD in general geometry. TORAY code mainly solves the wave ray-tracing equation

    wheresis the arc length along the ray path,kis the wave number,xis the spatial position,andDis the real part determined from the dispersion relation given by a cold plasma approximation,D(k,wr,x)=0,wherewris the wave frequency. The ECW power absorbed by the plasma is given by the integral along the ray path

    where the imaginary part ofkis obtained from solving the dispersion relation. For ECCD,Cohen model includes relativistic, electron-ion collisions, and trapped particle effects. Lin-Liu has noted that the current drive efficiency,J/Pd, which calculates the ECCD,requires division by〈B〉. This is approximately accurate by dividingJ/Pdwith 1+ε, whereεis the inverse aspect ratio(BmaxBmin)/(Bmax+Bmin)of device,since〈B〉is not currently available to TORAY.

    At present,TORAY has been performed a series of benchmarks against other linear and quasi-linear ray-tracing codes,such as Gaussian beam codes, and quasi-optical codes.[30-32]Here in this work, we use thirty rays with different Gaussian distributions,and adopt the Lin-Liu model to calculate the current drive efficiency.The beam width is 2 cm.For TORAY,the poloidal injection angleαrefers to the angle measured from the vertical direction counter-clock-wisely. The toroidal injection angleβrefers to the angle measured counterclockwise along the major radius on the equatorial plane at the launching point.

    2.2. Model for neoclassical tearing mode

    The growth rate of NTM is calculated by the TM8 code in this paper,namely,we solve following MHD equations in a cylindrical configuration:[33]

    where (d/dt) = (?/?t)+v·?,v= ?φ×et,j= ?2ψ-2nB0t/(mR) being the toroidal plasma current density,jb=-cb(ε1/2/Bp)nedTe/drbeing the bootstrap current density calculated from electron temperatureTeself-consistently,

    wherecbin the expression ofjbis a constant of the order of unity,andjdis the radio frequency(RF)driven current density along theetdirection.Eis the equilibrium electric field;μis the plasma viscosity;Bpis the poloidal magnetic field;ρis the plasma mass density;pis the plasma pressure;ε=r/Ris the inverse aspect ratio.χ⊥andχ‖are the perpendicular and parallel transport coefficients,andQis the heating power. For TM8,the normalization scheme is as follows:the length to the minor radiusa, the timettoτR, the helical flux toaB0t,vtoa/τR,andTeandneto their values at the magnetic axis,whereτR=a2μ0/ηis the resistive time.

    Meanwhile,we consider the transport of fast electron

    whereχ⊥fandχ‖fare the perpendicular and parallel transport coefficients of the fast electrons, and 1/vfis the slow down time of the fast electrons. The effect of electron cyclotron current drive on NTM is entered through the fast electron source term, and the fast electron source densitynfsdue to the EC waves is expressed as

    wherercdis the central RF deposition point;wcddenotes the RF characteristic width;Π(h0,ΔhEC)is a square box function for considering the wave deposition profile along the helical angleh=mθ+nξ. We setΠ(h0,ΔhEC)=1 forhon<h0<hoff, andΠ(h0,ΔhEC)=0 elsewhere.h0is the ECW deposition center and is computed in each time step to compare with that of the magnetic island. ΔhEC=mδθ+nδξ, is the instantaneous wave deposition width along the helical angleh. Besides,we sethon=-πandhoff=πfor non-modulated current drive (NMCD), andhon=-π/2 andhoff=π/2 for modulated current drive (MCD) which meansh0only varies in the half period from-π/2 toπ/2 in MCD cases.

    3. Numerical results

    Now we use the two modeling to investigate the evolution of NTM and the effect of ECCD on it. The two models couples through Eqs.(4)and(7).

    3.1. ECW power absorption and current drive in HL-2M

    Firstly,we use TORAY to evaluate the ECW heating and current drive performance under HL-2M configuration. The HL-2M tokamak parameters are as follows: plasma major radiusR=1.78 m,minor radiusa=0.65 m,the toroidal magnetic fieldBt=2.2 T,plasma currentIP=1.2 MA,elongationκ=1.87, and triangularityδ=0.45. The scenarios of the single-null diverted HL-2M equilibria are constructed with the EFIT code.[34]The plasma density and temperature profiles are given as

    wherenec(Tec)andnea(Tea)are the electron density(temperature) in core and at edge, respectively.i=1 ands=1/3 are the empirical indexes. We setnec= 6.0×1019m-3,nea=1.5×1019m-3,Tec=6 keV,Tea=0.05 keV. The effective chargeZeff=1.8 with a flat profile is assumed.

