• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vickers hardness change of the Chinese low-activation ferritic/martensitic steel CLF-1 irradiated with high-energy heavy ions

    2020-06-14 08:45:50ZhaonanDING丁兆楠ChonghongZHANG張崇宏YitaoYANG楊義濤YuguangCHEN陳宇光XianlongZHANG張憲龍YinSONG宋銀TongdaMA馬通達(dá)YupingXU徐玉平andGuangnanLUO羅廣南
    Plasma Science and Technology 2020年5期
    關(guān)鍵詞:廣南通達(dá)

    Zhaonan DING (丁兆楠),Chonghong ZHANG (張崇宏),Yitao YANG (楊義濤),Yuguang CHEN (陳宇光),Xianlong ZHANG (張憲龍),Yin SONG (宋銀),Tongda MA (馬通達(dá)),Yuping XU (徐玉平) and Guangnan LUO (羅廣南)

    1 Institute of Modern Physics,Chinese Academy of Sciences,Lanzhou 730000,People’s Republic of China

    2 School of Nuclear Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    3 General Research Institute for Nonferrous Metals,Beijing 100088,People’s Republic of China

    4 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    Abstract

    Keywords:CLF-1,RAFM steel,heavy ions,irradiation,hardening

    1.Introduction

    Irradiation by the high-energy neutrons from the D–T reaction in fusion reactors will produce defects and gaseous impurities including helium in structural components such as the first wall/blankets,resulting in embrittlement and swelling of materials,thereby seriously restricting integrity and safety in long-life operation of fusion reactors.Due to excellent thermophysical and mechanical properties,good resistance to void swelling as well as low-activation,reduced-activation ferritic/martensitic (RAFM) steels have been considered as prime candidates for structural materials for fusion reactorblankets [1,2].The Chinese RAFM steel CLF-1 is one such candidate material for the design and manufacture of the helium-cooled ceramic breeder test blanket module (HCCB TBM) [3].Previous studies have shown that the ductile–brittle transition temperature and high-temperature tensile properties,especially the tensile strength of CLF-1,are close to the international level for the same type of RAFM steel,but there is still a lack of research on its response to irradiation.In view of the fact that hardening /embrittlement under irradiation is a crucial issue for the use of RAFM steels in the low-temperature regime (below 400°C),more studies are needed to clarify the performance of CLF-1 under irradiation.

    Table 1.Specific chemical composition of CLF-1 steel in wt%.

    The Vickers micro-hardness is known to have a direct correlation with the yield strength of steels.Busby et al [4]found that there is a simple interrelation between yield stress and Vickers hardness for austenite and ferrite steel after neutron irradiation.The Vickers hardness test does not require a large volume of material[5].The hardness and depth profile information obtained from the irradiated surface can be further analyzed to establish the correlation between the Vickers hardness and the macroscopic mechanical properties of the material [6].For a reliable evaluation of the irradiation hardening of steels by the Vickers micro-hardness test,the region damaged by irradiation needs to be thick enough so as to readily minimize the contribution of the unaffected substrate of the specimens.Besides various neutron sources,ion beams generated by high-energy accelerators are also applicable as surrogates [7]due to some attractive attributes such as higher damage rates,easier control of irradiation parameters and lower radioactivity of samples,enabling easy handling for the post-irradiation examination.Moreover,cascade damage induced by energetic heavy ions in materials is similar to that by fast neutrons [7].Therefore,heavy ions can be used to simulate neutron irradiation of structural components [8–10].

    In the present work,specimens of CLF-1 steel were irradiated with high-energy heavy ions to successively increasing damage levels at a low temperature where irradiation-induced hardening is significant.Vickers hardness together with nano-hardness were tested.Correlation between the Vickers micro-hardness and the nano-hardness and the dependence of the observed hardening on the irradiation dose were investigated.Finally,irradiation hardening data from other RAFM steels were compiled and compared.

    2.Experimental

    The material used in the present study was a Chinese RAFM steel CLF-1.The chemical composition of CLF-1 is listed in table 1.Details about the manufacturing process for CLF-1 have been described in previous papers [3,11–13].Before irradiation,a block of CLF-1 was sliced into specimens of 1 cm × 1 cm with a thickness of about 1 mm and mechanically ground with SiC abrasive paper (from grades 800 to 2400) then carefully polished with diamond suspensions(~1 μm)to obtain smooth surfaces.The final thickness of the sample was about 200 μm.

