• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the heating mechanism of electron cyclotron resonance thruster immerged in a non-uniform magnetic field

    2020-09-14 01:13:08XiaogangYUAN袁小剛LeiCHANG萇磊XinYANG楊鑫HaishanZHOU周海山andGuangnanLUO羅廣南
    Plasma Science and Technology 2020年9期
    關(guān)鍵詞:廣南海山

    Xiaogang YUAN (袁小剛),Lei CHANG (萇磊),Xin YANG (楊鑫),Haishan ZHOU (周海山) and Guangnan LUO (羅廣南)

    1 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    2 Science Island Brand of Graduate,University of Science and Technology of China,Hefei 230031,People’s Republic of China

    Abstract

    Keywords:electron cyclotron resonance,upper hybrid resonance,non-uniform magnetic field,electric thruster

    1.Introduction

    There is a rapidly growing number of studies on electrodeless plama source for electric thruster[1-4]which have a long life span due to the absence of electrode erosion problem.Plasma production and heating in these thrusters are achieved by alternate current antennas,radiating mainly in the microwave or radio frequency ranges.Electron cyclotron resonance thruster (ECRT) is one of them.Due to the high specific impulse and durability,it becomes a promising thruster for space applications including orbital transfer,attitude control and deep space travel,etc [5].A typical ECRT consists of four parts:microwave source,magnet,resonance cavity and acceleration grid[6,7],as depicted in figure 1.The magnet is critical to generate plasma and confine the formed plasma thereafter.Particularly,the plasma can be ignited by microwave at the frequency of 2.45 GHz (or 4.2 GHz) with a magnetic field strength of 0.0875 T (or 0.15 T) [8,9],according to the electron cyclotron resonance.Permanent magnet and solenoid coil are commonly applied for generating a magnetic field.However,the former one suffers from demagnetization during long-time operation,especially when the temperature is high.As a result,the usage of solenoid coil becomes a tendency,especially when steady state operation is highly required for certain space missions.However,the requirement of electric power to run the solenoid coil increases the total power consumption of the thruster system.Since the coil current is proportional to magnetic field strength,it is thereby highly desirable to run ECRT at low field to save power.Theoretical analysis suggests that ECRT can run at low magnetic field by using upper hybrid resonance[10].But to the author’s knowledge,there is few experimental verification of it.Meanwhile,the study of coupling and transition between electron cyclotron resonance and upper hybrid resonance is also missing.Moreover,the non-uniformity of confining magnetic field was rarely explored which is critical for optimizing the ECRT performance.

    Figure 1.Schematic of typical ECRT.

    The aim of the present work is to investigate the heating mechanism of ECRT in a non-uniform field and explore the minimum field strength for efficient operation.It will be shown that high field (0.0875 T) is only required for the ignition of the plasma and the formed plasma can indeed sustain for magnetic field decreased till 0.0170 T.Moreover,the ignition of the plasma and sustained plasma at low-field are driven by electron cyclotron resonance and upper hybrid resonance,respectively.The transition between two modes is also revealed experimentally.The paper is organized as follows:section 2 describes the experimental setup and parameters,and section 3 shows the results and discussions,followed by conclusions in section 4.

    2.Experimental setup and parameters

    Experiments were carried out on an electron cyclotron resonance plasma source at the Institute of Plasma Physics,Chinese Academy of Sciences (ASIPP).It is a component of the linear plasma device named PREFACE (Permeation and Retention Evaluation FACility for fusion Experiments),which was built to evaluate the permeation and retention behavior of fusion material under plasma exposure [11-13].Figure 2 shows a schematic of the PREFACE,together with typical photos of plasma discharge.It has three cylindrical coaxial vacuum chambers,that is,the plasma discharge chamber,diffusion chamber and sample processing chamber.The total axial height is 0.847 m.The magnetic field of strength 0-0.2 T is provided by four solenoid coils with independent control.The resonance cavity and solenoid coils are water cooled by a system of copper pipes.Tantalum limiter with a diameter of 0.04 m is used to confine the plasma column.The vacuum is maintained jointly by a turbo-molecular pump and mechanical pump,giving base pressure of 10?6Pa.The working gas is deuterium,which is injected into the vacuum chamber from the top side and the gas flow is controlled by a pin valve.In this study,the operating pressure was set to 0.6 Pa.A solid-state microwave source with 2.45 GHz frequency and a power range of 0-2 kW was applied to generate plasma.The plasma jet injected into the diffusion chamber due to diffusion.It has a similar structure as a traditional ECRT expected for that the acceleration grid is not present.Therefore,the electron cyclotron resonance plasma source of PREFACE can be used to study the basic heating physics of ECRT.Since there are four independently controlled solenoid coils,the spatial configuration of the external magnetic field is highly flexible,which also denotes the specialty of present work.In order to measure the radial profiles of electron density and temperature,a Langmuir probe (Hiden ESPION) with a tip in diameter of 0.000 15 m and 0.01 m length is inserted radially into the chamber.The radial resolution is up to 0.0025 m.The axial location of the probe is 0.3 m from the top window,as shown in figure 2,and z=0.547 m referring to figures 3 and 7,8 in the next sections.The error bar of each data was from averaging 5 cycles of measurements.

