• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences

    2022-06-29 08:55:40YongShen沈勇YuHangShen沈煜航JiaQiDong董家齊
    Chinese Physics B 2022年6期
    關(guān)鍵詞:董家

    Yong Shen(沈勇) Yu-Hang Shen(沈煜航) Jia-Qi Dong(董家齊)

    Kai-Jun Zhao(趙開君)4, Zhong-Bing Shi(石中兵)1, and Ji-Quan Li(李繼全)1

    1Southwestern Institute of Physics,Chengdu 610041,China

    2School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    3Institute for Fusion Theory and Simulation,Zhejiang University,Hangzhou 310013,China

    4College of Nuclear Science and Engineer,East China University of Technology,Nanchang 330013,China

    Keywords: bispectral analysis,wave coupling,algorithm,plasma turbulence,energy cascade

    1. Introduction

    Digital bispectral analysis method can be applied to the studying of fluid turbulence,[1]plasma saturated turbulence,[2–5]and other nonlinear systems,which has proved to be a very important data analysis technology in practice. In the late 1980s, Ritzet al. studied this problem and presented an algorithm using bispectral analysis technique.[6–8]In the Ritzet al.’s method the iterative technique is used to solve the wave coupling equation, but the fourth-order moment in the equation is approximated by a second-order moment. The input signals can be non-Gaussian signals or Gaussian signals.The typical application of this method is to deal with the transiting flow.[7]Using the Ritzet al.’s algorithm,one can use experimental turbulence data to quantitatively estimate nonlinear coupling coefficients or estimate the magnitude of energy cascades between waves in a fully developed turbulence system.However, because in the Ritzet al.’s method, the authors did not take into consideration the non-ideal fluctuations,the calculation results tend to have large systematic errors and often produce large non-physical damping coefficients.

    In order to make up for the defects of Ritzet al’s method,Kimet al. reconstructed the power spectrum by retaining the role of the fourth moment and proposed Kimet al.’s algorithm in 1996,[9]where the spectrum is divided into ideal spectrum component and non-ideal spectrum component,and the spectrum components directly related to the quadratic nonlinear interaction are called ideal spectrum, while the non-ideal spectrum does not participate in the linear coupling process nor the tree-wave coupling process. Kimet al.’s method imposes a time-static condition of “input ideal spectral power equals output ideal spectral power”to include an assumption of local homogeneity.

    Nevertheless, in some nonlinear systems such as developing turbulent systems such as shallow ocean waves,the assumption of Kimet al.’s algorithm may not hold. In such systems, forcing the power of the input spectrum to equal that of the output spectrum would lose a lot of valid information.In this respect,Kim proposed the linear regression method and successfully solved such problems.[10]In the process of studying such systems, in Ref. [11] the authors proposed another new digital bispectral analysis algorithm — complete iterative method—to calculate and analyze the three-wave interaction inside the developing turbulence. The complete iteration method is an extension of Ritz method,while it contains the effect of the fourth moment in the wave coupling equation, so that all the wave information has been considered.In Ref.[11],the applicability of complete iterative method in fluid turbulence was discussed in detail,however,the application prospect of this method in plasma has not been analyzed yet. Subsequently, the study of Ref. [12] focused on this issue and made the comparative analysis of the performance of the complete iteration method and Kim method, and studied the applicability of these two mainstream algorithms in edge plasma turbulence spectrum analysis. The results show that the spectral characteristics of edge plasma turbulence are different from those of fluid turbulence. That is,in the edge plasmas,the energy mainly concentrates in the low-frequency region, and the high-order coupling may occupy a certain proportion, which needs to be eliminated from the three-wave coupling effect,which can be done by employing the Kim hypothesis.