    The irradiation experiment was carried out at a terminal chamber of the Sector-focused Cyclotron at the Heavy Ion Research Facility in Lanzhou located in the Institute of Modern Physics of the Chinese Academy of Sciences.The chamber was equipped with a beam intensity monitoring assembly,an energy degrader and a liquid nitrogen-cooled specimen stage.The beam current was monitored with a Au foil assembly placed in the beam line before the energy degrader,consisting of a 1 μm thick Au foil to collect electric charge,a circular aperture of diameter 15 mm to limit the irradiation area and a circular aperture of diameter 18 mm with a bias voltage of-300 V to suppress secondary electron emission.At the beginning and the end of the irradiation,the beam current monitoring assembly was calibrated using a Faraday cup mounted at the end of the chamber.The incident mono-energetic heavy ions were dispersed into 11 different energies by an energy degrader in front of the specimen stage,which includes a rotatable wheel consisting of several aluminum foils of different thicknesses.During irradiation the thickness of the aluminum foil varies as the wheel rotates at a speed of 12 rpm,dispersing the incident ions with different energies and thus producing a nearly uniform distribution of displacement damage in the specimens.Further details about irradiation terminals are given in our previous paper [14].

    In the present study,14N and56Fe ions with kinetic energies of 63 MeV and 336 MeV,respectively,and a beam flux of around 5 × 1010ions cm–2s–1were used.Three successively increasing damage levels [0.05,0.1 and 0.2 displacements per atom (dpa)]were applied.The lowest and intermediate damage levels were due to N ion irradiation at a damage rate of about 0.01 dpa h-1.While the highest dose(0.2 dpa)was from Fe ion irradiation at a damage rate of about 0.02 dpa h-1.Depth profiles of atomic displacement damage (in dpa) in the CLF-1 specimens,irradiated with N ions to the lowest dose and Fe ions to the highest dose,are shown in figure 1,according to an estimation using the SRIM-2013 code (quick calculation,displacement threshold energy Ed=40 eV) [15].The dpa is obtained as the average displacement damage of the superposed value located at damage peak of multi-energy irradiation.The specimens were mounted on a stage cooled with liquid nitrogen so that the effects of beam heating are efficiently suppressed.A thermocouple was mounted on the sample stage to monitor the temperature during irradiation.The position of the specimen stage is adjustable,enabling a switch from one specimen to another.During irradiation,the temperature of the specimen stage was stabilized at about -50°C.Numerical analysis shows that beam heating causes the specimen temperature to be about 20°C higher than that of the specimen stage during irradiation.The vacuum of the sample chamber is around 2.5 × 10-5Pa.

    Figure 1.Depth profiles of the displacement damage in CLF-1 specimens according to SRIM-2013 simulation,corresponding to a dose level of(a)0.05 dpa by N ions and(b)0.2 dpa by Fe ions.The dashed red line shows the superposed effect.A series of different Al foil thicknesses(in micrometers) of the energy degrader is shown in the right column.

    After irradiation,the samples were preserved in the chamber in a rough vacuum at room temperature for 172 and 105 days corresponding to N and Fe irradiation,respectively,so as to take the radioactivity down to the background level.Then they were used for the nano-indentation test and Vickers hardness test.

    Testing the nano-hardness with the nano-indentation technique was described in our previous paper [16].The soft substrate effect,which is usually observed in low-energy ion irradiation experiments,was not seen in the present work.The broad quasi-uniform damage plateau from near the surface to about 25 μm (figure 1) facilitates direct measurement of the Vickers hardness.In the present study,a Vickers hardness tester (Wilson T2500,Buehler Ltd.,USA) was used.A standard sample was used for calibration before the test.Eight different loads (98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N)were applied to the sample surface for 10 s each to measure the Vickers hardness of each specimen.The corresponding indentation depth varied in the range from 1.2 to 18.6 μm.For each load three indentation points were randomly selected on the specimen surface with a minimum distance of 200 μm,and the average value was taken.The Vickers hardness tests were conducted at room temperature.

    3.Results and discussion

    3.1.Irradiation hardening

    Figure 2.Average Vickers hardness versus indentation depth of CLF-1 specimens under different conditions.