    To study the heating mechanism of ECRT,especially the effect of magnetic field strength on plasma generation,six scenarios of coil current are considered (table 1).The typical axial profiles of the magnetic field,calculated from the coil current of Scenarios #1,#2,#3 and #6 by COMSOL Multiphysics are shown in figure 3.These scenarios share the same non-uniformity expect that the magnitudes are different.It is worth noting that the non-uniformity is both radial and axial.The framed ‘Resonance cavity’ corresponds to the discharge chamber of PREFACE shown in figure 2.The nonuniform field profiles are constructed to form a magnetic mirror in the resonance cavity region for particle confinement.Meanwhile,the magnetic field formed a shape of magnetic‘Laval nozzle’ near the interface of discharge and diffusion chambers for acceleration purpose.Recalling our motivation to explore the minimum field for efficient ECRT operation,we start from high field (Scenario #6) condition that the plasma ignition just occurs,and then gradually reduce the field till the minimum field (Scenario #1) that can be produced by the solenoid coils.In our experiments,the plasma can sustain with field strength decreased to the case of Scenario#1.However,in the opposite direction(from Scenarios#1 to Scenarios #5),we could not ignite the plasma with input power in the range of 0-600 W until the field strength increased to Scenario #6.It will be shown later that the first harmonic of electron cyclotron resonance surface,which is associated with a high magnetic field,is essential for ignition,and upper hybrid resonance could sustain the plasma after ignition at a low magnetic field.

    Figure 2.Schematic of PREFACE(Permeation and Retention Evaluation FACility for fusion Experiments)in ASIPP(a).From top to bottom are the plasma chamber,diffusion chamber,and sample processing chamber in sequence.A typical V-I curve from Langmuir probe measurement for Scenario #6 (b).

    Figure 3.Axial profiles of magnetic field calculated by COMSOL Multiphysics for Scenarios #1,#2,#3 and #6.The dashed frame labels the resonance cavity in figure 2.

    3.Results and discussions

    3.1.Electron density and temperature

    The electron density and temperature for the six scenarios are given in figure 4.They are measured by Langmuir probe at r=0 m and z=0.547 m for the microwave of power 600 W(r,z start position is shown in figure 2).We can see that,when the magnetic field strength decreased,the electron density increases first and then decreases sharply,maximizing at 3.21×1017m?3for Scenario #3,while the electron temperature decreases first and then increases significantly,minimizing at 1.58 eV for Scenario#3.These two opposite trends imply that there may be a competition of power deposition for electron density and temperature.Moreover,the special point of Scenario #3 perhaps labels the transition and coupling between electron cyclotron resonance mode at high field and upper hybrid resonance mode at low field.These two modes can be confirmed and differed in the experiment through the radial profile of plasma density and the magnetic field strength.That is because electron cyclotron resonance is dominant under high field strength,whereas upper hybrid resonance is dominant under low field strength.Moreover,due to the strong edge heating effect of upper hybrid resonance,it has a ‘hollow’ density profile in radius and the plasma is brighter in the edge (inserted photo of figure 2(a)).While the ECR mode has a ‘peak’ density profile and the plasma has a bright core.This phenomenon will be discussed in the following part.

    Figure 5 shows the dependences of electron density and temperature on input power for Scenarios #6,measured at r=0 m and z=0.547 m.It can be seen that the electron density increases gradually before a sharp jump at 550 W,while the electron temperature jumps at 150 W before saturating around 2.75 eV.This difference in power response may be attributed to the different thresholds of power deposition required for cyclotron and ionization.Namely,the electron cyclotron motion is more sensitive to microwave and thus can respond quickly to the increased power.Whereas the ionization procedure depends on power deposition which needs a certain level to happen,leading to the ‘delayed’ response to increased power.

