• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of trapped electrons on the ion temperature gradient mode in tokamak plasmas with hollow density profiles

    2020-06-14 08:45:22JingchunLI李景春JiaqiDONG董家齊andSongfenLIU劉松芬
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:董家

    Jingchun LI (李景春),Jiaqi DONG (董家齊) and Songfen LIU (劉松芬)

    1 School of Physics,Nankai University,Tianjin 300071,People’s Republic of China

    2 University of California,Irvine,CA 92697,United States of America

    3 School of Physics and Optoelectronic Technology,Dalian University of Technology,Dalian 116024,People’s Republic of China

    4 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    Abstract

    Keywords:micro-instabilities,trapped electrons,impurities

    1.Introduction

    In tokamaks,ion temperature gradient(ITG)driven instability is one of the drift waves and is considered a major factor for ion-scale turbulent transport.The ITG modes also have an important effect on the low(L)to high(H)confinement mode transition and energy confinement [1].The hollow (inverted)density profile occurs simultaneously with the pellet injection for plasma core fueling and L-H confinement transition[2–5].The study of drift wave instability under the hollow density profile and the turbulent transport caused by it can provide guidance for a pellet fueling experiment.Besides,it is well known that impurity ions are inevitably present in toroidal fusion plasma due to the inevitable interaction between the plasma and the first wall material.These impurity ions have significant effects on drift waves.Therefore,it is important to investigate the impurity ions effect on the ITG mode under a hollow density profile.

    On the one hand,the ITG mode as well as the effect of impurities on it has been intensively studied theoretically and experimentally in the case of a monotonically decreasing density profile(R/Ln> 0)[6–8].The study of the ITG driven mode with impurities in toroidal plasmas was first investigated in[9].Later on,the effect of impurities on the ITG was also carried out in the reversed field pinch [10,11].On the other hand,in terms of the inverted density distribution(R/Ln<0),previous work on the ITG mode has not been systematic[12,13].Early theoretical studies include the calculations from Tang and Hahm [13,14].Their results showed that in the case of a negative density gradient,the ITG mode becomes unstable as the temperature gradient of ions exceed a certain critical threshold.Adam et al [15]demonstrated that the inverted density profile can cause particles to transport radially inward,which means,to some extent,that the profile is advantageous for fusion confinement.

    Recently,studies relating to hollow density profiles have been carried out on many magnetic confinement fusion devices[16–21],such as the Mega Ampere Spherical Tokamak(MAST),Joint European Torus (JET),Axially Symmetric Divertor Experiment(ASDEX Upgrade),and the Large Helical Device (LHD).In addition,Tegnered et al [22]studied the transport of turbulent particles caused by ITG modes and trapped electron modes (TEM) under a hollow density distribution using the gyrokinetic code GENE and the Weiland Fluid Transport Model.It was found that the negative density gradient can suppress turbulence or change the relationship between diffusion and convection,and weaken the transport of particles to the core,thereby reducing the efficiency of fueling.Dong et al studied the electron temperature gradient (ETG)driven instabilities in plasmas with slightly inverted density profiles and demonstrated the E × B flow shear stabilization on the ETG modes,as well as on the transport[23].More recently,Du et al[24]used the local gyrokinetic eigenvalue code HD7[25,26]to simulate the ITG and TEM numerically under a hollow profile,and efficiently scanned the key parameters(i.e.,density gradient,temperature gradient,temperature ratios,and vertical wave numbers) affecting the ITG mode and TEM instability threshold and intensity.However,their research did not consider the effects of impurities.Impurities are inevitable in magnetic confinement fusion experiments,which not only cause a large amount of energy loss in the plasma,but also affect various instabilities in the plasma.They will in turn affect the distribution of the plasma parameters and confinement performance [27,28].

    In this paper,we incorporate the trapped electrons (TEs)and impurities in the calculations,and systematically investigate the effects of TEs and impurities on the ITG modes in inverted density tokamak plasmas by adopting the gyrokinetic integral eigenmode scheme in a toroidal configuration.Our kinetic simulations found that in inverted density plasma,the increase of the ITG enhances the ITG growth rate and frequency.For the weak density gradient situation,the impurities(O+6)can decrease the growth rate as well as frequency of the ITG mode distinctly,and the greater the fraction of impurities,the greater the influence of inhibition of impurities on the the ITG mode.For the strong density gradient cases,impurities enhance the ITG instability,and the TE has a suppression effect on the modes.In addition,it is shown that the growth rate of the ITG decreases with the increase of positive magnetic shear s,while the real frequency increases with the increase of positive magnetic shear s.Furthermore,the growth rate of the ITG enhances while the real frequency decreases with the decrease of negative magnetic shear s.The relationship between the ITG mode and magnetic shear is emphasized for both slight and strong hollow density profiles in tokamak plasmas.