    Figure 2 shows typical indentation depth profiles of the average Vickers hardness of three indents under each load for CLF-1 before and after irradiation.It can be seen that the measured hardness of all the specimens decreases with increasing indentation depth,known as the indentation size effect (ISE) [17].Moreover,hardening is observable in the irradiated specimens and increases with increase in the damage level.In figure 3,the extent of irradiation hardening at different doses is depicted by the hardness ratio of irradiated and unirradiated specimens.It can be seen that the ratio has a peak value at an indentation depth of about 3.8 μm.At this indentation depth,the hardening percentage is about 14%,23% and 28% for damage levels of 0.05,0.1 and 0.2 dpa,respectively.The ratio decreases monotonically at deeper indentation depths.

    Nix and Gao[18]developed a model based on geometrically necessary dislocation to explain the ISE,in which the hardness as a function of depth is given by the following equation:

    Figure 3.Ratio of/ versus indentation depth corresp-onding to different doses.

    Figure 4.Plots of HV2 versus 1/h for the average Vickers hardness of unirradiated and irradiated CLF-1 specimens.

    where HV is the measured hardness of the material,HV0is the hardness at infinite depth(i.e.bulk equivalent hardness),h is the indentation depth and h*is a characteristic length that depends on the material and shape of the indenter.It can be found from the equation that the square of the hardness varies inversely with the indentation depth.

    For further analysis,the hardness data versus indentation depth in figure 2 were replotted accordingly as HV2against 1/h,as shown in figure 4.Plots for the unirradiated specimen show a good linearity in the overall indentation depth range.However,plots for the specimens irradiated with heavy ions exhibit a distinct bilinearity,with an inflection point at a depth of around 3.6 μm,which coincides with the depth of the maximum ratio in figure 3.In the test,eight different loads(i.e.98 mN,196 mN,490 mN,980 mN,1.96 N,4.9 N,9.8 N and 19.6 N) were used,corresponding to indentation depths ranging from 1.2 μm to 18.6 μm.Since the zone affected by elastic deformation is generally a few times broader than the indentation depth,the undamaged substrate starts to contribute to the hardness test when the indentation depth exceeds the inflection point [19,20].From figure 2,the indentation depth of the initial five loads (i.e.98 mN,196 mN,490 mN,980 mN,1.96 N) was about 1.2 μm,1.7 μm,2.8 μm,3.6 μm and 5.8 μm,respectively.The corresponding elastic deformation zones below the indenter are generally about four to seven times deeper than the indentation depth.The elastic deformation zones of the initial four loads should be within the damaged layer (which is 25 μm thick) of the irradiated specimens,while that of the fifth load(1.96 N) should exceed the boundary of the damaged layer.Under larger loads the unirradiated soft substrates make a greater contribution to the hardness test,causing a different depth dependence of the hardness data [21].

    Table 2.HV0 and h* for CLF-1 steel calculated by the Nix–Gao model.Data are averages from three indents under each load.

    Figure 5.Bulk equivalent hardness HV0 as a function of damage level for CLF-1 steel.

    The bulk equivalent hardness HV0can therefore be obtained by extrapolating from the least-squares fitting of hardness data in the range of 1.2 μm < h < 3.6 μm for the irradiated specimens,according to equation (1).Values of HV0and h*are given in table 2.

    The dependence of HV0on the irradiation damage level(dpa) is plotted in figure 5.Fitting of the data suggests a power-law relationship:

    where the unit of HV0in the equation is GPa.The hardness initially increases quickly with dose (<0.05 dpa) and then slows down further with doses up to 0.2 dpa,showing a hardening saturation trend.

    The Vickers micro-hardness data are further compared with the nano-hardness obtained previously by nano-indentation tests from the same CLF-1 specimens [16].As shown in figure 6,the Vickers micro-hardness data reveal a linear relationship with nano-hardness,which can be described by the following equation:

    Figure 6.The Vickers hardness(HV0)as a function of nano-hardness(H0) for unirradiated and irradiated CLF-1 specimens.

    A similar linear relationship was found for various steels in our previous work[22,23]and also by Yabuuchi et al[10].The projection contact area is used in the analysis of nanoindentation data,while the residual projection area is used in Vickers hardness analysis [9].Therefore,the coefficient is only related to the geometric size of the indenter and hardness unit when Vickers hardness and nano-hardness are defined in the same way.

    In order to compare the irradiation hardening with other RAFM steels,data on the increase in yield strength were compiled from previous neutron and ion irradiation experiments.Based on the relationship between Vickers hardness and yield stress [4],data on the increase in Vickers hardness of CLF-1 in the present work and those of CLAM in[24]are converted to increase in yield stress by the following equations [8]:

    where Δσyis the increase in the yield stress in units of MPa,ΔHv is the increase in Vickers hardness in units of kgf mm-2and ΔHV is the the increase in Vickers hardness in units of GPa.Equation (5) shows the relationship between ΔHv and ΔHV.