    We think that the ‘delayed’ response is mainly due to a power-threshold problem.Although this preliminary explanation may be reasonable,detailed exploration is definitely required for further research.

    The radial profiles of electron density and temperature for Scenarios #6,#2 and #1 are given in figure 6.We can see that:(1) for Scenario #6 the electron density has a peak on axis and decreases towards the radial edge,while the electron temperature profile is uniform inside most of column regions,(2)for Scenario#2 the radial density profile becomes hollow.It is consistent with the photo shown in figure 2.The plasma is brighter near edge than that on axis,and the temperature gradient becomes more linear in radius,(3) for Scenario #1the electron density becomes roughly uniform across the column except for a significant drop near the edge,while the electron temperature has a radial gradient especially in the core and near edge.Recalling the axial profiles of the magnetic field shown in figure 3,we suppose the underlying physics is mainly correlated with the strength of the confining magnetic field.The electron cyclotron resonance mode depends sensitively on field strength and dominates the heating procedure at high field.The upper hybrid resonance mode generates plasma on the edge.The transition from electron cyclotron resonance mode to the upper hybrid resonance mode leads to a hollow (at least uniform) density profile at low field.Looking backward in figure 4,this

    transition or coupling is strongest at Scenario #3 so that the highest electron density is obtained.Please note that this evolution of electron density and temperature with decreased field strength,which shows the transition and coupling from electron cyclotron resonance mode to upper hybrid resonance mode,was not revealed before.The hollow density profile in radius has been also observed in previous studies [14,15],which proves the credibility of present work,and the direct loss of trapped electrons was suggested to be the reason.

    Table 1.Scenarios of coil current and peak magnetic field strength.

    Figure 4.Electron density and temperature for different scenarios,measured at r=0 m and z=0.547 m,for microwave of power 600 W.

    Figure 5.Electron density and temperature for Scenarios #6 as a function of the microwave input power.

    Figure 6.Radial profiles of electron density and temperature for Scenario #6 (a),#2 (b) and #1 (c),measured at z=0.547 m.

    Figure 7.Contour plots of magnetic field in PREFACE for the six scenarios in table 1,showing the surfaces of electron cyclotron resonance(red:first harmonic for 0.0875 T,black:second harmonic for 0.0473 T,pink:third harmonic for 0.0291 T).The dashed white frame labels the edges of the resonant cavity.

    3.2.Electron cyclotron resonance surface

    In order to explain the phenomena observed above,we studied the electron-microwave interaction,especially the electron cyclotron resonance surface which was believed to be the strongest interaction.Once electrons gain enough energy from microwave resonance,they can ionize neutral gas through collisions to produce plasma.The regulatory choice of 2.45 GHz for microwave results in magnetic field strength of 0.0875 T,according to the electron cyclotron frequency [16]

    here,B is the applied magnetic field,meis the electron mass andωceis the cyclotron frequency of electron.In experiments,the magnetic field with a strength higher than 0.0875 T is generally employed to account for the field non-uniformity in space.Figure 7 shows the contour plots of the magnetic field for the six scenarios listed in table 1,from which we can see the location of the electron cyclotron resonance surface relative to the source chamber.Scenario#6 has three electron cyclotron resonance surfaces:first harmonic (red),second harmonic(black)and third harmonic(pink).But only the first harmonic resonance surface(the red part shown in figure 7 for Scenario #6) resides in the resonant cavity region.As the field strength decreased,i.e.from Scenario #6 to Scenario#1,the first harmonic surface moves outside of the resonant cavity,while the second and third harmonic surfaces move across it.Given that only Scenario#6 yields plasma ignition,it is reasonable to make the conclusion that the existence of the first harmonic surface in the resonant cavity is essential for plasma ignition.For Scenario #4,the second harmonic surface exists in the cavity but could not ignite the plasma in our experiments.Therefore,the result negates a previous statement which was claiming that plasma could be ignited without the first harmonic surface as long as the second harmonic surface exists [17].However,once the plasma has been ignited for Scenario#6,it can continuously run with the field strength decreased from Scenario #5 to Scenario #1.This mystery will be further investigated in the next section.