    The remainder of this paper is organized as follows.The gyrokinetic equation and physical model are introduced in section 2.The numerical results of the ITG modes in an inverted density plasma edge with impurities are presented and analyzed in section 3.Finally,a brief conclusion is presented in section 4.

    2.Physical model

    To begin with,to make the structure of the article more complete,we first present the local gyrokinetic integral scheme used in this paper.We use the ballooning mode representation to study the ion-scale drift wave instability in tokamak plasma,with the linear mode coupling caused by the configuration of the toroidal magnetic field taken into account.The main ions in the system are hydrogen ions,and different ionized states of lithium,carbon,oxygen,nickel,tungsten,etc.are impurity ions.The main ions and impurity ions are all passing particles,which are described by a gyrokinetic model.In a toroidal geometry system with circular cross-sections,we consider the full kinetic effects of the main and impurity ions,such as magnetic field curvature and gradient drifts,finite Larmor radius (FLR) effects,and wave-particle resonance effects.Here,we ignore the FLR effect of the TEs and believe that the passing electrons are subject to adiabatic response.

    When considering the effects of TEs and impurity ions,low-frequency electrostatic disturbances in non-uniform plasmas can be described by quasi-neutral conditions:

    In the ballooning representation and with the gyrokinetic equation,the non-adiabatic response of the particle is governed by:

    where the magnetic(gradient and curvature)drift frequency is

    The diamagnetic drift frequency induced by the pressure gradient is:

    The definitions of the other parameters are as follows.The transit frequency isωt=v‖Rq,and the electron diamagnetic drift frequency isω*e=ck θTeeBLne,vtj=The non-adiabatic response of the TEs can be achieved by expanding equation(3)withω/ωbe,whereωbeis the bouncing frequency of the TEs.When ignoring the FLR of the TEs,the density perturbation of the TEs can be expressed as

    The precession drift frequency of the TEs is written as

    After complex mathematical operations,we obtain the expression of the integral eigenequation corresponding to equation (1):

    where

    The equation contains two types of ions,one is hydrogen ion,which are the main ion in the plasma,and the other is called impurity ion because of their small fraction.Among them

    Herek,k',kθis normalized to=Ωi/vti=andIl(l=0,1)is the modifeid l-order Bessel function.All symbols have their general meaning,such as the density gradient scale lengthLnj=-nj/?nj,undisturbed plasma density n0,temperature gradient scale lengthLTj=-Tj/?Tj,safety factor q,and magnetic shears=rdq/qdr.Z is the ion charge number,mjandTjare ion mass and temperature,and R is the major radius of the torus.It should be noted that not all parameters are independent,for example,based on quasi-neutral conditions,

    While assumingTi(r)=Tz(r),we achieve

    The parametersηi,ηe,εnand other parameters in the equation will influence the dispersion relationship.We use the gyrokinetic integral code HD7 to discuss their effects in the next section.

    3.Numerical results and analysis

    We now study the effect of impurity on the ITG mode with different temperatures and density gradients with the gyrokinetic integral eigenvalue code HD7.Compared with the nonlinear simulation,the limitation of linear simulation here is that the turbulence saturation amplitude cannot be obtained,and the relationship between microscopic instability and turbulence cannot be studied.However,linear simulation is still necessary:(i)it can determine the possible driving mechanism and instability conditions;(ii) when the transport caused by turbulence dominates,the plasma density and temperature gradient may be adjusted to be close to the threshold predicted by the linear instability theory;(iii) the temporal and spatial characteristics of the linear mode may be related to the turbulent flow,which can provide a rough estimate of the turbulent transport.We investigate the influence of other parameters like impurity species and magnetic shear on the ITG instabilities.In our calculations,since we consider hollow density profile plasma,Lez=Lne/Lnz> 0 means that the density gradients of the impurity and main ions are in the same direction,namely,impurities are peaked toward the plasma edge.Lez< 0 means that the density gradients are in opposite directions.

    Figure 1.Normalized growth rate (γ) and real frequency (ωr) of the ITG versus R/LTi for different impurity charge concentrations fz.The other parameters are s=0.8,q=1.4,kθρs=0.4,Lez=2,ηe=1,and R/Lne=–1.O+6 is treated as impurities.

    Figure 2.Normalized growth rate (γ) and real frequency (ωr) of the ITG versus R/LTi for different impurity charge concentrations fz.The other parameters are s=0.8,q=1.4,kθρs=0.6,Lez=2,ηe=1,and R/Lne=–8.O+6 is treated as impurities.