    The results are shown in figure 7,together with data from the tensile tests of other RAFM steels irradiated with fast neutrons or protons reported in[25–27].Despite the variety of irradiation sources and the minor difference in the compositions/manufacturing routes of the RAFM steels,the increase in yield strength versus the level of irradiation damage generally follows a similar power-law function.The dose dependence of the increase in yield strength of CLF-1 steel in the present work shows a similar power exponent to the data for RAFM steels,including neutron- or proton-irradiated modified JLF-1,F82H and Optimax A.The temperature and dose rate have a minor effect on the irradiation hardening of RAFM steels,possibly because at temperatures below 300°C the mobility of the major defect species (interstitial-type clusters,vacancies) is limited and does not significantly alter the microstructures caused by primitive cascade damage.

    The power exponent in the case of the neutron-irradiated Eurofer97 is significantly higher than for other RAFM steels.The difference in the power exponents of the dose dependence is mainly due to the microstructures of the RAFM steels before irradiation.A further comparison of the microstructures prior to irradiation,including the density of dislocations and precipitates and grain-boundary structures,should be helpful for understanding the differences in dose dependence of irradiation hardening between the RAFM steels.

    4.Conclusions

    The irradiation hardening behavior of CLF-1 steel irradiated by high-energy heavy ions to successively increasing damage levels (i.e.0.05,0.1 and 0.2 dpa) was studied.The broad thickness of the damaged layer (about 25 μm) facilitates the direct measurement of Vickers hardness.The depth distribution of Vickers hardness was obtained by applying eight different loads on the specimens with a hardness tester.The Vickers hardness data were analyzed by the Nix–Gao model and the bulk equivalent hardness values corresponding to different conditions were obtained.The bulk equivalent hardness HV0is linearly related to the previous nano-indentation test results by HV0=0.83H0.Hardening is observable at the lowest damage level,and increases with increasing irradiation dose.A power-law dependence of the irradiation damage level,HV0=1.49 + 0.76 dpa0.31,was observed.A comparison with other RAFM steels under neutron or charged particle irradiation conditions shows that most RAFM steels show similar power-law exponents in the dose dependence of irradiation hardening.The differences in irradiation hardening may be attributed to difference in microstructure prior to irradiation,which requires further investigations.

    Acknowledgments

    This work was sponsored by the National Magnetic Confinement Fusion Program(No.2011GB108003)and National Natural Science Foundation of China (No.U1532262).We are grateful for the experimental conditions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL).