    3.3.Upper hybrid resonance

    Since at low magnetic field the continuous plasma after ignition cannot be supported by electron cyclotron resonance which does not exist inside the resonant cavity,we have to consider other possible candidates.Referring to the previous study [10],we consider the upper hybrid resonance.It is a normal mode of plasma heating [18-21],and the resonance frequency is given by

    Figure 8.Contour plots of frequency for Scenario#6 and Scenario#1 with plasma sustained in the source chamber of PREFACE.The solid white line labels resonance frequency of 2.45 GHz and a dashed red frame encloses the resonant cavity.

    here,ωuhis the angular frequency of upper hybrid resonance,ωpeis the angular frequency of plasma,andωceis the angular frequency of electron cyclotron motion.Please note that the frequency given by equation(2)is a local value.To calculate the two-dimensional distribution of upper hybrid resonance in the plasma discharge chamber,we make use of the radial profiles of electron density and temperature shown in figure 6 and assume that they are roughly uniform along the axial direction.Figure 8 shows the contour plots of frequency inside the resonant cavity for Scenario #6 and Scenario #1.Both of electron cyclotron resonance and upper hybrid resonance are contributed to the plasma heating in Scenario #6.However,there is no electron cyclotron resonance but only upper hybrid resonance exists in Scenario#1,referring to the last plot of figure 7.Recalling figure 5,we can conclude that the plasma is ignited by the first harmonic surface of electron cyclotron resonance,and then sustained mainly by the upper hybrid resonance which generates plasma near column edge(see the hollow plasma photo in figure 2).This is consistent with a previous study which claimed that with a decreasing magnetic field the upper hybrid resonance gradually dominates the plasma heating of ECRT[22].Hence,there are two different channels of plasma heating:electron cyclotron resonance at high field and upper hybrid resonance mainly at low field.Detailed evolution of frequency contour from Scenario #6 to Scenario #1 also shows a transition from electron cyclotron resonance to upper hybrid resonance.

    4.Conclusion

    The present work is devoted to studying the mechanism of plasma ignition and continuous running for ECRT,and exploring the effects of a non-uniformity and field strength of confining magnetic field for economic operation.Six scenarios of the magnetic field are considered.It is found that the first harmonic surface of electron cyclotron resonance is essential for plasma ignition at high field,and the upper hybrid resonance is responsible for plasma sustaining after ignition at low field.With the field strength decreased,the variation of electron density behaves oppositely with that of electron temperature,implying a possible competition of power deposition between them.Moreover,their dependences on the input power of microwave also show a ‘delayed’phase,possibly due to the different thresholds of power requirement.The radial profiles of electron density and temperature for different scenarios are also presented.For decreased field strength,the density profile changes from linear to hollow and flat,possibly due to weakened magnetic constraint,while the temperature profile turns from flat to linear.Again,the dependences of density and temperature on field strength are opposite,even in terms of their radial profiles.These findings could improve our understanding of the plasma discharge using electron cyclotron resonance,and help the design of efficient ECRT by applying a non-uniform and low magnetic field.

    Acknowledgments

    The authors would like to thank Professor Yemin Hu for fruitful discussions on the mechanism of electron cyclotron resonance and upper hybrid resonance,and Professor Bo Li for engineering assistance.This work is supported by various funding sources:Chinese Academy of Sciences ‘100 Talent’Program (B),Pre-research of Key Laboratory Fund for Equipment (No.61422070306),Shanghai Engineering Research Center of Space Engine (No.17DZ2280800),National Postdoctoral Program for Innovative Talents (No.BX201700248),and China Postdoctoral Science Foundation(No.2017M622035).