    3.1.Dependence on the ITG

    The normalized growth rate(γ)and the real frequency(ωr)of pure ITG modes versus R/LTiare presented in figures 1(a)and (b),respectively,where the length of the normalized electron temperature gradient scale R/LTeis equal to the length of the electron density gradient scale R/Lne.It must be explained here that the black dotted line represents the result of no impurities,i.e.,fz=0.We can see that the increase of the ITG enhances both the growth rate and frequency of the ITG modes,and impurities decrease the growth rate as well as frequency of the ITG mode distinctly.The higher the fraction of impurity O+6,the greater the suppression effect of the ITG.This suggests that the ITG modes are damped by impurity ions.The stabilizing effect of impurities is consistent with previous research results,because when the gradient of the impurity ions is the same as the electron density gradient,the dominant ion density is diluted (the relationship between the ion density gradient and the fraction of impurities is presented by equation(8))[28–32],which makes the impurity ion effect weaken the driving force of the ITG and stabilizes the ITG mode.

    Figure 2 is the same as figure 1 except that it has a strong density gradientLne=-ne/?ne=–8.Compared with figure 1,the real frequency of the ITG in figure 2 is lower.Most importantly,the impurity increases the growth rate of the ITG mode,which is very different in the weak density gradient case.For the strong density gradient,we have to consider the gradient of the main ion density.We have Lez=Lne/Lnzand Lei=Lne/Lni.Since Lezis positive while Lneis negative,this leads to the gradient of the impurity ion density being the same as that of the main ion density,which increases the ion density gradient and enhances the driving force.Therefore,the effect of impurities is destabilizing.

    Figure 3.Normalized growth rate (γ) and real frequency (ωr)versus R/LTi for different cases.The other parameters are s=0.8,q=1.4,kθρs=0.6,and R/Lne=–1.O+6 (with fz=0.25) is treated as impurities when they are incorporated.

    Figure 4.Normalized growth rate (γ) and real frequency (ωr)versus R/LTi for different cases.The other parameters are s=0.8,q=1.4,kθρs=0.6,and R/Lne=–8.O+6 (with fz=0.25) is treated as impurities when they are incorporated.

    3.2.Effect of TEs

    Figure 3 shows the normalized growth rate (γ) and real frequency(ωr)versus R/LTifor different cases,namely,with and without impurities,TEs.We set other parameters as:s=0.8,q=1.4,kθρs=0.6,and R/Lne=–1.As can be seen from figure 3,the impurity has a stabilizing effect on the ITG,and the TE can enhance the ITG instability,where the stabilization effect of the impurities is consistent with the previous simulation results.Concerning the destabilizing effect of TE,usually,when there are TEs,free energy is transferred from the TEs to the waves due to the precession drift resonance,so the TEs are destabilizing for the ITG.This resonance with TEs is related to the bounce average precession frequency(see equation (5)).The direction of the precession is in the toroidal direction.In fact,the resonance of TEs with the ITG mode is clearly represented by the denominator in the front of the integration overκd2in equation (5),which indicates that the resonance occurs between the mode oscillation(ω)and the bounce averaged precessional motionof TEs in the toroidal direction.Such resonance may have a destabilizing effect on the mode.

    The normalized growth rate (γ) and real frequency (ωr)versus R/LTifor different cases,namely,with and without impurities,TEs are presented in figure 4 with R/Lne=–8.The other parameters are the same as those shown in figure 3.We can see that there is a big difference between the TE effects between the weak and strong density gradient cases.In the weak density gradient situation,the TE effects tend to enhance the ITG instability,while the impurity has a clear stabilizing effect.However,in the strong density gradient cases,both the effects of impurities and TEs increase the ITG instability,especially the role of impurities,which makes the growth rate of instability increase by a large amplitude.This result in the hollow density profile plasma is exactly the opposite of that in plasmas with normal density gradient.We need to note that,generally speaking,for the former case,the total effect of TEs and impurity ions is stabilizing,while for the latter cases,the total effect is destabilizing.

    3.3.Effect of magnetic shear

    Numerous studies have shown that magnetic shear is an important parameter affecting instability,turbulent transport bifurcation,ion temperature profile invariance,and turbulent spreading.This is mainly because magnetic shear can affect the radial structure of the drift mode.In some experimental devices,the core weak magnetic shear discharge mode,which is listed as one of the candidates for the advanced operating modes of ITER,is studied.In this mode,the safety factor profile of the core is relatively flat and the magnetic shear is relatively small.A large number of studies have shown that the weak magnetic shear discharge pattern can well suppress the current-driven and fast MHD instability,but it is found that some slow-growing modes still grow,including microscopic drift instability.

    Figure 5.Normalized growth rate(γ)and real frequency(ωr)versus positive s with different Lez.(a)and(b)represent R/Lne=-1;(c)and(d) represents R/Lne=-8.Other parameters are set as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.C+6 (fz=0.2) is treated as impurities.