    According to the above results,Kim’s algorithm is shown suitable to be used in the study of edge plasma turbulence.It is of significant importance for the study of the energy transfers occurring in fully developed turbulent system due to nonlinear properties of the flows, and the wave coupling equation describing the changes of spectral components has representative significance in such nonlinear systems. However,none of the previous studies has involved the specific program implementation with respect to this algorithm,although it is indeed an important topic. Shenet al. carried out this kind of work in advance.[13,14]In Ref. [14], an algorithm and its programing for solving the wave coupling equation were presented,while the algorithm still belongs to a kind of linear regression analysis methods,therefore,its structure turns relatively complex. In this work, an algorithm and program based on Kimet al.’s method are developed to solve the nonlinear wave coupling equations, in which the Kim’s hypothesis is completely adopted. The algorithm has simpler structure and higher precision. This work focuses on realizing the idea,the programming and simulation-verifying the algorithm,thereby improving the work of Ref. [11] and providing a feasible software tool for studying the plasma turbulence.

    2. Modeling and algorithm implementation

    2.1. Physical and mathematical model

    In sea waves and some other wave systems, the input and output signals are given, and the output signals can be generated through linear transformation process and nonlinear transformation process.[15,16]Such a system can be seen as a “black box”. If only linear transformation process and quadratic nonlinear transformation process are considered,and the cubic and higher order nonlinear processes are weak,the nonlinear system can be expressed by the following nonlinear transfer equation:

    On the other hand,in order to quantitatively estimate the linear growth rate of fully developed turbulence and the energy cascade between waves,we consider the nonlinear drift wave coupling equation in the following form:

    2.2. Solution algorithm

    Here,the vectors and matrices involved are defined by

    And here,we have definedf=H(k),whereHis a linear function andkis a constant number.That is,kis used as an index of frequencyf,and is always an integer. In fully developed turbulence,it is approximatelyf ≈kΔf,andγk ≈(|Lk|2-1)/Δx.

    2.3. Programing

    The programing flow of the specific algorithm is as follows.

    Algorithm: Solver of wave coupling equations

    Step 1 Original data: input signalx(t,x),y(t,x);

    Step 2 Pre-process:

    Step 2.1 Defining and inputting assemble number (n),sample number(num),

    Step 2.2 Performing Fourier transform on original data so as to get the source data set of input and output signal spectraXiandYi,i=1,2,...,N;

    Step 3 Fork=-num/2 tonum/2-1,the following steps are executed:

    Step 3.1 Calculating all groups (k1,k2) that satisfy the condition‘k1+k2=k’,and saving the group number asknum,

    Here two issues need to be addressed. First,the parametersk,k1andk2should meet the three-wave coupling conditionk=k1+k2,and the determination of these indicators is one of the basic points for this program.[14]Secondly, the ensemble number(n)and sample number(num)should be big enough to ensure the accuracy of spectrum estimation. In a fully developed turbulence system,n ≥1000 andnum ≥64 are generally taken,and the number of samples overlapped for each realization segment takesnp~num/2, or the total number of sampled data meets the conditionn×(num-np)+np >3×104.Also,nummust be an exponential multiple of 2; or, in the Fourier transform,fill some numbers‘0’in sample data set to meet this requirement.

    The pre-processing of input and output data is described below. Taking the study of edge plasma turbulence in tokamak for example,[13]we take the float potentials as the original signals,obtaining at two adjacent spatial points in poloidal direction during the period of[600,700]ms in an experimental discharge, with a sampling frequency of 1 MHz and thus the Nyquist frequency of 500 kHz. There are two groups of sample data. The first set of data (corresponding to the first spatial point) serves as the input signal and the second set (corresponding to the second point) as the output signal. We can take 780 realizations(n=780)and 256 samples(num=256) for each realization. It is worth noting that the sampled data need to be partially overlapped. The number of overlapping samples for each realization can benp=128,thus the total number of source data required for each channel is(num-np)+np=99968<105; and it is obvious that the practically total number of sample data can meet this requirement. Subsequently, the Fourier transform can be performed on the data for each realization to obtain the input and output signal spectra,which will be used as the input and output data in the program.

    The third step is the core of the program,which is actually the solver for Eq.(1)or Eq.(1a). In addition,if the program is used for energy transfer analysis of turbulence,it is necessary to calculate nonlinear energy transfer function,that is,

    The power transfer function represents the power change in the wave with the frequencyfin the wave coupling process(f=f1+f2). The nonlinear energy transfer functionW fNL represents the variation of the nonlinear energy of wave with frequencyf.