    猜你喜歡
    廣南海山
    廣南壩美 一個(gè)藏在青山綠水間的世外桃源
    大廣南高速視頻云聯(lián)網(wǎng)技術(shù)探討
    夢里鮮花開放
    夢里鮮花開放
    37°女人(2019年4期)2019-04-20 02:17:42
    廣南、廣巴高速公路連接線項(xiàng)目通過竣工驗(yàn)收
    石油瀝青(2019年1期)2019-03-05 08:25:46
    放愛一條生路
    廣南蒜頭果發(fā)展現(xiàn)狀與保護(hù)
    佐藤海山的詩
    作品(2016年10期)2016-12-06 10:41:54
    迎春花
    大江南北(2016年3期)2016-11-22 07:37:20
    LED燈在湖北大廣南高速公路隧道照明中的應(yīng)用
    久久午夜综合久久蜜桃| 这个男人来自地球电影免费观看| 中文字幕另类日韩欧美亚洲嫩草| videosex国产| 五月开心婷婷网| 久久亚洲真实| 国产色视频综合| 桃色一区二区三区在线观看| 最近最新中文字幕大全电影3 | 国产一区二区激情短视频| 精品一区二区三卡| 国产av一区二区精品久久| 久久久久久久午夜电影 | svipshipincom国产片| 日本撒尿小便嘘嘘汇集6| 免费在线观看亚洲国产| 国产av精品麻豆| 欧美在线一区亚洲| 欧美人与性动交α欧美精品济南到| 久久精品国产清高在天天线| 久久亚洲精品不卡| 宅男免费午夜| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 欧美日韩黄片免| 777久久人妻少妇嫩草av网站| 免费观看精品视频网站| 在线观看午夜福利视频| 国产av精品麻豆| 亚洲精品在线美女| 亚洲一区高清亚洲精品| 俄罗斯特黄特色一大片| 涩涩av久久男人的天堂| 久久精品亚洲精品国产色婷小说| 亚洲情色 制服丝袜| 性色av乱码一区二区三区2| 三上悠亚av全集在线观看| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 真人一进一出gif抽搐免费| 欧美av亚洲av综合av国产av| av国产精品久久久久影院| 久久伊人香网站| 亚洲精品美女久久av网站| 日韩欧美一区视频在线观看| 老熟妇仑乱视频hdxx| 久久午夜综合久久蜜桃| 老司机深夜福利视频在线观看| 成年版毛片免费区| 多毛熟女@视频| 视频在线观看一区二区三区| av欧美777| 黑人巨大精品欧美一区二区mp4| 国产视频一区二区在线看| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜制服| 久久欧美精品欧美久久欧美| 亚洲中文日韩欧美视频| 国产麻豆69| 欧美日韩亚洲综合一区二区三区_| 精品国产美女av久久久久小说| 美女大奶头视频| 亚洲精品粉嫩美女一区| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说| 男女之事视频高清在线观看| 久久精品成人免费网站| 免费搜索国产男女视频| 午夜亚洲福利在线播放| 在线观看免费日韩欧美大片| 欧美激情极品国产一区二区三区| av在线天堂中文字幕 | 久久热在线av| 久久精品亚洲熟妇少妇任你| 亚洲精品国产区一区二| 精品国产一区二区三区四区第35| 19禁男女啪啪无遮挡网站| 一级片免费观看大全| 欧美成狂野欧美在线观看| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| 在线十欧美十亚洲十日本专区| 丝袜在线中文字幕| 欧美黄色片欧美黄色片| 亚洲av电影在线进入| 久久亚洲真实| 亚洲一卡2卡3卡4卡5卡精品中文| 自拍欧美九色日韩亚洲蝌蚪91| 成人影院久久| 午夜91福利影院| 成人特级黄色片久久久久久久| 精品电影一区二区在线| 国产av一区二区精品久久| 黄色视频,在线免费观看| 午夜免费激情av| 少妇的丰满在线观看| 人人澡人人妻人| 国产免费男女视频| 午夜视频精品福利| 欧美午夜高清在线| 久久人妻熟女aⅴ| 亚洲人成电影免费在线| 看免费av毛片| 久久久久亚洲av毛片大全| 国产精品av久久久久免费| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 免费不卡黄色视频| 国产精品98久久久久久宅男小说| 日本精品一区二区三区蜜桃| 在线av久久热| 日本黄色视频三级网站网址| 久久中文字幕一级| 精品第一国产精品| 久久久国产欧美日韩av| 久久精品91无色码中文字幕| 午夜免费鲁丝| 国产xxxxx性猛交| 在线观看午夜福利视频| 我的亚洲天堂| 18禁观看日本| a级毛片在线看网站| 黑人欧美特级aaaaaa片| 亚洲欧美日韩无卡精品| 日韩高清综合在线| 国产激情欧美一区二区| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 一级毛片女人18水好多| 成人三级黄色视频| 久久九九热精品免费| 一区二区三区国产精品乱码| 黄色女人牲交| 日韩一卡2卡3卡4卡2021年| 