    In this subsection,we investigate the effect of magnetic shear on ITG instability in inverted density plasma.For comparison,we chose R/Lne=–1 and R/Lne=–8,respectively,to compare the flat and steep electron density distributions to analyze the influences of magnetic shear on ITG instability.Figure 5 depicts the normalized growth rate (γ)and real frequency (ωr) versus positive magnetic shear s with different Lez.Figures 5(a) and (b) represent R/Lne=–1;figures 5(c) and (d) represent R/Lne=–8.We set the other parameters as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.C+6is treated as impurities.From figure 5,it is shown that the growth rate of the ITG mode decreases with positive magnetic shear s while the real frequency increases with positive magnetic shear.That means,large magnetic shear will suppress the growth of the ITG mode.A strong electron density gradient only changes the real frequency of the ITG mode,while it hardly affects the relationship between the ITG mode and the magnetic shear.

    Figure 6 is the same as figure 5,except the magnetic shear is negative.From figure 6,we can see that the growth rate of the ITG increases with negative magnetic shear s while the real frequency decreases with the decrease of negative magnetic shear.This indicates that the ITG mode will also be suppressed with larger negative magnetic shear s.It should be noted that under the steep electron density distribution,the effects of impurities on the ITG shown in figures 2 and 5 are different.This is because we do not consider TEs in figure 2,and in figure 5 we do consider TEs.If figure 5 does not incorporate TEs,figures 2 and 5 are consistent under a negative strong density gradient.

    3.4.Eigenmode structure

    In this subsection,we discuss the eigenmode structure of the ITG modes in the ballooning space.To compare the results,we use s=0.9 and s=–0.9 to discuss the characteristics of the ITG in the negative and positive magnetic shear intervals,respectively.The red solid line and the blue dashed line represent the real partand the imaginary partof the disturbing electrostatic potential,respectively,in figure 7,which shows the eigenmode structures of the ITG in θ-space with s=0.9.Figures 7(a)–(c) represent R/Lne=–1 and figures 7(d)–(f) represent R/Lne=–8.Other parameters are set the same as those in figure 5.Figure 8 is the same except s=–0.9.For positive s,we can see that the eigenmode structure is well localized in the ballooning space.For negative s,the eigenmode is elongated along the direction of the magnetic field lines,thus requiring a higher calculation accuracy.As shown in figures 7 and 8,the length calculated in the negative s interval is greater than the value in the positive s.In addition,we learn that for relatively large electron density gradients,the ITG mode structure has oscillations in the θ-space.

    4.Summary and discussion

    In this paper,with a local equilibrium model,the local properties of the ITG mode in tokamak plasmas of inverted density profiles are studied in the presence of impurity ions and TEs,using the gyrokinetic integral eigenvalue code HD7.The specific results obtained can be summarized as follows.

    Figure 6.Normalized growth rate(γ)and real frequency (ωr)versus negative s with different Lez.(a)and(b)represent R/Lne=–1;(c)and(d) represent R/Lne=–8.Other parameters are set as:s=0.8,q=1.4,kθρs=0.4,and ηe=1.Fully ionized carbon (C+6,fz=0.2) is treated as impurity species.

    Figure 7.Eigenmode structures of the ITG in the(θ)space with s=0.9.(a)–(c)represent R/Lne=–1;(d)–(f)represent R/Lne=–8.Other parameters are set the same as those shown in figure 5.C+6 is treated as impurities with fz=0.2.

    Figure 8.Eigenmode structures of the ITG in the(θ)space with s=–0.9.(a)–(c)represent R/Lne=–1;(d)–(f)represent R/Lne=–8.Other parameters are set the same as those shown in figure 6.C+6 is treated as impurities with fz=0.2.

    (1) The increase of the ITG enhances the ITG growth rate and frequency.The effects of the TEs and impurity ions depend on the electron density gradient.In the weak density gradient situation,the TE effects tend to increase the ITG instability,while the impurity has a distinct stabilizing effect.However,in the strong density gradient cases,both the impurity and TEs increase the ITG instabilities.

    (2) The magnetic shear s is an important parameter affecting ITG instability.It is found that the growth rate of the ITG decreases with positive magnetic shear s while the real frequency increases with s.We also demonstrate that the growth rate of the ITG increases with negative s while the real frequency decreases with s.In addition,in inverted density plasma,the length of the calculated mode structure in the negative s interval is greater than that in the positive s case.

    Future work will include a quasi-linear study of TE and impurities effects on the ITG mode in toroidal plasmas with hollow density profiles.Moreover,electromagnetic simulations of the ITG in toroidal plasmas are also ongoing.

    Acknowledgments

    The authors would like to thank Huarong Du and Jia Li for fruitful discussions.This work is supported by the National Key R&D Program of China (Nos.2018YFE0303102 and 2017YFE0301702),US SciDAC GSEP,the NSFC (Nos.11905109 and 11947238),the China Postdoctoral Science Foundation (No.2018M640230),and the Fundamental Research Funds for the Central Universities,Nankai University (63191351).