    ORCID iDs

    猜你喜歡
    廣南通達(dá)
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    大廣南高速視頻云聯(lián)網(wǎng)技術(shù)探討
    “神子”如何通達(dá)藏地——論格絨追美的長(zhǎng)篇小說(shuō)《隱蔽的臉》
    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field
    廣南、廣巴高速公路連接線項(xiàng)目通過(guò)竣工驗(yàn)收
    石油瀝青(2019年1期)2019-03-05 08:25:46
    通達(dá)青島
    商周刊(2017年23期)2017-11-24 03:23:33
    博物洽聞,通達(dá)古今——記奉節(jié)縣博物館群
    LED燈在湖北大廣南高速公路隧道照明中的應(yīng)用
    兩年出欄的廣南高峰牛身價(jià)過(guò)萬(wàn)元
    達(dá)業(yè)速度為則通達(dá)
    精品久久久久久电影网 | 免费观看的影片在线观看| 校园人妻丝袜中文字幕| 亚洲av熟女| 最后的刺客免费高清国语| 一边摸一边抽搐一进一小说| 性插视频无遮挡在线免费观看| 最近手机中文字幕大全| 亚洲国产色片| 国产亚洲一区二区精品| 日本黄色片子视频| 亚洲精品一区蜜桃| 99热这里只有是精品50| 又黄又爽又刺激的免费视频.| 国产成人午夜福利电影在线观看| 亚洲性久久影院| 老司机影院毛片| 国产免费一级a男人的天堂| 欧美日本亚洲视频在线播放| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 91久久精品国产一区二区成人| 亚洲四区av| 18禁动态无遮挡网站| 青春草视频在线免费观看| 国产精品一区www在线观看| 国产成人a∨麻豆精品| 18禁裸乳无遮挡免费网站照片| 两个人视频免费观看高清| 男女边吃奶边做爰视频| 偷拍熟女少妇极品色| 亚洲婷婷狠狠爱综合网| 久久久久九九精品影院| 久久人人爽人人片av| 亚洲精品456在线播放app| 精品人妻一区二区三区麻豆| 免费观看精品视频网站| 内射极品少妇av片p| 国产一级毛片七仙女欲春2| 欧美日韩在线观看h| 久久久成人免费电影| 久久久久久久午夜电影| 国产精品女同一区二区软件| 特级一级黄色大片| 黄色日韩在线| 边亲边吃奶的免费视频| 久久99蜜桃精品久久| 美女黄网站色视频| 99九九线精品视频在线观看视频| 亚洲综合精品二区| 性色avwww在线观看| 免费搜索国产男女视频| 久久久久性生活片| 尤物成人国产欧美一区二区三区| 性插视频无遮挡在线免费观看| 免费看光身美女| 淫秽高清视频在线观看| 高清日韩中文字幕在线| 精品一区二区三区人妻视频| 亚洲精品日韩av片在线观看| 久久婷婷人人爽人人干人人爱| 久久久精品94久久精品| 色播亚洲综合网| 好男人在线观看高清免费视频| 国产视频内射| 国产综合懂色| av在线亚洲专区| 亚洲第一区二区三区不卡| 91aial.com中文字幕在线观看| 亚洲精品,欧美精品| 日本五十路高清| 久久精品夜夜夜夜夜久久蜜豆| 精品熟女少妇av免费看| 欧美日韩在线观看h| 美女大奶头视频| 大话2 男鬼变身卡| h日本视频在线播放| 国产三级中文精品| 日韩大片免费观看网站 | 亚洲成人久久爱视频| av视频在线观看入口| 99在线视频只有这里精品首页| 免费大片18禁| 成人无遮挡网站| 精品一区二区免费观看| 中文欧美无线码| 亚洲精品久久久久久婷婷小说 | 人人妻人人澡人人爽人人夜夜 | 免费人成在线观看视频色| 欧美另类亚洲清纯唯美| 国产成人午夜福利电影在线观看| .国产精品久久| 国产又色又爽无遮挡免| 国产精品伦人一区二区| 我要看日韩黄色一级片| 男插女下体视频免费在线播放| 欧美3d第一页| 国产三级中文精品| 亚洲欧美日韩无卡精品| 精品一区二区免费观看| 国产精品1区2区在线观看.| 成人亚洲精品av一区二区| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 欧美97在线视频| 一个人看视频在线观看www免费| 永久免费av网站大全| 男女下面进入的视频免费午夜| 淫秽高清视频在线观看| 国内精品宾馆在线| 国产精品久久电影中文字幕| 最近的中文字幕免费完整| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级国产专区5o | 色吧在线观看| 热99在线观看视频| 国产亚洲午夜精品一区二区久久 | 18禁动态无遮挡网站| 中文字幕久久专区| 久久久久久久久久成人| 丝袜喷水一区| 日韩国内少妇激情av| 国产午夜福利久久久久久| 热99在线观看视频| 美女xxoo啪啪120秒动态图| 欧美zozozo另类| 欧美3d第一页| 免费黄网站久久成人精品| 最近手机中文字幕大全| 成年av动漫网址| 亚洲国产精品国产精品| 亚洲在线观看片| 白带黄色成豆腐渣| .