一本大道久久a久久精品| 一区福利在线观看| 操出白浆在线播放| 超碰成人久久| 88av欧美| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| 亚洲第一青青草原| 久久精品国产99精品国产亚洲性色 | 欧美日韩视频精品一区| 国产精品乱码一区二三区的特点 | 丝袜人妻中文字幕| 欧美乱码精品一区二区三区| 久久中文字幕人妻熟女| 制服人妻中文乱码| 国产三级在线视频| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| 另类亚洲欧美激情| 精品熟女少妇八av免费久了| 亚洲av五月六月丁香网| 一个人免费在线观看的高清视频| 成人18禁在线播放| 婷婷精品国产亚洲av在线| 国产成人精品无人区| 9色porny在线观看| 亚洲成人精品中文字幕电影 | 91在线观看av| 美女高潮喷水抽搐中文字幕| 久久精品国产99精品国产亚洲性色 | 日日爽夜夜爽网站| 国产精品久久久人人做人人爽| 午夜精品在线福利| 手机成人av网站| 一二三四社区在线视频社区8| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 91成年电影在线观看| 99久久综合精品五月天人人| 中文亚洲av片在线观看爽| 国产精品二区激情视频| 亚洲国产欧美一区二区综合| av片东京热男人的天堂| 亚洲avbb在线观看| 真人做人爱边吃奶动态| 国产高清国产精品国产三级| 脱女人内裤的视频| 亚洲一区中文字幕在线| 美女午夜性视频免费| 婷婷精品国产亚洲av在线| 欧美一区二区精品小视频在线| 动漫黄色视频在线观看| 欧美亚洲日本最大视频资源| 日本五十路高清| 老汉色∧v一级毛片| 又紧又爽又黄一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜人妻中文字幕| 午夜亚洲福利在线播放| 国产精品九九99| 国产主播在线观看一区二区| 久久欧美精品欧美久久欧美| 一进一出好大好爽视频| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 国产xxxxx性猛交| 成人亚洲精品一区在线观看| 最近最新中文字幕大全免费视频| 国产国语露脸激情在线看| 精品第一国产精品| 国产精品乱码一区二三区的特点 | 久久婷婷成人综合色麻豆| 黑人巨大精品欧美一区二区mp4| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| svipshipincom国产片| 国产精品亚洲一级av第二区| 99热只有精品国产| 麻豆国产av国片精品| 亚洲 欧美一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密| 午夜老司机福利片| 在线观看舔阴道视频| 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 国产日韩一区二区三区精品不卡| 又紧又爽又黄一区二区| 免费av毛片视频| 麻豆av在线久日| 天堂影院成人在线观看| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 久久人妻av系列| 欧美亚洲日本最大视频资源| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡| 国产亚洲精品综合一区在线观看 | 99精国产麻豆久久婷婷| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 自线自在国产av| www.www免费av| 一本综合久久免费| 久久精品人人爽人人爽视色| 久久热在线av| 一进一出好大好爽视频| 久久久久国产一级毛片高清牌| 国产精品综合久久久久久久免费 | 99精品久久久久人妻精品| 精品福利观看| 日本a在线网址| 国产成人免费无遮挡视频| 日韩欧美一区视频在线观看| 人妻久久中文字幕网| 精品电影一区二区在线| 国产av又大| 欧美不卡视频在线免费观看 | 一级a爱视频在线免费观看| 一个人免费在线观看的高清视频| 窝窝影院91人妻| av视频免费观看在线观看| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜 | 搡老熟女国产l中国老女人| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产 | 欧美老熟妇乱子伦牲交| 日本三级黄在线观看| 国产三级在线视频| 性少妇av在线| 99久久人妻综合| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区久久| 91成年电影在线观看| 淫妇啪啪啪对白视频| 日本 av在线| 女人被狂操c到高潮| 亚洲全国av大片| 一区二区三区精品91| 女性被躁到高潮视频| 久久久久久大精品| 亚洲精品av麻豆狂野| 黄片小视频在线播放| 人妻久久中文字幕网| 亚洲少妇的诱惑av| 午夜精品在线福利| 一级a爱视频在线免费观看| 国产亚洲精品久久久久5区| 