    Shown in Fig. 1 is the HL-2M equilibrium, as well as the electron cyclotron wave trajectories on a poloidal plane.The pink lines in Figs. 1(a) and 1(b) are the contours of the helical flux surfaces of (2,1) and (3,2) magnetic islands. The electron cyclotron wave is injected from the upper launcher port. For the 2/1 mode, the rational surface location is atρ=0.58, whereρ=(φ/φmax)1/2is the square root of normalized toroidal flux, and the required poloidal injection angle is about 120°. For the 3/2 mode, the inner side is closer to the plasma center, and the poloidal injection angle needs to be increased(the corresponding poloidal injection angle in the Fig.1(b)is 128°), the wave can be deposited near the rational surface ofρ=0.46. Therefore, for NTM suppression,the issue of radial misalignment could basically be solved by adjusting the poloidal injection angle in experiments. From the results of the previous injection angle scanning, to cover the radial range ofρ=0.5-0.9,the required poloidal injection angle range is about 30°(from 98°to 128°).[35]

    Fig.1. The HL-2M equilibrium,and the electron cyclotron wave trajectories on a poloidal plane.The pink line in(a)and(b)are the contours of the helical flux surfaces of(2,1)and(3,2)magnetic islands.

    Figure 2 shows a radial profiles of ECW power deposition and driven current density with different poloidal injection angles of 120°and 128°. The power absorption and driven current in Fig. 2 corresponds to the wave trajectories in Fig. 1. It can be seen that the increment of the poloidal angle also increases the current drive efficiency to some extent. In both cases, the absorption of wave power is 100%.The ECCD efficiency(n(20)R(m)I(A)/P(W))in the two cases with poloidal angles of 120°and 128°is about 0.011 and 0.014×1020A/W/m2, respectively. Since our focus here is on the suppression of NTM by ECCD,we will not give more calculation results of ECCD in the HL-2M configuration. One can refer to Ref.[35]for more detailed calculations. However,we could still make a summary: (i) Increasing the poloidal angle moves the wave deposition position to the plasma core;(ii) Both adjusting the toroidal angle (within a certain range)and increasing the plasma core temperature increase the current drive efficiency of the wave;(iii)Wave injected from the upper launcher port drives larger plasma current than midplane injection. Therefore, an upper launcher port has been designed for the ECW system in HL-2M.

    Fig. 2. Radial profile of ECW power deposition and driven current density with different poloidal injection angles 120° (a),(b)and 128° (c),(d).

    3.2. Neoclassical tearing mode stabilization

    Now we substitute the driven current calculated in the previous section into Eqs.(6)and(7)to simulate the process of NTM suppression. Table 1 shows the input parameters of the TM8 codes. It should be noted that the poloidal angles have been adjusted in order to guarantee that the current density is deposited on the rational surface,and thewcdin Table 1 is the half-width of current density profile.

    Table 1. Simulation parameters.

    In order to study the stabilization of NTM, we first explore the influence of ECCD on NTM by changing the amplitudes of driven current. Figure 3 presents the evolution of the NTM magnetic island in different cases. The black line corresponds to the modulated ECCD cases with input wave powerP=3 MW, the red dotted line to the non-modulated ECCD case with input wave powerP=3.0 MW.In the modulated case, it indicates that 3MW ECW fully stabilizes the(2,1)NTM mode.Increasing the ECW power reduces the time needed for the complete suppress of NTM,while reducing the ECW power leads to the incomplete stabilization of NTM,and makes the magnetic island width saturated at a moderate value.On the other hand,the ECW power(3 MW)that is enough to control (2,1) NTM in modulated case cannot fully stabilize the NTM in the non-modulated case. Higher ECW power is needed for NTM suppression with NMCD. It is also worth pointing out that the saturation magnetic island width of the NTM in the simulation is 0.34awhen there is no ECCD.Compared with the magnetic island width in HL-2A(~0.14a),this value is larger,but it is reasonable because HL-2M is set to be highβplasma, and has a larger fraction of bootstrap current,and,therefore,the saturation width of magnetic island is relatively large.