国产精品久久| 黄片无遮挡物在线观看| 国产极品精品免费视频能看的| 亚洲精品自拍成人| 汤姆久久久久久久影院中文字幕 | 尾随美女入室| 看免费成人av毛片| 国产av码专区亚洲av| 国产高清三级在线| 色网站视频免费| 亚洲精品亚洲一区二区| 亚洲美女视频黄频| av视频在线观看入口| 国产精品av视频在线免费观看| 最近最新中文字幕免费大全7| 久久99热这里只频精品6学生 | 老女人水多毛片| 九草在线视频观看| 日韩欧美精品v在线| 又粗又硬又长又爽又黄的视频| 97超视频在线观看视频| 综合色丁香网| 亚洲综合精品二区| 青春草亚洲视频在线观看| 中文字幕精品亚洲无线码一区| videossex国产| 美女高潮的动态| a级一级毛片免费在线观看| 小蜜桃在线观看免费完整版高清| 大话2 男鬼变身卡| 国产极品天堂在线| 午夜福利高清视频| 免费电影在线观看免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲欧美清纯卡通| 久久精品国产亚洲网站| 国产精品久久电影中文字幕| 亚洲不卡免费看| 大香蕉久久网| 少妇高潮的动态图| av国产免费在线观看| 国产亚洲午夜精品一区二区久久 | 全区人妻精品视频| 久久久久免费精品人妻一区二区| 两个人的视频大全免费| 成人毛片a级毛片在线播放| 欧美日韩精品成人综合77777| 精品久久久久久久人妻蜜臀av| 国内少妇人妻偷人精品xxx网站| 国产精品福利在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 麻豆av噜噜一区二区三区| 久久久欧美国产精品| 国产午夜精品一二区理论片| 久久热精品热| 国产亚洲午夜精品一区二区久久 | 国产黄片美女视频| 欧美日韩在线观看h| 国产成人福利小说| 亚洲欧美日韩无卡精品| 视频中文字幕在线观看| 免费观看a级毛片全部| 又粗又爽又猛毛片免费看| 床上黄色一级片| 亚洲精品国产成人久久av| 毛片女人毛片| 亚洲不卡免费看| 成人高潮视频无遮挡免费网站| 午夜日本视频在线| 最近最新中文字幕免费大全7| 亚洲精品日韩在线中文字幕| 狂野欧美激情性xxxx在线观看| 国产精品国产三级国产av玫瑰| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 高清毛片免费看| 在线观看66精品国产| 日本午夜av视频| 婷婷色麻豆天堂久久 | 国产午夜精品一二区理论片| 国产av码专区亚洲av| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 亚洲五月天丁香| 最近最新中文字幕大全电影3| 天天一区二区日本电影三级| 麻豆久久精品国产亚洲av| 又粗又硬又长又爽又黄的视频| 亚洲自偷自拍三级| 亚洲国产色片| 欧美潮喷喷水| 22中文网久久字幕| 91午夜精品亚洲一区二区三区| 国产黄a三级三级三级人| .国产精品久久| 亚洲精品日韩在线中文字幕| 97在线视频观看| 毛片女人毛片| 最近的中文字幕免费完整| 久久国内精品自在自线图片| 亚洲国产精品久久男人天堂| 成人美女网站在线观看视频| 18禁动态无遮挡网站| 免费av不卡在线播放| 熟女电影av网| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 青春草视频在线免费观看| 成人亚洲欧美一区二区av| 日韩欧美精品v在线| 菩萨蛮人人尽说江南好唐韦庄 | 蜜桃久久精品国产亚洲av| 国产色婷婷99| 黄色一级大片看看| 亚洲av男天堂| 99在线人妻在线中文字幕| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 欧美激情国产日韩精品一区| 国产一区二区在线观看日韩| videossex国产| 精品久久久久久成人av| 精品少妇黑人巨大在线播放 | 精品人妻熟女av久视频| 一级毛片aaaaaa免费看小| 亚洲中文字幕一区二区三区有码在线看| 熟女电影av网| 九色成人免费人妻av| 91aial.com中文字幕在线观看| 欧美性感艳星| 久久精品夜夜夜夜夜久久蜜豆| 最近手机中文字幕大全| 日韩欧美国产在线观看| 日韩在线高清观看一区二区三区| 91久久精品电影网| 亚洲最大成人av| 精品久久国产蜜桃| 国产精品久久久久久精品电影小说 | 夜夜爽夜夜爽视频| 在线观看av片永久免费下载| 免费看a级黄色片| 观看美女的网站| 亚洲av电影不卡..在线观看| 亚洲在久久综合| av在线观看视频网站免费| 亚洲av电影在线观看一区二区三区 | 91精品一卡2卡3卡4卡| 欧美一区二区精品小视频在线| 亚洲av成人av| 少妇裸体淫交视频免费看高清| 亚洲成人久久爱视频| 国产日韩欧美在线精品| 欧美一区二区精品小视频在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲人成网站在线观看播放| 日韩成人伦理影院| 亚洲av成人精品一二三区| 亚洲婷婷狠狠爱综合网| 国产91av在线免费观看| 成人欧美大片| 欧美又色又爽又黄视频| 一边亲一边摸免费视频| 狂野欧美白嫩少妇大欣赏| 免费黄色在线免费观看| 亚洲欧美日韩东京热| 波多野结衣高清无吗| 欧美日韩在线观看h| 最后的刺客免费高清国语| 国产淫语在线视频| 国产精品.