    3. Simulation

    3.1. Simulation data generation

    wherekis defined as the index of frequencyfas mentioned above, which approximately satisfies the relationf=kΔfand three-wave coupling condition, namelyf=f1+f2, or say,k=k1+k2. And for simplicity, we take ?k= 32, and Δf=1 kHz.

    In the simulation,the original input data are white Gaussian noise signals, which pass through the “black box” 12 times, and the output signal of the last black box serves as the final input signal to simulate a fully developed turbulence. Its power spectrum is shown in solid blue lines in Fig. 2. And then, according to the given mean dispersion relation(Eq.(14a)),the quadratic nonlinear coupling coefficient

    Fig. 3. Pre-setting values of nonlinear system model: (a) real part of(b) imaginary part of , and (c) the mode of quadratic nonlinear transfer function.

    As seen from Figs.3(a)and 3(b),the real part of the linear coupling coefficient (corresponding to the growth rateγ)is basically symmetric about the axisx=0, while its imaginary part (corresponding to the mean dispersion function) is symmetric about the origin point.

    3.2. Comparison and analysis of simulation results

    The ideal turbulence model that satisfies Kimet al.’s hypothesis has been defined above. The input and output spectrum signals generated are input in the present program for computations, and then the calculated phase spectrum, linear and quadratic coupling coefficients, and the estimated quadratic transfer function, are obtained and illustrated in Fig. 4. Note that the real part of the linear coupling coefficientΛLfis also the linear growth rateγ,and its imaginary part is the average dispersion relationω-r.

    As seen from Fig. 4(a), since the ideal output spectrumYkis calculated from the input signal spectrumXkaccording to the constraint condition〈YkY*k〉=〈XkX*k〉, the phase difference between the output signal spectrumYkand the input signal spectrumXkis not smooth,while this does not weaken the correctness of the simulation results. Comparing Fig.4(c)with Fig.3(a),as well as comparing Fig.4(b)with Fig.3(b),it is demonstrated that the real part and the imaginary part ofΛLfcalculated are basically equal to the pre-setting values within a certain error range. And the mode of the nonlinear transfer function,Qf(f1,f2),as shown in Fig.4(d),is approximately identical with that in Fig. 3(c). All these results confirm that the program runs well.

    Plotted in Fig. 5 is the comparison between the linear growth rateγfcalculated andTf/2Pf. Obviously,it indicates the relationshipγf-Tf/2Pf ≈0,suggesting that

    namely,as the difference between the input power and the output power satisfies ΔPf ≡Pf(x+Δx)-Pf(x)≈0, indicating an approximately constant power. It can be shown that the output spectrum here belongs to the ideal output spectrum,the model meets Kimet al.’s hypothesis, so it is suitable for the algorithm in this paper, and the program running results are physically accurate.

    4. Application: Case calculation

    The study of plasma in a toroidal device involves with many aspects.[25–28]Here we choose the edge plasma turbulence data measured in an experiment on the toroidal device,and employ the present program to calculate and analyze the energy transfer in the turbulent system, so as to test the efficiency of the algorithm and program in practical application.Shown in Fig. 6 is the signals evolve with time in the input channel and the output channel in Discharge 53441 on TPERX RFP device. The sampling frequency is 1 MHz. The measured 3.1×104data in total in a range fromt=18.5 ms to 49.5 ms are taken as the original signals. The number of realizations is taken to ben=480,and the number of samples at a time isnum=128, and the number of overlapped samples in each segment is takennp=64. Hence,the total number of sample data required for each channel is 30784 (<31000).

    The input and the output power spectra are shown in Fig.7. For this experimental edge plasma turbulence, clearly most of the energy is concentrated in the lower frequency region.In this system,the auto-power spectrum reaches its maximum value atf=0 kHz,about 3 a.u.,and most of the energy is concentrated within the range off <100 kHz.