    Fig.3. The evolution of the NTM magnetic island width in different cases:the black lines correspond to the modulated ECCD cases with different wave input power,the red dotted line to the non-modulated ECCD case with wave input power P=3.0 MW.

    Figure 4 depicts the evolution of the(2,1)NTM magnetic island of lager characteristic widthwcdand during radial misalignment ECCD.It can be seen that when the radial deviation reaches a quarter of half-width of the current profile,the ECW power, that can completely stabilize the NTM in absence of deviation, no longer fully suppress the (2,1) NTM, but only reduces the saturation width of the magnetic island to a lower level.The value of this lower level is 0.05ain our calculations.In addition,increasing the half-width of the current profile also reduces the effect of NTM suppression. The 3 MW ECCD decreases the island width to 0.25aonly whenwcdis increased by 0.5 times. The NTM suppression effect is sensitive to the width of driven current profile. Our previous simulation with scanning of the poloidal injection angle indicates that a smaller poloidal injection angle corresponds to a larger ECCD characteristic width when the ECW wave is launched in the upper launch port. Therefore, ECW emission with a large poloidal injection angle is beneficial to NTM suppression.

    Fig. 4. The evolution of the (2,1) NTM magnetic island width with radial misalignment ECCD and lager characteristic width,wcd.

    Figure 5 shows the evolution of the(3,2)NTM magnetic island in different ECW power level with both modulated and non-modulated ECCD.It is shown that after linear growth of(3, 2) NTM mode, the magnetic island width at saturation is 0.115awithout ECCD.2.5 MW ECCD completely suppresses NTM,and 1 MW ECW power only reduces the island width to its 1/4 in the MCD cases;3 MW ECW power quickly reduces the island width to zero. 2.5 MW of non-modulated current does not completely stabilize NTM,and only reduces the size of the magnetic island to its 3/4. More EC wave power input is needed in this case in order to fully suppress the magnetic island.

    Fig.5. The same as in Fig.3,but for(3,2)NTM stabilization.

    Figure 6 gives the same plot as in Fig. 4, but for (3,2)NTM,for which the influence of radial mismatch and current profile width on NTM suppression effect is similar to that of(2,1)mode. Increasing of the current profile width and radial deviation increase power threshold for complete suppression of NTM. However, the current profile width and radial deviation has weaker influence on the (3,2) mode suppression than they do on (2,1) mode. The 2.5 MW ECCD could still suppress the island width to 0.03awhenwcdis increased by 0.5 times, meaning that the ECCD reduces the magnetic island width by 3/4 in such a case. Figure 6 also indicates that(2,1)mode is more difficult to be suppressed than(3,2)mode,and has a greater deleterious impact on plasma performance improvement, which is consistent with the results from La Haye.[36]It is also should be noted that our simulation considers the NTM with neoclassical effect,because if the bootstrap current is not considered, the magnetic island saturation will be lower than the magnetic island saturation level presently here. Especially for the (3,2) mode, if the neoclassical effect of the bootstrap current is not incorporated, the tearing mode will not be excited.

    Fig.6. The same as in Fig.4,but for(3,2)NTM control.

    3.3. Time needed to suppress the neoclassical tearing mode

    Now we come to study the time needed to suppress both the (3,2) and (2,1) mode systematically. Figure 7 shows the time necessary to reduce the island to 1/3 of its initial size(solid line)and for complete stabilization(dashed line)versus ECW power, for both the (3,2) mode (a) and the (2,1) mode(b). It demonstrates that the time required for suppression of(3,2) mode is shorter than that for (2,1) mode. The time required to completely suppress(2,1)mode is about 0.2 s,while it is 0.128 s that required to suppress (3,2) mode when the power is 3.0 MW.Overall,the time for suppress of(3,2)mode shorter.This is reasonable since the bootstrap current is significantly larger at theq=2/1 than that at theq=3/2 surface,and thus the current to be replaced is larger and the power needed is larger as well. In other words, the time needed for(3,2)mode suppress should be shorter when input wave power are the same. On the other hand, when one reduces the magnetic island to 1/3 of the saturation value, similarly, the suppression time could also be shortened.

    Fig.7. Time necessary to reduce the island to 1/3 of saturation island width value (solid line) and for complete stabilization (dashed line) versus ECW power,for both the(3,2)mode(a)and the(2,1)mode(b).