久久久| 欧美bdsm另类| 久久久久国产网址| 国产 一区精品| 校园人妻丝袜中文字幕| 国内精品宾馆在线| 国产精品电影一区二区三区| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 51国产日韩欧美| 久久久久久久久久久免费av| 亚洲av.av天堂| 97超视频在线观看视频| 国产中年淑女户外野战色| 久久人人爽人人片av| 国产高清不卡午夜福利| 国产精品三级大全| 久久久国产成人免费| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 成人漫画全彩无遮挡| a级毛色黄片| 永久网站在线| 26uuu在线亚洲综合色| 国产真实乱freesex| 国产精品乱码一区二三区的特点| 在线观看av片永久免费下载| av卡一久久| 真实男女啪啪啪动态图| 久久精品熟女亚洲av麻豆精品 | 天堂中文最新版在线下载 | 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频 | 偷拍熟女少妇极品色| av黄色大香蕉| 国产又色又爽无遮挡免| 99久久精品热视频| 日韩亚洲欧美综合| 久久精品国产亚洲av涩爱| 哪个播放器可以免费观看大片| 国产在视频线精品| 成年免费大片在线观看| 夫妻性生交免费视频一级片| 色吧在线观看| 男插女下体视频免费在线播放| 91精品一卡2卡3卡4卡| 国产精品av视频在线免费观看| 九色成人免费人妻av| 特大巨黑吊av在线直播| 欧美激情久久久久久爽电影| 久久人人爽人人爽人人片va| 久久综合国产亚洲精品| videos熟女内射| 两个人的视频大全免费| 亚洲欧洲日产国产| 国产在视频线精品| 久久久久久久久久成人| 26uuu在线亚洲综合色| 能在线免费观看的黄片| 国产伦在线观看视频一区| 国产欧美另类精品又又久久亚洲欧美| 99久国产av精品国产电影| 久久久久国产网址| 麻豆国产97在线/欧美| 国产精品永久免费网站| a级一级毛片免费在线观看| 日日撸夜夜添| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 亚洲18禁久久av| 久久久久久久国产电影| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 日韩欧美国产在线观看| 欧美日韩在线观看h| 久久韩国三级中文字幕| 国产成人a区在线观看| 国产精品久久久久久久电影| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 日韩一本色道免费dvd| 国产成人a∨麻豆精品| 国产又色又爽无遮挡免| 中文字幕av成人在线电影| av在线播放精品| 免费一级毛片在线播放高清视频| 免费一级毛片在线播放高清视频| 久久久久久伊人网av| 国产69精品久久久久777片| 国产av码专区亚洲av| 午夜亚洲福利在线播放| 日本三级黄在线观看| 国产精品福利在线免费观看| 久久久久网色| 午夜福利成人在线免费观看| 午夜福利在线在线| 综合色丁香网| 天堂网av新在线| 色噜噜av男人的天堂激情| 免费观看的影片在线观看| 中文资源天堂在线| 婷婷六月久久综合丁香| 国产单亲对白刺激| 国产亚洲av片在线观看秒播厂 | 波多野结衣巨乳人妻| 亚洲一级一片aⅴ在线观看| 亚洲一区高清亚洲精品| 成人毛片a级毛片在线播放| 久久99热这里只频精品6学生 | 久久久久久久久中文| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 色5月婷婷丁香| 少妇的逼好多水| 狂野欧美激情性xxxx在线观看| 尤物成人国产欧美一区二区三区| 神马国产精品三级电影在线观看| 欧美一区二区国产精品久久精品| 丝袜喷水一区| 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 听说在线观看完整版免费高清| 特大巨黑吊av在线直播| 成人毛片60女人毛片免费| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 亚洲国产高清在线一区二区三| 国产免费视频播放在线视频 | 免费av观看视频| av免费在线看不卡| 老司机福利观看| 国产在线一区二区三区精 | 亚洲精品乱久久久久久| 成年av动漫网址| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 欧美xxxx性猛交bbbb| 校园人妻丝袜中文字幕| 老师上课跳d突然被开到最大视频| 日韩av不卡免费在线播放| 18禁裸乳无遮挡免费网站照片| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 亚洲自拍偷在线| 午夜激情欧美在线| 1000部很黄的大片| 国产精品三级大全| 欧美97在线视频| 亚州av有码| 国产久久久一区二区三区| 精品人妻视频免费看| 麻豆精品久久久久久蜜桃| 亚洲精品乱码久久久久久按摩| 亚洲av免费高清在线观看| 赤兔流量卡办理| АⅤ资源中文在线天堂| 日本一本二区三区精品| 