    猜你喜歡
    董家
    董家鴻院士
    Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
    A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
    Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak*
    大功率激電測深方法在豫西董家埝銀礦床勘查中的應(yīng)用
    學(xué)習(xí)是進步階梯,做不放棄的自己
    董家口
    紅巖(2018年6期)2018-11-16 12:27:24
    填成語
    老友(2018年3期)2018-01-22 04:01:48
    補唐詩慶建軍節(jié)
    老友(2017年8期)2017-02-07 03:19:24
    安丘董家莊漢畫像石墓主人之謎
    大眾考古(2014年2期)2014-06-26 08:29:32
    丝袜喷水一区| 日韩一本色道免费dvd| 亚洲三区欧美一区| 亚洲精品国产一区二区精华液| 亚洲av国产av综合av卡| 欧美变态另类bdsm刘玥| 99久久人妻综合| 精品国产国语对白av| 欧美黑人欧美精品刺激| 亚洲精品国产av成人精品| 亚洲成色77777| 午夜免费成人在线视频| 飞空精品影院首页| 国产成人免费无遮挡视频| www.av在线官网国产| 国产成人欧美| 97人妻天天添夜夜摸| 大片免费播放器 马上看| 欧美精品av麻豆av| 国产97色在线日韩免费| 久久人妻福利社区极品人妻图片 | 亚洲男人天堂网一区| 天堂俺去俺来也www色官网| 免费一级毛片在线播放高清视频 | 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 一本综合久久免费| 99热国产这里只有精品6| 国产精品.久久久| 国产淫语在线视频| 国产深夜福利视频在线观看| 久久精品久久久久久久性| 亚洲精品一二三| 久久精品亚洲熟妇少妇任你| 欧美人与性动交α欧美精品济南到| 亚洲第一青青草原| 亚洲伊人色综图| 狂野欧美激情性bbbbbb| 亚洲精品av麻豆狂野| 91麻豆av在线| 国产欧美日韩综合在线一区二区| 欧美黑人精品巨大| 亚洲精品一卡2卡三卡4卡5卡 | 99久久人妻综合| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲七黄色美女视频| videosex国产| 国产一级毛片在线| 欧美精品啪啪一区二区三区 | av网站免费在线观看视频| 久久久久久人人人人人| 久久久国产一区二区| 免费在线观看黄色视频的| 久久久精品免费免费高清| 在线亚洲精品国产二区图片欧美| 久久国产精品影院| 高清欧美精品videossex| 大码成人一级视频| 久久99精品国语久久久| 纵有疾风起免费观看全集完整版| 99re6热这里在线精品视频| 亚洲视频免费观看视频| 国产欧美日韩一区二区三 | 国产成人啪精品午夜网站| 亚洲国产av新网站| 久9热在线精品视频| 亚洲精品自拍成人| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清 | 制服人妻中文乱码| 久久久亚洲精品成人影院| 赤兔流量卡办理| 久久久久久久国产电影| 亚洲成人免费电影在线观看 | 久久女婷五月综合色啪小说| 一本一本久久a久久精品综合妖精| 精品视频人人做人人爽| av天堂在线播放| 黄网站色视频无遮挡免费观看| 亚洲色图综合在线观看| 成年女人毛片免费观看观看9 | 欧美日韩亚洲高清精品| 王馨瑶露胸无遮挡在线观看| 一区二区av电影网| 如日韩欧美国产精品一区二区三区| 大型av网站在线播放| 午夜福利免费观看在线| 国产91精品成人一区二区三区 | 首页视频小说图片口味搜索 | 精品少妇一区二区三区视频日本电影| 王馨瑶露胸无遮挡在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩av免费高清视频| 日本vs欧美在线观看视频| av片东京热男人的天堂| 中国美女看黄片| 男女之事视频高清在线观看 | 免费高清在线观看视频在线观看| 亚洲精品美女久久久久99蜜臀 | 别揉我奶头~嗯~啊~动态视频 | 人人妻人人澡人人爽人人夜夜| 国产一区二区三区综合在线观看| 午夜福利视频在线观看免费| 成年人午夜在线观看视频| 国产成人免费无遮挡视频| 亚洲国产欧美网| 久久 成人 亚洲| 男女边吃奶边做爰视频| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线观看99| www.999成人在线观看| 人人妻人人爽人人添夜夜欢视频| 久久狼人影院| 啦啦啦啦在线视频资源| 飞空精品影院首页| 欧美精品高潮呻吟av久久| 丝袜喷水一区| av在线app专区| 日韩视频在线欧美| 亚洲人成网站在线观看播放| 热99久久久久精品小说推荐| 美女午夜性视频免费| 人妻 亚洲 视频| 精品人妻熟女毛片av久久网站| a级片在线免费高清观看视频| 