    Time needed for complete stabilization versus initial island width (normalized to the saturation width) is shown in Fig. 8 for both the (2,1) and the (3,2) modes. It can be seen that the earlier the ECCD is placed,the shorter the time needed to fully suppress NTM.The relationship between the required time andwiniis linear for (3,2) mode, while there is also a weak linear relationship for(2,1)mode. What should be noted is that the input power in Fig.8 is 5 MW.One can still see that the time for suppression of(3,2)mode is shorter than the that for(2,1)mode. The time required for suppression of the two is very close when the initial magnetic island is small. This result seems similar to the simulation result in ITER.[37]

    Fig. 8. Time needed for complete stabilization versus ECW initial island width(the island width when ECW power is added,normalized to the saturation width),for both the(2,1)and the(3,2)modes.

    4. Conclusion

    Investigation of neoclassical tearing mode and its suppression by electron cyclotron current drive (ECCD) have been performed for HL-2M tokamak. The electron cyclotron wave driven current capability is evaluated. It is found that the deposition location can be effectively controlled by changing poloidal injection angle. The validation of electron cyclotron wave heating and current drive has been demonstrated for the upper launcher port. The required poloidal injection angle range is about 30°(from 98°to 128°)in order to cover the radial range ofρ=0.5-0.9. The absorption of the wave power reaches 100%,while current drive efficiencies reach the order of 0.014×1020A/W/m2with the upper launcher emission.

    For the NTM suppression, we show that 3.0 MW and 2.5 MW modulated ECCD can completely stabilize(2,1)and(3,2) NTMs, respectively. The non-modulated ECCD, radial misalignment as well as current profile broadening have deleterious effect on the NTM stabilization. The time required for suppression of(3,2)mode is shorter than that required for the suppression of(2,1)mode. We find that the earlier the ECCD is placed,the shorter the time needed to fully suppress NTM.And the relationship between the required time andwiniis basically linear.

    In general, the total electron cyclotron wave current of 5 MW is sufficient to have a full stabilization of both (2,1)and(3,2)modes. In addition,the plasma temperature we set is lower than the expected when calculating the ECCD.From the current expected parameters,the plasma center temperature of HL-2M will be higher than 6 keV.Increasing the temperature will significant increase the current drive efficiency. Therefore,our simulation here gives a conservative EC wave power input for full suppression of(2,1)and(3,2)modes. Up to 30%higher CD efficiencies are predicted if the plasma has a core temperature of 10 keV,at the cost of higher ohmic heating and other auxiliary heating.

    Acknowledgments

    The authors would like to thank X. Wang at HIT, Min Xu at SWIP,Q.Yu, X.Wang, and L.Xue for fruitful discussions. J. C. Li also thanks the High-performance Computing Platform of Peking University.