久久久久久久久久久免费av| 亚洲欧美日韩卡通动漫| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 青春草亚洲视频在线观看| 麻豆一二三区av精品| 日本wwww免费看| 如何舔出高潮| 成人亚洲欧美一区二区av| av卡一久久| 国产黄片美女视频| 日韩av在线大香蕉| 日韩欧美国产在线观看| 久久99热这里只有精品18| 免费黄网站久久成人精品| 欧美人与善性xxx| 少妇裸体淫交视频免费看高清| 国产日韩欧美在线精品| 色吧在线观看| 国产老妇伦熟女老妇高清| 亚洲av日韩在线播放| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 国产高清视频在线观看网站| 色视频www国产| 国产精品一区二区性色av| 天天躁日日操中文字幕| 免费av不卡在线播放| 91精品伊人久久大香线蕉| 精品酒店卫生间| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 国产精品爽爽va在线观看网站| 亚洲高清免费不卡视频| 国产精品一区二区在线观看99 | 亚洲成色77777| 好男人视频免费观看在线| 国产精品1区2区在线观看.| 18禁在线无遮挡免费观看视频| 白带黄色成豆腐渣| 男女国产视频网站| 欧美高清成人免费视频www| 狂野欧美激情性xxxx在线观看| 免费av观看视频| 亚洲国产精品sss在线观看| 99久国产av精品| 精华霜和精华液先用哪个| 久久精品国产99精品国产亚洲性色| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 插阴视频在线观看视频| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 亚洲国产色片| 久久精品人妻少妇| 韩国高清视频一区二区三区| 国产午夜精品久久久久久一区二区三区| 女人十人毛片免费观看3o分钟| 国内精品一区二区在线观看| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添av毛片| eeuss影院久久| 亚洲国产精品久久男人天堂| 午夜a级毛片| 国产精品国产三级国产专区5o | 美女cb高潮喷水在线观看| 成年版毛片免费区| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 一级毛片电影观看 | 日本黄色视频三级网站网址| 一区二区三区四区激情视频| 免费无遮挡裸体视频| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 简卡轻食公司| 久久久亚洲精品成人影院| 美女高潮的动态| 免费播放大片免费观看视频在线观看 | 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站 | 村上凉子中文字幕在线| 18禁动态无遮挡网站| 日本免费一区二区三区高清不卡| 国产中年淑女户外野战色| 美女大奶头视频| 免费看av在线观看网站| 亚洲色图av天堂| av国产久精品久网站免费入址| 亚洲电影在线观看av| 国产真实乱freesex| 国产亚洲5aaaaa淫片| 简卡轻食公司| 寂寞人妻少妇视频99o| 少妇人妻精品综合一区二区| 欧美日韩在线观看h| 国产真实乱freesex| 午夜福利网站1000一区二区三区| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 少妇人妻精品综合一区二区| 色网站视频免费| 老司机影院成人| 汤姆久久久久久久影院中文字幕 | 2021天堂中文幕一二区在线观| 干丝袜人妻中文字幕| 永久免费av网站大全| 午夜激情福利司机影院| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 成人毛片60女人毛片免费| 国产亚洲av嫩草精品影院| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 综合色丁香网| 成人亚洲欧美一区二区av| 99在线视频只有这里精品首页| 亚洲成人av在线免费| 亚洲欧美中文字幕日韩二区| 自拍偷自拍亚洲精品老妇| a级毛色黄片| 精品国产三级普通话版| 午夜精品国产一区二区电影 | 午夜老司机福利剧场| 女的被弄到高潮叫床怎么办| 婷婷六月久久综合丁香| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看 | 特级一级黄色大片| 一边摸一边抽搐一进一小说| 成人毛片a级毛片在线播放| 一级毛片久久久久久久久女| 在线观看66精品国产| 国产人妻一区二区三区在| 尾随美女入室| 亚洲高清免费不卡视频| 久久久久久九九精品二区国产| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 成人鲁丝片一二三区免费| 亚洲综合色惰| 成人一区二区视频在线观看| 日本av手机在线免费观看| 国产精品乱码一区二三区的特点| 春色校园在线视频观看| 大香蕉久久网| 日韩欧美精品免费久久|