女人高潮潮喷娇喘18禁视频| 久久国产精品男人的天堂亚洲| 女人被躁到高潮嗷嗷叫费观| 久久久久国产精品人妻一区二区| 男人爽女人下面视频在线观看| 亚洲欧美一区二区三区久久| 丝袜美足系列| 久久久久久久精品精品| 久久久国产一区二区| 可以免费在线观看a视频的电影网站| 久久久精品国产亚洲av高清涩受| 日本一区二区免费在线视频| 国产成人精品无人区| 久久中文字幕一级| 国产成人精品在线电影| 亚洲av电影在线进入| 大陆偷拍与自拍| 十八禁网站网址无遮挡| 黄片小视频在线播放| 一本一本久久a久久精品综合妖精| 人妻 亚洲 视频| 国产三级黄色录像| 赤兔流量卡办理| 在线观看免费视频网站a站| 男人舔女人的私密视频| 亚洲中文字幕日韩| 久久久精品区二区三区| 国产精品三级大全| 国产男人的电影天堂91| 国产精品一区二区在线不卡| 精品国产一区二区久久| 日韩伦理黄色片| 国产色视频综合| 两人在一起打扑克的视频| 桃花免费在线播放| 亚洲欧洲精品一区二区精品久久久| 亚洲国产中文字幕在线视频| 亚洲精品国产色婷婷电影| 真人做人爱边吃奶动态| 精品久久久精品久久久| 手机成人av网站| bbb黄色大片| 亚洲欧美一区二区三区黑人| 久久精品国产亚洲av涩爱| 免费在线观看完整版高清| 国产真人三级小视频在线观看| 成人18禁高潮啪啪吃奶动态图| av片东京热男人的天堂| 可以免费在线观看a视频的电影网站| 亚洲国产中文字幕在线视频| 日本vs欧美在线观看视频| 五月开心婷婷网| 国产精品.久久久| 伊人亚洲综合成人网| 亚洲精品久久久久久婷婷小说| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| www.精华液| 国产人伦9x9x在线观看| 在线观看免费高清a一片| 国精品久久久久久国模美| 中国国产av一级| 少妇猛男粗大的猛烈进出视频| 精品卡一卡二卡四卡免费| 日韩 亚洲 欧美在线| 国产精品99久久99久久久不卡| 一级毛片电影观看| av片东京热男人的天堂| 2018国产大陆天天弄谢| 亚洲 欧美一区二区三区| 欧美少妇被猛烈插入视频| 色婷婷av一区二区三区视频| 在线av久久热| 熟女少妇亚洲综合色aaa.| www.熟女人妻精品国产| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| av在线老鸭窝| 亚洲国产毛片av蜜桃av| 久久天堂一区二区三区四区| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 久久天堂一区二区三区四区| 亚洲,欧美精品.| 91麻豆精品激情在线观看国产 | 肉色欧美久久久久久久蜜桃| 大香蕉久久网| 日韩 欧美 亚洲 中文字幕| 亚洲,欧美,日韩| 国产熟女欧美一区二区| 国产一区二区三区综合在线观看| 国产三级黄色录像| 免费高清在线观看日韩| 久久99一区二区三区| 女警被强在线播放| 中文字幕最新亚洲高清| 午夜福利视频精品| 成年人午夜在线观看视频| 欧美日韩亚洲高清精品| 美女中出高潮动态图| 国产成人精品在线电影| 青草久久国产| 免费不卡黄色视频| 超色免费av| 亚洲欧美精品自产自拍| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色麻豆天堂久久| 黄色片一级片一级黄色片| 国产精品欧美亚洲77777| 欧美大码av| √禁漫天堂资源中文www| 黄色怎么调成土黄色| 亚洲精品一卡2卡三卡4卡5卡 | 一级片免费观看大全| 国产精品秋霞免费鲁丝片| 搡老乐熟女国产| 中文字幕高清在线视频| 另类精品久久| 免费黄频网站在线观看国产| 国产av一区二区精品久久| 香蕉丝袜av| 一级,二级,三级黄色视频| 大码成人一级视频| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 日日夜夜操网爽| 欧美久久黑人一区二区| 亚洲午夜精品一区,二区,三区| 啦啦啦啦在线视频资源| 夜夜骑夜夜射夜夜干| www日本在线高清视频| 晚上一个人看的免费电影| 日韩精品免费视频一区二区三区| 黄色一级大片看看| 久久免费观看电影| 久久这里只有精品19| 亚洲欧洲精品一区二区精品久久久| 天天躁日日躁夜夜躁夜夜| 国产成人a∨麻豆精品| 在线观看免费高清a一片| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 男人操女人黄网站| 两个人看的免费小视频| 五月天丁香电影| 中文字幕制服av| 久久狼人影院| www.av在线官网国产| 狠狠婷婷综合久久久久久88av| 婷婷色麻豆天堂久久| 国产一区二区在线观看av| 男女高潮啪啪啪动态图| 女人爽到高潮嗷嗷叫在线视频| 一本久久精品| 曰老女人黄片| 日本91视频免费播放| 人人妻人人澡人人爽人人夜夜| 制服诱惑二区| 桃花免费在线播放| 国产av国产精品国产| 国产在视频线精品| 十八禁高潮呻吟视频| 黄色一级大片看看| av福利片在线| 校园人妻丝袜中文字幕| a 毛片基地| 在线观看免费视频网站a站| 日本a在线网址| 最新在线观看一区二区三区 | 丁香六月欧美| 