    猜你喜歡
    董家
    董家鴻院士
    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
    大功率激電測(cè)深方法在豫西董家埝銀礦床勘查中的應(yīng)用
    學(xué)習(xí)是進(jìn)步階梯,做不放棄的自己
    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles
    董家口
    紅巖(2018年6期)2018-11-16 12:27:24
    填成語(yǔ)
    老友(2018年3期)2018-01-22 04:01:48
    補(bǔ)唐詩(shī)慶建軍節(jié)
    老友(2017年8期)2017-02-07 03:19:24
    安丘董家莊漢畫(huà)像石墓主人之謎
    大眾考古(2014年2期)2014-06-26 08:29:32
    高清av免费在线| 亚洲国产成人一精品久久久| 亚洲欧美一区二区三区久久| 成年女人毛片免费观看观看9 | 美女中出高潮动态图| 99九九在线精品视频| 精品欧美一区二区三区在线| 成人三级做爰电影| 欧美日韩亚洲国产一区二区在线观看 | 色精品久久人妻99蜜桃| 亚洲免费av在线视频| 日日摸夜夜添夜夜爱| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 日韩大码丰满熟妇| 国产一区二区 视频在线| 少妇 在线观看| 久久精品熟女亚洲av麻豆精品| 99精国产麻豆久久婷婷| 在线av久久热| 国产在视频线精品| 欧美av亚洲av综合av国产av| 男女下面插进去视频免费观看| 各种免费的搞黄视频| 精品国产国语对白av| 国产欧美日韩一区二区三区在线| 国产免费现黄频在线看| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 超碰97精品在线观看| 亚洲成人国产一区在线观看 | 丝袜在线中文字幕| www.av在线官网国产| 青草久久国产| 免费一级毛片在线播放高清视频 | 激情视频va一区二区三区| 考比视频在线观看| 亚洲一区二区三区欧美精品| 搡老乐熟女国产| 97精品久久久久久久久久精品| 久久精品aⅴ一区二区三区四区| 国产成人精品无人区| 各种免费的搞黄视频| 国产精品久久久久成人av| 91成人精品电影| 成人免费观看视频高清| 国产精品一区二区在线观看99| 国产免费视频播放在线视频| 日日夜夜操网爽| 色播在线永久视频| 亚洲国产最新在线播放| 亚洲中文日韩欧美视频| 侵犯人妻中文字幕一二三四区| 青春草视频在线免费观看| 男女之事视频高清在线观看 | 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 香蕉丝袜av| 成人国语在线视频| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 电影成人av| 亚洲精品国产一区二区精华液| 王馨瑶露胸无遮挡在线观看| 国产片特级美女逼逼视频| 91成人精品电影| avwww免费| 亚洲欧美精品自产自拍| 国产99久久九九免费精品| 精品少妇久久久久久888优播| 亚洲成人免费电影在线观看 | 午夜91福利影院| 国产高清视频在线播放一区 | 视频在线观看一区二区三区| www.熟女人妻精品国产| 亚洲五月色婷婷综合| 1024香蕉在线观看| 麻豆国产av国片精品| 日本av手机在线免费观看| 婷婷色av中文字幕| 国产成人精品在线电影| 亚洲成国产人片在线观看| 2021少妇久久久久久久久久久| 久久国产精品男人的天堂亚洲| 高清黄色对白视频在线免费看| 美女扒开内裤让男人捅视频| 国产精品一区二区精品视频观看| 久久av网站| av福利片在线| 91九色精品人成在线观看| 国产野战对白在线观看| 亚洲国产欧美一区二区综合| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 黄色 视频免费看| 国产三级黄色录像| 在线av久久热| 亚洲熟女毛片儿| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 国产免费一区二区三区四区乱码| 一区二区日韩欧美中文字幕| 汤姆久久久久久久影院中文字幕| 99热国产这里只有精品6| 国产精品三级大全| 国产一区亚洲一区在线观看| 亚洲免费av在线视频| 一本色道久久久久久精品综合| 免费在线观看日本一区| 午夜激情av网站| 国产野战对白在线观看| 九草在线视频观看| 精品国产一区二区久久| 欧美精品啪啪一区二区三区 | 日本黄色日本黄色录像| 首页视频小说图片口味搜索 | 91国产中文字幕| 脱女人内裤的视频| 亚洲国产毛片av蜜桃av| 日韩人妻精品一区2区三区| 欧美大码av| 中文字幕亚洲精品专区| 亚洲,欧美,日韩| 成人亚洲精品一区在线观看| 一边摸一边做爽爽视频免费| 91老司机精品| 久久精品国产综合久久久| 久久国产精品影院| av在线老鸭窝| 岛国毛片在线播放| 99国产精品一区二区蜜桃av | 美女大奶头黄色视频| av网站免费在线观看视频| 