    The auto-power spectra of the input signal and output signal shown in Fig. 7 are very similar, but there are still differences,which are the basic characteristics of the wave when the three-wave coupling predominates in the edge plasma turbulence. If such differences are small enough,the computational results are reliable; however, if the difference is too large, or say, the two auto-power spectra are not very similar, indicating that much useful information about spectrum would be lost when separating the non-ideal spectrum from ideal one, the computational results seem not precise as discussed in detail in Ref.[11].

    In addition, the coherence of turbulence at two spatial points can affect the calculation results. In order to avoid such adverse effects, it is required to make the two spatial points

    where the input and output signals are measured close enough,that is,the value of Δxshould be small enough. Generally,in a medium-sized toroidal device,the accuracy can be guaranteed by selecting Δx~0.1 cm–0.5 cm.

    5. Summary

    In this paper,a nonlinear wave coupling algorithm is proposed and implemented by a program. The algorithm is based on digital bis-spectrum estimation analysis and Kimet al.’s hypothesis,[9]that is,it is assumed that the input signal spectral power is equal to the output spectral power. Shenet al.have compared Kimet al.’s method with the complete iterative method[12]and proposed that Kimet al.’s method is more suitable for the analysis of energy transfer in edge plasma turbulence. The algorithm in this work belongs to Kimet al.’s method in essence.

    In this algorithm, the nonlinear energy transfer function is calculated directly from the wave coupling coefficients,thereby improving the computation accuracy. When we apply the algorithm to the identification of turbulent energy transfer process, the original algorithm is transformed from wavenumber space into frequency space, which is appropriate to the physical characteristics of edge plasma turbulence.[29]The programing flow is given, and the simulation analysis is carried out, showing that the calculation results are reliable. As an application, the energy cascade analysis of typical edge plasma turbulence is performed.As a result,a physical picture of the energy transfer in the turbulent system is constructed,confirming that the energy transfer in this turbulent system spreads from lower-to higher-frequency region and its corresponding wave turns from a linear growing wave into a damping wave. The case analysis also demonstrates that the algorithm and program are both suitable to the study of the fully developed turbulence or saturated turbulence, such as edge plasma turbulence.[18,19]

    Acknowledgements

    Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0301200),the National Natural Science Foundation of China (Grant Nos. 12075077 and 12175055), and the Science and Technology Project of Sichuan Pprovince, China (Grant No.2020YJ0464).