久久 成人 亚洲| 99热只有精品国产| 搡老乐熟女国产| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 一区二区三区国产精品乱码| 成年人免费黄色播放视频| 最新美女视频免费是黄的| av在线播放免费不卡| 亚洲成a人片在线一区二区| 三上悠亚av全集在线观看| 久久精品亚洲av国产电影网| 一区二区三区激情视频| 99riav亚洲国产免费| 老司机在亚洲福利影院| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| 欧美日韩中文字幕国产精品一区二区三区 | x7x7x7水蜜桃| 999精品在线视频| 18美女黄网站色大片免费观看| 老司机亚洲免费影院| 免费高清在线观看日韩| 丁香六月欧美| videosex国产| 看黄色毛片网站| 十八禁网站免费在线| 久久国产精品人妻蜜桃| 宅男免费午夜| 黄片播放在线免费| www.999成人在线观看| 级片在线观看| 亚洲激情在线av| 多毛熟女@视频| 亚洲国产看品久久| 亚洲精品国产一区二区精华液| 91成人精品电影| 午夜老司机福利片| 亚洲专区中文字幕在线| 日韩有码中文字幕| 亚洲 国产 在线| 欧美日韩一级在线毛片| ponron亚洲| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸 | 免费一级毛片在线播放高清视频 | 国产一区二区在线av高清观看| 夫妻午夜视频| 最好的美女福利视频网| 欧美精品一区二区免费开放| 91在线观看av| 黄色女人牲交| 久久久精品国产亚洲av高清涩受| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩黄片免| 国产亚洲精品久久久久5区| 淫妇啪啪啪对白视频| 成人三级黄色视频| 香蕉国产在线看| 欧美精品啪啪一区二区三区| 天堂√8在线中文| 免费久久久久久久精品成人欧美视频| 免费在线观看影片大全网站| 交换朋友夫妻互换小说| 丁香六月欧美| 男女做爰动态图高潮gif福利片 | 一进一出抽搐动态| www.自偷自拍.com| e午夜精品久久久久久久| 乱人伦中国视频| 国产极品粉嫩免费观看在线| 波多野结衣高清无吗| 黄色片一级片一级黄色片| 91字幕亚洲| 99香蕉大伊视频| 久久婷婷成人综合色麻豆| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 香蕉国产在线看| 欧美亚洲日本最大视频资源| bbb黄色大片| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 首页视频小说图片口味搜索| 国产精品久久久av美女十八| 久久久国产一区二区| 99re在线观看精品视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 欧美大码av| a级片在线免费高清观看视频| 久久影院123| 亚洲成人国产一区在线观看| 精品国产乱子伦一区二区三区| 亚洲精品美女久久av网站| 看免费av毛片| 嫩草影院精品99| 国产成+人综合+亚洲专区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 搡老熟女国产l中国老女人| 久久精品影院6| www.精华液| 丁香欧美五月| 在线观看日韩欧美| 欧美日韩国产mv在线观看视频| 黄色女人牲交| 久久国产亚洲av麻豆专区| 热re99久久国产66热| 国产精品九九99| 怎么达到女性高潮| 欧美老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 最好的美女福利视频网| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 久久 成人 亚洲| 在线永久观看黄色视频| 亚洲成国产人片在线观看| 免费看a级黄色片| 精品一区二区三区四区五区乱码| 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片 | 啦啦啦免费观看视频1| 99在线视频只有这里精品首页| 欧美人与性动交α欧美软件| 啦啦啦 在线观看视频| 国内久久婷婷六月综合欲色啪| 亚洲精品一区av在线观看| 欧美色视频一区免费| 九色亚洲精品在线播放| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 成人三级黄色视频| 免费在线观看亚洲国产| 老司机午夜十八禁免费视频| 日本黄色视频三级网站网址| cao死你这个sao货| 午夜日韩欧美国产| 亚洲,欧美精品.