亚洲五月婷婷丁香| 人人妻人人澡人人看| 成人国语在线视频| 黄色怎么调成土黄色| 777米奇影视久久| 国产精品 欧美亚洲| 午夜福利视频精品| 一边摸一边抽搐一进一出视频| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 午夜激情av网站| 亚洲少妇的诱惑av| 亚洲精品中文字幕在线视频| 婷婷成人精品国产| 亚洲av在线观看美女高潮| 国产精品香港三级国产av潘金莲 | 午夜久久久在线观看| 久久国产亚洲av麻豆专区| www日本在线高清视频| 91字幕亚洲| 午夜免费观看性视频| 大香蕉久久网| 久久人妻熟女aⅴ| 高清黄色对白视频在线免费看| 又大又爽又粗| 亚洲一区二区三区欧美精品| 日本wwww免费看| 欧美国产精品一级二级三级| 黄色毛片三级朝国网站| 久久人人爽人人片av| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 中文字幕人妻丝袜一区二区| 成年人午夜在线观看视频| 亚洲精品国产区一区二| 9热在线视频观看99| 国产精品免费视频内射| 欧美日韩亚洲高清精品| 国产一区二区激情短视频 | 一区在线观看完整版| 国产精品一区二区免费欧美 | 美国免费a级毛片| 黑人巨大精品欧美一区二区蜜桃| 1024视频免费在线观看| 国产精品免费大片| 欧美精品亚洲一区二区| 欧美97在线视频| 人人妻人人爽人人添夜夜欢视频| 男女边摸边吃奶| 国产精品一区二区在线不卡| 亚洲精品成人av观看孕妇| 精品亚洲成国产av| 叶爱在线成人免费视频播放| e午夜精品久久久久久久| 不卡av一区二区三区| 丝袜在线中文字幕| 久久精品国产亚洲av涩爱| 又大又爽又粗| 免费久久久久久久精品成人欧美视频| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 国产伦人伦偷精品视频| 色综合欧美亚洲国产小说| 又紧又爽又黄一区二区| av视频免费观看在线观看| 只有这里有精品99| 日日夜夜操网爽| 国产成人欧美| 久久国产精品大桥未久av| 日韩大片免费观看网站| 一级毛片我不卡| videos熟女内射| 国产av精品麻豆| 日本午夜av视频| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| 国产成人精品在线电影| 十分钟在线观看高清视频www| 丁香六月欧美| 欧美精品啪啪一区二区三区 | 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 叶爱在线成人免费视频播放| 一级片'在线观看视频| 99国产精品一区二区三区| 精品国产超薄肉色丝袜足j| 国产淫语在线视频| 欧美日韩亚洲综合一区二区三区_| 欧美日韩成人在线一区二区| 成人国语在线视频| 大片免费播放器 马上看| 韩国精品一区二区三区| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 99九九在线精品视频| tube8黄色片| 最近最新中文字幕大全免费视频 | 岛国毛片在线播放| 中国国产av一级| 国产在线一区二区三区精| 这个男人来自地球电影免费观看| 咕卡用的链子| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 后天国语完整版免费观看| 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 日韩av在线免费看完整版不卡| 一级毛片我不卡| 99国产精品免费福利视频| 一边亲一边摸免费视频| 无遮挡黄片免费观看| 波多野结衣一区麻豆| 曰老女人黄片| 成人亚洲欧美一区二区av| 亚洲情色 制服丝袜| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 久久精品久久久久久久性| 日本a在线网址| 免费一级毛片在线播放高清视频 | 亚洲国产看品久久| 一级毛片 在线播放| 丝袜在线中文字幕| 国产色视频综合| 老司机在亚洲福利影院| 人体艺术视频欧美日本| 国精品久久久久久国模美| 免费看不卡的av| 在线av久久热| videos熟女内射| 中文字幕人妻熟女乱码| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 美女福利国产在线| 捣出白浆h1v1| av一本久久久久| 丁香六月天网| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 亚洲精品久久久久久婷婷小说| 在现免费观看毛片| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 色网站视频免费| 一级毛片女人18水好多 | 免费一级毛片在线播放高清视频 | 赤兔流量卡办理| 一本色道久久久久久精品综合| 18禁观看日本| 国产精品成人在线| 丰满饥渴人妻一区二区三| 交换朋友夫妻互换小说| 一边摸一边抽搐一进一出视频| 亚洲精品美女久久av网站| 一区二区av电影网| 国产av国产精品国产| 国产精品国产三级国产专区5o| h视频一区二区三区| 最黄视频免费看| 欧美性长视频在线观看| 欧美黑人精品巨大| 色精品久久人妻99蜜桃| 亚洲精品国产一区二区精华液| 亚洲精品第二区| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区 | 九色亚洲精品在线播放| avwww免费| 久久精品国产亚洲av高清一级| 中文精品一卡2卡3卡4更新| 久久久久网色| 性色av乱码一区二区三区2| 午夜日韩欧美国产| 国产精品.