    猜你喜歡
    董家
    董家鴻院士
    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*
    大功率激電測深方法在豫西董家埝銀礦床勘查中的應(yīng)用
    學(xué)習(xí)是進(jìn)步階梯,做不放棄的自己
    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles
    董家口
    紅巖(2018年6期)2018-11-16 12:27:24
    填成語
    老友(2018年3期)2018-01-22 04:01:48
    補(bǔ)唐詩慶建軍節(jié)
    老友(2017年8期)2017-02-07 03:19:24
    安丘董家莊漢畫像石墓主人之謎
    大眾考古(2014年2期)2014-06-26 08:29:32
    国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 成人国语在线视频| netflix在线观看网站| 欧美成人午夜精品| 男女做爰动态图高潮gif福利片| 嫩草影院精品99| 欧美日韩一级在线毛片| 一级毛片高清免费大全| 好男人电影高清在线观看| 香蕉av资源在线| 一个人观看的视频www高清免费观看 | 一夜夜www| aaaaa片日本免费| 日日爽夜夜爽网站| 此物有八面人人有两片| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 可以免费在线观看a视频的电影网站| 99久久99久久久精品蜜桃| 国内少妇人妻偷人精品xxx网站 | 国产麻豆成人av免费视频| 国内精品久久久久精免费| 精品少妇一区二区三区视频日本电影| 久久精品国产清高在天天线| 日韩高清综合在线| 久久久精品大字幕| 国产一区二区三区视频了| 久久中文看片网| 中国美女看黄片| 亚洲avbb在线观看| 在线a可以看的网站| av欧美777| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| 此物有八面人人有两片| 欧美日韩亚洲综合一区二区三区_| 热99re8久久精品国产| 丁香六月欧美| 国产三级在线视频| 我要搜黄色片| 久久久久国产一级毛片高清牌| 国产伦一二天堂av在线观看| 国产一区在线观看成人免费| 国模一区二区三区四区视频 | 国语自产精品视频在线第100页| 国产一区在线观看成人免费| 99riav亚洲国产免费| 级片在线观看| 成人av一区二区三区在线看| 久久久久久大精品| 黄片大片在线免费观看| 又大又爽又粗| 1024香蕉在线观看| 国产一区二区激情短视频| 成人午夜高清在线视频| 别揉我奶头~嗯~啊~动态视频| 99久久综合精品五月天人人| 久久久久精品国产欧美久久久| 久久伊人香网站| 中文字幕久久专区| 亚洲自偷自拍图片 自拍| 婷婷精品国产亚洲av| 老司机靠b影院| 国产在线观看jvid| 少妇人妻一区二区三区视频| 伊人久久大香线蕉亚洲五| 久久香蕉精品热| 日韩中文字幕欧美一区二区| 久久久国产欧美日韩av| 免费电影在线观看免费观看| 亚洲人成77777在线视频| 亚洲人成伊人成综合网2020| www日本在线高清视频| www日本黄色视频网| 精品福利观看| 亚洲片人在线观看| 国产av又大| 中文字幕久久专区| 日韩欧美精品v在线| 少妇裸体淫交视频免费看高清 | www日本在线高清视频| 在线观看一区二区三区| 国产亚洲av嫩草精品影院| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜精品| 国产精品久久久av美女十八| avwww免费| 午夜两性在线视频| 亚洲全国av大片| 国产亚洲精品第一综合不卡| 宅男免费午夜| 国内毛片毛片毛片毛片毛片| 亚洲第一电影网av| 日本免费一区二区三区高清不卡| 久久久国产精品麻豆| 国内精品久久久久久久电影| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 国产精品美女特级片免费视频播放器 | 国产高清videossex| 国产精品久久久久久久电影 | 久久婷婷人人爽人人干人人爱| 精品久久久久久久末码| 免费一级毛片在线播放高清视频| 人人妻,人人澡人人爽秒播| cao死你这个sao货| 色尼玛亚洲综合影院| 午夜两性在线视频| 欧美性猛交╳xxx乱大交人| 亚洲免费av在线视频| 99国产精品一区二区三区| av欧美777| 国产亚洲av嫩草精品影院| 一级毛片精品| 午夜福利欧美成人| 99在线视频只有这里精品首页| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 亚洲五月婷婷丁香| 一本综合久久免费| 日韩欧美三级三区| 国产97色在线日韩免费| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 午夜福利成人在线免费观看| 我的老师免费观看完整版| 久久久国产精品麻豆| www国产在线视频色| 