欧美成人午夜精品| av线在线观看网站| 欧美97在线视频| 性高湖久久久久久久久免费观看| 国产熟女午夜一区二区三区| 精品一区二区三区av网在线观看 | 精品高清国产在线一区| 国产精品久久久久久精品电影小说| 老熟女久久久| 天天添夜夜摸| 亚洲伊人久久精品综合| 高清不卡的av网站| 亚洲精品中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 国产av精品麻豆| 天堂中文最新版在线下载| 亚洲熟女精品中文字幕| 精品欧美一区二区三区在线| 欧美中文综合在线视频| 欧美国产精品va在线观看不卡| 97在线人人人人妻| 夫妻性生交免费视频一级片| 亚洲欧洲国产日韩| 亚洲av片天天在线观看| 97在线人人人人妻| 亚洲精品美女久久av网站| 亚洲av欧美aⅴ国产| 欧美人与性动交α欧美精品济南到| 七月丁香在线播放| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 亚洲国产日韩一区二区| 亚洲欧美一区二区三区黑人| 操出白浆在线播放| 青青草视频在线视频观看| 国产精品免费视频内射| 国产淫语在线视频| 成年美女黄网站色视频大全免费| 国产成人av教育| 久久久久久久精品精品| 亚洲精品国产区一区二| 久久精品aⅴ一区二区三区四区| 女人久久www免费人成看片| 操出白浆在线播放| 国产精品欧美亚洲77777| 亚洲欧美清纯卡通| 飞空精品影院首页| 久久毛片免费看一区二区三区| 国产伦人伦偷精品视频| 亚洲欧洲国产日韩| 亚洲精品久久午夜乱码| 亚洲成人免费电影在线观看 | 国产黄色免费在线视频| 欧美日韩亚洲国产一区二区在线观看 | 9191精品国产免费久久| 国产高清视频在线播放一区 | avwww免费| 久久精品国产亚洲av高清一级| 日韩一卡2卡3卡4卡2021年| 久久精品久久精品一区二区三区| 亚洲中文字幕日韩| 亚洲成人国产一区在线观看 | 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 宅男免费午夜| 69精品国产乱码久久久| 国产人伦9x9x在线观看| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 青春草视频在线免费观看| 99国产精品一区二区蜜桃av | 国产极品粉嫩免费观看在线| 久久ye,这里只有精品| 亚洲熟女毛片儿| 91精品三级在线观看| 精品一区二区三区四区五区乱码 | 999精品在线视频| 精品一区二区三卡| 国产有黄有色有爽视频| 亚洲欧洲国产日韩| 中文字幕av电影在线播放| 免费在线观看影片大全网站 | 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| av有码第一页| 亚洲国产av新网站| 99久久99久久久精品蜜桃| 热re99久久精品国产66热6| 捣出白浆h1v1| 久久久精品国产亚洲av高清涩受| 黄色视频在线播放观看不卡| 中文字幕人妻丝袜一区二区| 亚洲av成人精品一二三区| 日本欧美国产在线视频| 亚洲精品久久成人aⅴ小说| 国产黄色免费在线视频| 91老司机精品| 纯流量卡能插随身wifi吗| 视频区欧美日本亚洲| 中文字幕色久视频| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| 日本午夜av视频| 丰满少妇做爰视频| 欧美黑人精品巨大| 亚洲天堂av无毛| 精品高清国产在线一区| 国产亚洲av片在线观看秒播厂| 国产精品二区激情视频| 久9热在线精品视频| av在线播放精品| 日韩制服丝袜自拍偷拍| 男女免费视频国产| svipshipincom国产片| 国产精品一二三区在线看| 另类亚洲欧美激情| 视频在线观看一区二区三区| 两个人看的免费小视频| 三上悠亚av全集在线观看| 成人亚洲欧美一区二区av| 91麻豆av在线| 久久国产精品影院| 国产一区二区三区综合在线观看| 一区二区av电影网| 黄网站色视频无遮挡免费观看| 亚洲av美国av| 男人操女人黄网站| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品| 欧美人与性动交α欧美精品济南到| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久精品古装| 国产精品九九99| 七月丁香在线播放| 一边摸一边抽搐一进一出视频| 久久久欧美国产精品| 亚洲色图 男人天堂 中文字幕| 91精品国产国语对白视频| av在线app专区| 久久久久久久久久久久大奶| 人人澡人人妻人| 日本五十路高清| 日韩人妻精品一区2区三区| 两个人看的免费小视频| 国产三级黄色录像| 国产91精品成人一区二区三区 | 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 精品欧美一区二区三区在线| 啦啦啦啦在线视频资源| 色网站视频免费| 国产精品三级大全| 九色亚洲精品在线播放| 九草在线视频观看| 91麻豆av在线| 午夜两性在线视频| 一级毛片黄色毛片免费观看视频| 