久久久| 黑人欧美特级aaaaaa片| 国产伦理片在线播放av一区| 亚洲精品国产色婷婷电影| 成年动漫av网址| 成人国产av品久久久| 午夜精品国产一区二区电影| 18在线观看网站| 777久久人妻少妇嫩草av网站| 性色av乱码一区二区三区2| 久久精品国产综合久久久| 美女高潮到喷水免费观看| 久久综合国产亚洲精品| 热99久久久久精品小说推荐| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 各种免费的搞黄视频| 97在线人人人人妻| 欧美黄色淫秽网站| 在线观看人妻少妇| 少妇的丰满在线观看| 亚洲伊人色综图| 99热国产这里只有精品6| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到| 亚洲中文字幕日韩| 大香蕉久久成人网| 热re99久久精品国产66热6| 麻豆av在线久日| 亚洲国产精品成人久久小说| 美女大奶头黄色视频| 男人爽女人下面视频在线观看| 国产免费福利视频在线观看| 曰老女人黄片| 色精品久久人妻99蜜桃| 日韩一区二区三区影片| 国产黄频视频在线观看| 欧美日韩黄片免| 亚洲五月婷婷丁香| 婷婷成人精品国产| 操出白浆在线播放| 老熟女久久久| av片东京热男人的天堂| 在线观看人妻少妇| 国产男人的电影天堂91| 成年动漫av网址| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 国产激情久久老熟女| avwww免费| 国产精品免费大片| 蜜桃在线观看..| 成人影院久久| 亚洲,欧美,日韩| 熟女少妇亚洲综合色aaa.| 欧美成人午夜精品| 亚洲精品美女久久av网站| 女警被强在线播放| 99久久99久久久精品蜜桃| 美女中出高潮动态图| 亚洲av国产av综合av卡| 午夜日韩欧美国产| 亚洲第一青青草原| 成年女人毛片免费观看观看9 | 性色av一级| 汤姆久久久久久久影院中文字幕| 欧美日韩黄片免| 亚洲天堂av无毛| 欧美亚洲日本最大视频资源| 欧美日韩福利视频一区二区| av线在线观看网站| 最新在线观看一区二区三区 | 亚洲av成人精品一二三区| 91字幕亚洲| 久久这里只有精品19| 久久精品国产a三级三级三级| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 国产一区二区在线观看av| 国产日韩欧美亚洲二区| 一级片'在线观看视频| h视频一区二区三区| 激情五月婷婷亚洲| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 久久精品人人爽人人爽视色| 我要看黄色一级片免费的| 国产免费福利视频在线观看| 一级a爱视频在线免费观看| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 精品国产一区二区久久| 丝袜喷水一区| 多毛熟女@视频| 91麻豆精品激情在线观看国产 | 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美成人综合另类久久久| 国产在线一区二区三区精| 欧美黄色淫秽网站| 久久亚洲精品不卡| 9色porny在线观看| 国产精品九九99| 国产免费一区二区三区四区乱码| 成年美女黄网站色视频大全免费| 狂野欧美激情性bbbbbb| 一区二区三区精品91| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码 | 99热国产这里只有精品6| 国产在线一区二区三区精| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 男女边吃奶边做爰视频| 在线精品无人区一区二区三| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 欧美国产精品va在线观看不卡| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 日韩制服骚丝袜av| 美女午夜性视频免费| 男女边吃奶边做爰视频| 在线精品无人区一区二区三| netflix在线观看网站| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 婷婷色综合大香蕉| 久久久国产欧美日韩av| 黑人猛操日本美女一级片| 久久狼人影院| 一本色道久久久久久精品综合| 好男人电影高清在线观看| 麻豆av在线久日| 国产精品久久久久成人av| 国产精品二区激情视频| 国产淫语在线视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩视频高清一区二区三区二| 