亚洲专区国产一区二区| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品色激情综合| 久久这里只有精品19| 国产免费男女视频| 亚洲av成人av| 99热这里只有精品一区 | 亚洲av成人不卡在线观看播放网| 日本 欧美在线| 久久久精品大字幕| 女人高潮潮喷娇喘18禁视频| 桃红色精品国产亚洲av| 欧美乱色亚洲激情| 长腿黑丝高跟| 午夜福利成人在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲中文av在线| 国产v大片淫在线免费观看| 麻豆成人av在线观看| 老汉色av国产亚洲站长工具| 一卡2卡三卡四卡精品乱码亚洲| 久久精品91蜜桃| 亚洲av日韩精品久久久久久密| 国产v大片淫在线免费观看| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 国产黄色小视频在线观看| 午夜久久久久精精品| 精品电影一区二区在线| 色精品久久人妻99蜜桃| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影| 可以在线观看的亚洲视频| 免费在线观看视频国产中文字幕亚洲| 天堂动漫精品| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 久久人妻福利社区极品人妻图片| 啦啦啦韩国在线观看视频| 日韩成人在线观看一区二区三区| 一本一本综合久久| 激情在线观看视频在线高清| 国产亚洲欧美在线一区二区| 伦理电影免费视频| 亚洲国产精品sss在线观看| 在线观看午夜福利视频| 又黄又粗又硬又大视频| 国产午夜精品久久久久久| 精品久久蜜臀av无| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 一本大道久久a久久精品| 免费在线观看完整版高清| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 极品教师在线免费播放| 怎么达到女性高潮| 亚洲美女视频黄频| bbb黄色大片| 亚洲色图av天堂| 久久香蕉国产精品| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 久久精品成人免费网站| 国产伦一二天堂av在线观看| 亚洲精品粉嫩美女一区| 伦理电影免费视频| 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| 手机成人av网站| 国产亚洲欧美在线一区二区| 观看免费一级毛片| 村上凉子中文字幕在线| 日本一二三区视频观看| 国产精品99久久99久久久不卡| 亚洲中文av在线| 国产精品永久免费网站| 日本五十路高清| 日韩高清综合在线| 女人爽到高潮嗷嗷叫在线视频| 18禁国产床啪视频网站| 国产视频内射| 老熟妇仑乱视频hdxx| 99久久无色码亚洲精品果冻| 欧美日韩国产亚洲二区| 欧美黄色片欧美黄色片| 欧美丝袜亚洲另类 | 亚洲男人天堂网一区| 少妇的丰满在线观看| 三级国产精品欧美在线观看 | 美女扒开内裤让男人捅视频| 99国产极品粉嫩在线观看| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区免费| 五月玫瑰六月丁香| 欧美大码av| 欧美av亚洲av综合av国产av| 黄色片一级片一级黄色片| 亚洲专区国产一区二区| cao死你这个sao货| 99国产精品一区二区三区| 亚洲精品粉嫩美女一区| 久久久精品大字幕| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 此物有八面人人有两片| 欧美人与性动交α欧美精品济南到| 激情在线观看视频在线高清| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 欧美黑人欧美精品刺激| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精华霜和精华液先用哪个| 亚洲真实伦在线观看| 亚洲欧美一区二区三区黑人| 91大片在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲精品中文字幕一二三四区| 老司机午夜福利在线观看视频| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 成人av在线播放网站| 精品久久久久久久人妻蜜臀av| 国产精品影院久久| 十八禁网站免费在线| 性色av乱码一区二区三区2| a在线观看视频网站| 国内精品久久久久精免费| 中文亚洲av片在线观看爽| 亚洲精品色激情综合| 99久久国产精品久久久| 9191精品国产免费久久| 99久久精品热视频| 制服诱惑二区| 免费观看精品视频网站| 少妇粗大呻吟视频| 日韩三级视频一区二区三区| 美女 人体艺术 gogo| 在线观看舔阴道视频| 国产三级在线视频| 免费人成视频x8x8入口观看| 蜜桃久久精品国产亚洲av| 久久香蕉精品热| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 