| e午夜精品久久久久久久| 男人舔女人的私密视频| 国产精华一区二区三区| 午夜激情av网站| 亚洲av第一区精品v没综合| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 国产精品一区二区在线不卡| 午夜福利在线观看吧| 亚洲avbb在线观看| 日本精品一区二区三区蜜桃| 午夜91福利影院| 69av精品久久久久久| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 国产男靠女视频免费网站| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 日韩大尺度精品在线看网址 | 亚洲人成伊人成综合网2020| 欧美av亚洲av综合av国产av| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 国产伦一二天堂av在线观看| 视频在线观看一区二区三区| 三上悠亚av全集在线观看| 性欧美人与动物交配| 日韩欧美一区视频在线观看| 国产99久久九九免费精品| 大陆偷拍与自拍| 欧美激情久久久久久爽电影 | 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 少妇 在线观看| 精品熟女少妇八av免费久了| 日本欧美视频一区| 久久久久久久久免费视频了| 国产三级黄色录像| 757午夜福利合集在线观看| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 自拍欧美九色日韩亚洲蝌蚪91| 精品乱码久久久久久99久播| netflix在线观看网站| av网站免费在线观看视频| 亚洲 欧美 日韩 在线 免费| 美女 人体艺术 gogo| 国产三级在线视频| 欧美大码av| 露出奶头的视频| 欧美不卡视频在线免费观看 | 美女大奶头视频| 91大片在线观看| 国产亚洲欧美在线一区二区| 欧美不卡视频在线免费观看 | 丁香欧美五月| 淫妇啪啪啪对白视频| 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片| 三级毛片av免费| 久久狼人影院| 亚洲 欧美一区二区三区| 一夜夜www| 精品一区二区三区视频在线观看免费 | 日日夜夜操网爽| 中文字幕人妻丝袜制服| 久久精品91蜜桃| 亚洲免费av在线视频| 久久精品国产清高在天天线| 黑人操中国人逼视频| 1024视频免费在线观看| 国产精品影院久久| 久久久久精品国产欧美久久久| 国产一区二区在线av高清观看| 老司机亚洲免费影院| 制服诱惑二区| 亚洲国产毛片av蜜桃av| 夜夜躁狠狠躁天天躁| 黑丝袜美女国产一区| 九色亚洲精品在线播放| 无人区码免费观看不卡| 国产蜜桃级精品一区二区三区| 成人精品一区二区免费| 色精品久久人妻99蜜桃| 乱人伦中国视频| 在线播放国产精品三级| 91成年电影在线观看| 一级a爱视频在线免费观看| 如日韩欧美国产精品一区二区三区| 欧美日本亚洲视频在线播放| 欧美久久黑人一区二区| 叶爱在线成人免费视频播放| 天堂俺去俺来也www色官网| 国产97色在线日韩免费| 男女床上黄色一级片免费看| 国产精品乱码一区二三区的特点 | 中文字幕av电影在线播放| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 熟女少妇亚洲综合色aaa.| 国产一区二区在线av高清观看| 老熟妇乱子伦视频在线观看| bbb黄色大片| 少妇被粗大的猛进出69影院| 怎么达到女性高潮| 90打野战视频偷拍视频| 精品久久久精品久久久| 国产成人精品无人区| 国产亚洲av高清不卡| 亚洲人成伊人成综合网2020| 欧美老熟妇乱子伦牲交| 一本大道久久a久久精品| 两性夫妻黄色片| 欧美av亚洲av综合av国产av| 看免费av毛片| 电影成人av| 人人妻,人人澡人人爽秒播| 国产aⅴ精品一区二区三区波| 大陆偷拍与自拍| 在线观看www视频免费| 欧美一级毛片孕妇| 国产一区二区激情短视频| 黄色成人免费大全| 99久久精品国产亚洲精品| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 99精品久久久久人妻精品| 日韩欧美一区视频在线观看| 欧美日韩国产mv在线观看视频| 黄片大片在线免费观看| 亚洲第一av免费看| 在线观看免费高清a一片| 久久久久国内视频| 亚洲国产精品sss在线观看 | 宅男免费午夜| 99国产精品一区二区三区| 日韩有码中文字幕| 91麻豆精品激情在线观看国产 | 一区二区三区精品91| 天天影视国产精品| 在线观看免费高清a一片| 日韩大码丰满熟妇| 亚洲国产精品sss在线观看 | 人人妻人人爽人人添夜夜欢视频| 在线十欧美十亚洲十日本专区| 一进一出抽搐动态| 18禁国产床啪视频网站| 女性被躁到高潮视频| 久久久精品国产亚洲av高清涩受| 欧美激情 高清一区二区三区| 欧美精品啪啪一区二区三区| 国产成人av教育| 亚洲av美国av| 成年版毛片免费区| 亚洲人成伊人成综合网2020| 国产精品二区激情视频| 午夜激情av网站| 最新在线观看一区二区三区| 国产黄a三级三级三级人| 久久国产精品影院| 亚洲成国产人片在线观看| 亚洲精品国产精品久久久不卡| 亚洲欧美日韩另类电影网站| 久久久久久亚洲精品国产蜜桃av| 亚洲熟妇熟女久久| 女同久久另类99精品国产91| 99久久综合精品五月天人人| 视频区欧美日本亚洲| 一区二区三区激情视频| 亚洲avbb在线观看| 久久中文字幕人妻熟女| 老熟妇仑乱视频hdxx| 伦理电影免费视频|