日韩视频在线欧美| 国产成人av教育| 老熟女久久久| 国产一区二区在线观看av| 韩国精品一区二区三区| 精品一区二区三区四区五区乱码 | 国产成人系列免费观看| 亚洲人成电影免费在线| 日韩中文字幕欧美一区二区 | 欧美精品亚洲一区二区| 99热全是精品| 精品少妇黑人巨大在线播放| 丰满少妇做爰视频| 日韩av不卡免费在线播放| 国产精品久久久久久精品古装| 久久久精品国产亚洲av高清涩受| 日韩 欧美 亚洲 中文字幕| 亚洲av电影在线观看一区二区三区| 啦啦啦 在线观看视频| 午夜91福利影院| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 女警被强在线播放| 日韩电影二区| 一级毛片女人18水好多 | 日韩 亚洲 欧美在线| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 黄色片一级片一级黄色片| 天天影视国产精品| 国产精品欧美亚洲77777| 亚洲,欧美,日韩| 9191精品国产免费久久| 亚洲国产欧美一区二区综合| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 赤兔流量卡办理| 丁香六月欧美| cao死你这个sao货| 国产成人欧美| 国产男人的电影天堂91| 中文字幕人妻丝袜一区二区| 最近手机中文字幕大全| 只有这里有精品99| 亚洲国产成人一精品久久久| 久久久久国产一级毛片高清牌| 欧美激情 高清一区二区三区| 精品少妇内射三级| 久久久久久久久久久久大奶| 少妇粗大呻吟视频| 一级片'在线观看视频| 国产成人一区二区在线| 天天躁日日躁夜夜躁夜夜| 色精品久久人妻99蜜桃| 国产深夜福利视频在线观看| 欧美少妇被猛烈插入视频| 日韩,欧美,国产一区二区三区| 国产精品久久久久成人av| 久久精品亚洲av国产电影网| 男女午夜视频在线观看| 国产高清国产精品国产三级| 亚洲人成77777在线视频| 狂野欧美激情性bbbbbb| 久久久精品国产亚洲av高清涩受| 国产av一区二区精品久久| 亚洲精品av麻豆狂野| 久久99一区二区三区| 国产成人欧美| 午夜激情久久久久久久| 国产一区二区三区综合在线观看| 不卡av一区二区三区| 香蕉国产在线看| 国产亚洲av片在线观看秒播厂| 国产人伦9x9x在线观看| 国产高清不卡午夜福利| 国产亚洲av高清不卡| 久久这里只有精品19| 少妇被粗大的猛进出69影院| 国产免费视频播放在线视频| a级毛片在线看网站| 三上悠亚av全集在线观看| 美女扒开内裤让男人捅视频| 啦啦啦 在线观看视频| 亚洲精品日本国产第一区| 美女主播在线视频| 午夜福利乱码中文字幕| 热re99久久国产66热| 亚洲激情五月婷婷啪啪| 日本五十路高清| 精品一区在线观看国产| 国产成人精品在线电影| 国产日韩欧美视频二区| 女人精品久久久久毛片| 人妻一区二区av| 午夜福利影视在线免费观看| 免费人妻精品一区二区三区视频| videos熟女内射| 青青草视频在线视频观看| 你懂的网址亚洲精品在线观看| 另类精品久久| 一本色道久久久久久精品综合| 男女床上黄色一级片免费看| 五月天丁香电影| 日韩伦理黄色片| 两个人免费观看高清视频| 亚洲中文日韩欧美视频| 国产黄色免费在线视频| 亚洲成人免费av在线播放| 9色porny在线观看| 在线看a的网站| 狠狠精品人妻久久久久久综合| 欧美国产精品一级二级三级| 成人亚洲欧美一区二区av| 国产精品一二三区在线看| 成年女人毛片免费观看观看9 | 搡老乐熟女国产| 叶爱在线成人免费视频播放| 欧美日韩黄片免| 一边亲一边摸免费视频| 国产精品一区二区在线观看99| 亚洲成人免费电影在线观看 | 亚洲av美国av| 在线 av 中文字幕| 一区二区av电影网| 尾随美女入室| 在线 av 中文字幕| 亚洲av成人精品一二三区| 宅男免费午夜| 老司机亚洲免费影院| 亚洲人成电影免费在线| 久久毛片免费看一区二区三区| 人妻人人澡人人爽人人| 观看av在线不卡| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 亚洲天堂av无毛| 人妻 亚洲 视频| 一本久久精品| 男人操女人黄网站| 成人午夜精彩视频在线观看| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 一区福利在线观看| 午夜91福利影院| 波多野结衣一区麻豆| 一区二区日韩欧美中文字幕| 亚洲国产最新在线播放| 一区在线观看完整版| av视频免费观看在线观看| 高清欧美精品videossex| 欧美日韩一级在线毛片| av视频免费观看在线观看| 高清欧美精品videossex| 99热国产这里只有精品6| 亚洲第一青青草原| 中文乱码字字幕精品一区二区三区| 少妇人妻 视频| 深夜精品福利| 亚洲欧美一区二区三区国产| 成人国语在线视频| 五月开心婷婷网| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 久久人妻福利社区极品人妻图片 | 亚洲成国产人片在线观看|