男人舔女人下体高潮全视频| 国产成人影院久久av| 久久 成人 亚洲| 午夜福利欧美成人| 特大巨黑吊av在线直播| 无遮挡黄片免费观看| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩东京热| 亚洲中文av在线| 国产在线精品亚洲第一网站| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 在线永久观看黄色视频| xxxwww97欧美| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 午夜视频精品福利| 好男人在线观看高清免费视频| 变态另类成人亚洲欧美熟女| 1024视频免费在线观看| 国产精品99久久99久久久不卡| 51午夜福利影视在线观看| netflix在线观看网站| 国产一区二区在线av高清观看| 最近最新中文字幕大全电影3| 国产不卡一卡二| 国产区一区二久久| 18禁观看日本| 午夜老司机福利片| 国产三级中文精品| bbb黄色大片| 成人av一区二区三区在线看| 成人手机av| 国产精品免费视频内射| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 国产精品98久久久久久宅男小说| 一级片免费观看大全| 不卡av一区二区三区| av在线天堂中文字幕| 看片在线看免费视频| 99在线人妻在线中文字幕| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 在线永久观看黄色视频| 制服人妻中文乱码| 久久中文看片网| 亚洲天堂国产精品一区在线| 久久久久久久久久黄片| 亚洲在线自拍视频| 长腿黑丝高跟| 一级毛片精品| a级毛片a级免费在线| 成人欧美大片| 黄色视频不卡| 一级毛片高清免费大全| 亚洲人成77777在线视频| 精品高清国产在线一区| 淫秽高清视频在线观看| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区免费| 听说在线观看完整版免费高清| 色综合婷婷激情| 色综合站精品国产| 看黄色毛片网站| 久久香蕉国产精品| 亚洲午夜理论影院| 免费看美女性在线毛片视频| 两性午夜刺激爽爽歪歪视频在线观看 | 男女那种视频在线观看| 美女高潮喷水抽搐中文字幕| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 看黄色毛片网站| 亚洲av电影在线进入| 精品高清国产在线一区| 久久中文字幕人妻熟女| 国产熟女xx| 亚洲av电影在线进入| 久久久久久久久中文| 亚洲人成77777在线视频| 欧美高清成人免费视频www| 精品久久久久久久毛片微露脸| 国产亚洲精品综合一区在线观看 | 老司机在亚洲福利影院| 日韩大码丰满熟妇| 两个人的视频大全免费| 日本一区二区免费在线视频| 嫩草影视91久久| 午夜激情福利司机影院| 亚洲真实伦在线观看| 最新在线观看一区二区三区| 成人三级黄色视频| 91麻豆av在线| 国产不卡一卡二| 亚洲国产精品久久男人天堂| 黄片小视频在线播放| 精品久久久久久久久久免费视频| 变态另类丝袜制服| netflix在线观看网站| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 成在线人永久免费视频| 亚洲国产精品合色在线| 丝袜人妻中文字幕| 日韩欧美 国产精品| 99精品久久久久人妻精品| 伊人久久大香线蕉亚洲五| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 国产精品 欧美亚洲| 国产私拍福利视频在线观看| 成人一区二区视频在线观看| 露出奶头的视频| 香蕉久久夜色| cao死你这个sao货| 亚洲国产高清在线一区二区三| 久久九九热精品免费| 少妇粗大呻吟视频| 成年免费大片在线观看| 色噜噜av男人的天堂激情| 午夜成年电影在线免费观看| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 国产精品av久久久久免费| 757午夜福利合集在线观看| 男女视频在线观看网站免费 | 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 精品久久蜜臀av无| 亚洲激情在线av| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 欧美精品啪啪一区二区三区| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲免费av在线视频| 色噜噜av男人的天堂激情| 国产av一区在线观看免费| 88av欧美| 9191精品国产免费久久| 国产一区二区在线观看日韩 | 又大又爽又粗| 欧美一区二区精品小视频在线| x7x7x7水蜜桃| 国产一区二区在线观看日韩 | 热99re8久久精品国产| 午夜影院日韩av| 精品久久久久久成人av| 亚洲18禁久久av| 