国产高清videossex| 精品人妻1区二区| 欧美亚洲 丝袜 人妻 在线| 美国免费a级毛片| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| 少妇 在线观看| 19禁男女啪啪无遮挡网站| 国产精品人妻久久久影院| 丰满饥渴人妻一区二区三| 国产亚洲欧美在线一区二区| 可以免费在线观看a视频的电影网站| 亚洲中文字幕日韩| 51午夜福利影视在线观看| av在线播放精品| 久久久精品免费免费高清| 99久久精品国产亚洲精品| 妹子高潮喷水视频| 亚洲人成77777在线视频| 中文字幕色久视频| 欧美成人午夜精品| 99国产综合亚洲精品| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 如日韩欧美国产精品一区二区三区| 久久久久网色| 宅男免费午夜| 国产精品秋霞免费鲁丝片| 手机成人av网站| 国产精品.久久久| 久久久精品94久久精品| 99久久人妻综合| 十八禁人妻一区二区| 最近手机中文字幕大全| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 国产深夜福利视频在线观看| 亚洲人成电影观看| 一本综合久久免费| 人人妻人人爽人人添夜夜欢视频| 亚洲综合色网址| 人人妻,人人澡人人爽秒播 | 美女主播在线视频| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 欧美大码av| 午夜福利乱码中文字幕| 大码成人一级视频| 久久久久久久大尺度免费视频| 国产有黄有色有爽视频| 丰满迷人的少妇在线观看| av天堂在线播放| 久久九九热精品免费| 热99国产精品久久久久久7| 人人妻人人爽人人添夜夜欢视频| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产区一区二| 男女免费视频国产| 啦啦啦在线免费观看视频4| 赤兔流量卡办理| 最新在线观看一区二区三区 | 久久久欧美国产精品| 亚洲精品乱久久久久久| 成人国产一区最新在线观看 | 高清不卡的av网站| h视频一区二区三区| 91麻豆av在线| 午夜免费成人在线视频| 69精品国产乱码久久久| 亚洲中文字幕日韩| 国产精品 国内视频| 国产在视频线精品| 十八禁网站网址无遮挡| 美女扒开内裤让男人捅视频| 日本五十路高清| 波多野结衣一区麻豆| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 国产成人精品久久二区二区免费| 欧美老熟妇乱子伦牲交| 国产精品免费大片| 少妇精品久久久久久久| 午夜老司机福利片| 悠悠久久av| 青草久久国产| 国产视频一区二区在线看| 51午夜福利影视在线观看| netflix在线观看网站| 日韩,欧美,国产一区二区三区| 中国国产av一级| 国产午夜精品一二区理论片| xxx大片免费视频| 人人妻,人人澡人人爽秒播 | 大码成人一级视频| 国产亚洲av片在线观看秒播厂| 人妻人人澡人人爽人人| 成年人免费黄色播放视频| 久久国产精品人妻蜜桃| 日韩欧美一区视频在线观看| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 国产精品偷伦视频观看了| 麻豆乱淫一区二区| 日韩av在线免费看完整版不卡| 下体分泌物呈黄色| 男女之事视频高清在线观看 | 性色av一级| 丝袜人妻中文字幕| 国产黄色视频一区二区在线观看| 男女下面插进去视频免费观看| 免费在线观看视频国产中文字幕亚洲 | 美女国产高潮福利片在线看| 久久中文字幕一级| 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久成人aⅴ小说| 各种免费的搞黄视频| 国产又爽黄色视频| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 亚洲伊人久久精品综合| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 午夜免费成人在线视频| 久久这里只有精品19| 成年av动漫网址| 美女主播在线视频| 欧美日韩亚洲高清精品| av福利片在线| 亚洲精品国产av蜜桃| 最黄视频免费看| 纯流量卡能插随身wifi吗| 婷婷色综合大香蕉| 精品国产超薄肉色丝袜足j| 日韩av在线免费看完整版不卡| 午夜激情av网站| 男的添女的下面高潮视频| 下体分泌物呈黄色| 亚洲av欧美aⅴ国产| 97人妻天天添夜夜摸| 一级片免费观看大全| 亚洲精品一卡2卡三卡4卡5卡 | 美女午夜性视频免费| av又黄又爽大尺度在线免费看| 涩涩av久久男人的天堂| 欧美黄色淫秽网站| 免费看av在线观看网站| 大香蕉久久成人网| 超碰97精品在线观看| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到| 超碰97精品在线观看| 日本av免费视频播放| 亚洲精品国产区一区二| 午夜av观看不卡| 欧美日韩黄片免| 久9热在线精品视频| 午夜视频精品福利| 久久精品久久久久久噜噜老黄|