精品高清国产在线一区| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女| 一级作爱视频免费观看| 亚洲欧美日韩无卡精品| √禁漫天堂资源中文www| 国产成年人精品一区二区| 国产精品野战在线观看| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女| 在线观看日韩欧美| 丁香欧美五月| 欧美大码av| 国产三级黄色录像| 岛国在线观看网站| 午夜福利视频1000在线观看| 久久欧美精品欧美久久欧美| 成人亚洲精品av一区二区| 午夜免费观看网址| 国产激情偷乱视频一区二区| 欧美日韩乱码在线| 亚洲成人免费电影在线观看| 毛片女人毛片| 男女午夜视频在线观看| 黄色丝袜av网址大全| 变态另类丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| a级毛片在线看网站| 久久婷婷成人综合色麻豆| 亚洲成a人片在线一区二区| 一区福利在线观看| 成人一区二区视频在线观看| 国产黄色小视频在线观看| 一级黄色大片毛片| 午夜老司机福利片| 国产主播在线观看一区二区| 成人欧美大片| 国产成人精品久久二区二区91| 日本黄色视频三级网站网址| 黄色片一级片一级黄色片| www日本黄色视频网| 黑人欧美特级aaaaaa片| 精品久久久久久久毛片微露脸| 国产精品一区二区三区四区免费观看 | 久久中文看片网| 亚洲中文日韩欧美视频| 亚洲黑人精品在线| ponron亚洲| 特大巨黑吊av在线直播| 亚洲国产欧洲综合997久久,| 欧美日韩国产亚洲二区| 一本久久中文字幕| 男女午夜视频在线观看| 欧美大码av| 亚洲狠狠婷婷综合久久图片| 亚洲欧美精品综合一区二区三区| 18禁黄网站禁片午夜丰满| 一a级毛片在线观看| 精品一区二区三区av网在线观看| 99国产综合亚洲精品| 麻豆成人av在线观看| 国产成人av教育| 男女下面进入的视频免费午夜| 高潮久久久久久久久久久不卡| 久久人妻福利社区极品人妻图片| 午夜两性在线视频| 成年免费大片在线观看| 国产精品免费一区二区三区在线| 91九色精品人成在线观看| 免费看十八禁软件| 午夜免费成人在线视频| 级片在线观看| 黄色视频,在线免费观看| 亚洲专区字幕在线| 国模一区二区三区四区视频 | 嫩草影院精品99| 久热爱精品视频在线9| 国产成人aa在线观看| av欧美777| 久久 成人 亚洲| 亚洲黑人精品在线| 亚洲 国产 在线| 亚洲国产中文字幕在线视频| 久久久久久国产a免费观看| 婷婷亚洲欧美| 国产真实乱freesex| 美女大奶头视频| 亚洲av成人精品一区久久| 免费观看人在逋| 亚洲国产高清在线一区二区三| 夜夜夜夜夜久久久久| 久久精品国产清高在天天线| 女人爽到高潮嗷嗷叫在线视频| 高清毛片免费观看视频网站| 色在线成人网| 午夜精品一区二区三区免费看| 久久人妻福利社区极品人妻图片| 精品一区二区三区视频在线观看免费| 首页视频小说图片口味搜索| 亚洲国产欧洲综合997久久,| 亚洲国产精品合色在线| 日韩有码中文字幕| 国产高清激情床上av| 亚洲在线自拍视频| 亚洲中文av在线| 欧美日韩国产亚洲二区| 一二三四在线观看免费中文在| 久久中文字幕人妻熟女| 色老头精品视频在线观看| 搡老妇女老女人老熟妇| 免费无遮挡裸体视频| 久久久久九九精品影院| 每晚都被弄得嗷嗷叫到高潮| 欧美zozozo另类| 国产午夜福利久久久久久| 免费在线观看亚洲国产| 国产真人三级小视频在线观看| 国产精品 欧美亚洲| 床上黄色一级片| 亚洲av中文字字幕乱码综合| 搡老妇女老女人老熟妇| 久久国产精品影院| 久9热在线精品视频| 全区人妻精品视频| bbb黄色大片| av国产免费在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美人成| 欧美日韩瑟瑟在线播放| tocl精华| 国产三级在线视频| 黄色丝袜av网址大全| 久久久久久国产a免费观看| 亚洲最大成人中文| 高清毛片免费观看视频网站| 伊人久久大香线蕉亚洲五| 成人亚洲精品av一区二区| 欧美黑人欧美精品刺激| 女人爽到高潮嗷嗷叫在线视频| 中亚洲国语对白在线视频| 日韩欧美 国产精品| 国产精品亚洲av一区麻豆| 黄色女人牲交| 亚洲av中文字字幕乱码综合| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 1024手机看黄色片| 国产三级在线视频| 亚洲男人的天堂狠狠| 日本精品一区二区三区蜜桃| 午夜日韩欧美国产| 成在线人永久免费视频| 国产精品99久久99久久久不卡| 男插女下体视频免费在线播放| 国产精品久久久久久亚洲av鲁大| 国产成人啪精品午夜网站| 长腿黑丝高跟| 搞女人的毛片| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 国产激情久久老熟女| 久久久水蜜桃国产精品网| 熟妇人妻久久中文字幕3abv| 国产成人影院久久av| 亚洲真实伦在线观看| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 手机成人av网站| 亚洲成av人片免费观看|