• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnet stage optimization of 5 kW multicusped field thruster

    2020-09-14 01:13:44PengHU胡鵬DarenYU于達仁andYanSHEN沈巖
    Plasma Science and Technology 2020年9期

    Peng HU (胡鵬),Daren YU (于達仁) and Yan SHEN (沈巖),5,6

    1 Beijing Institute of Control Engineering,Beijing 100094,People’s Republic of China

    2 Lab of Advanced Space Propulsion,Beijing 100094,People’s Republic of China

    3 Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology,Beijing 100094,People’s Republic of China

    4 Plasma Propulsion Laboratory of Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    5 School of Aeronautics and Astronautics,Sun Yat-sen University,Guangzhou 510006,People’s Republic of China

    6 Author to whom any correspondence should be addressed.

    Abstract

    Keywords:multi-cusped field,magnet number,magnet length,performance optimization

    1.Introduction

    The multi-cusped field thruster is a unique electric propulsion device.It is inspired by the multi-cusped field in a travelingwave tube.Kornfeld et al used this special magnetic field in the design of a new concept electric thruster,and it was firstly named as the high efficiency multi-stage plasma thruster(HEMPT) [1-4].The thruster employs several permanent magnet rings to form a unique multi-cusped field [5-8].The plasmas could be well confined by the magnetic field in a cylindrical discharge channel,and the plasma erosion rates on the channel wall could be dramatically reduced.As a result,the thruster shows a significant long-lifetime performance advantage [9-11].

    A simple physical process of a multi-cusped field thruster is shown in figure 1.The discharge channel is generally cylindrical and made of boron nitride.A series of permanent magnets with opposite polarities are coaxially mounted along the axis and a multi-cusped field configuration is formed[12,13].An anode and a gas supply structure are located at the upstream of the discharge channel,and a hollow cathode is installed in the plume region.After the thruster is ignited,some electrons emitted by the hollow cathode neutralize the ions in the downstream plume region,and the other electrons move upstream toward the anode [4,10,12,14,15].These electrons are strongly confined by the multi-cusped field in the discharge channel,and the high-speed electrons move back and forth between the adjacent magnetic cusps under the effects of electric field force and magnetic mirror force.During this process,some xenon(Xe)atoms in the discharge channel are ionized with electron-neutral collisions [4,16].Then,a cross-field electron current in the cusped magnetic field can be formed with classical or abnormal conduction mechanisms [17,18].Meanwhile,the ions generated in the discharge channel are accelerated by the electric field near the channel exit,and a reaction thrust is formed [4,12].

    Figure 1.Schematic of the multi-cusped field thruster.

    Figure 2.Structure of CFPT-60.(a) Picture,and (b) magnetic field structure.

    Figure 3.Simulation regions and boundary conditions.

    The results of previous studies have shown that the distributions of ionization regions are determined by the back and forth electron moments in the discharge channel,and the acceleration region is established through the electron transports near the channel exit [19,20].Therefore,the basic ionization and acceleration processes are attributed to the electron motion behaviors,which are directly related to the magnetic field characteristics [7].In 2014,research at the Harbin Institute of Technology revealed the internal relationships between the magnetic field and electric field through particle-in-cell (PIC) numerical simulation [17].In 2015,experimental studies validated that the magnetic field is a decisive factor in the establishment of the ionization regions[21,22].Both the magnet number and magnet stage length are two key magnetic field design parameters,which affect the motion behaviors of the electrons directly,and they have important effects on the thruster performances.In this paper,these two parameters are studied for the optimization of a 5 kW multi-cusped plasma field thruster (CFPT-60) by the PIC method.

    Figure 4.Algorithm flow of the PIC model.

    2.Numerical simulations of CFPT-60

    2.1.Introduction of CFPT-60

    Since 2017,researchers in the Lab of Advanced Space Propulsion of Beijing Institute of Control Engineering have been developing a 5 kW class multi-cusped field plasma thruster (CFPT-60) for the application of high-orbit satellites [20].The thruster has a cylindrical boron nitride discharge channel with an inner diameter of 60 mm.In order to reduce the channel erosion,the discharge channel near the exit plane uses a divergent channel structure,as shown in figure 2.The thruster is equipped with a thermal screen to improve the thermal radiation ability and to decrease the thruster operating temperature.The Xe gas is used as thruster propellant and the atoms can enter the discharge channel uniformly after passing through the anode gas distributor.The permanent magnet stages are coaxially mounted along the axis,as shown in figure 2(b).The thruster shell is made of aluminum,which is used to fix permanent magnet stages at the required positions.

    2.2.PIC numerical model

    Numerical simulation methods have been widely used in many typical Hall effect thrusters (HETs) [23,24]and thrusters with anode layer (TALs) [25],as well as in other electric propulsion devices,including cylinder Hall thrusters [26],ion thrusters [27],arc thrusters [28],and hollow cathodes [29-31].In this paper,a particle-in-cell plus Monte Carlo (PIC-MCC) model is established on the basic structure of CFPT-60.In this model,two-dimensional space(radial and axial) and three-dimensional velocity components (2 D-3 V) are simulated.The maximum magnetic field strength in this model is about 0.3 T,which is approximately 10 times stronger than the typical value of Hall thrusters.In Hall thrusters,the impedance for electrons results from the radial magnetic field.In addition,in the multi-cusped field thruster,it also has the impedance effects from the multi-magnetic cusps.

    The simulation regions and boundary conditions are shown in figure 3.The simulation model contains a discharge channel region and a plume region,and its simulation region has a maximum axial length of 0.25 m and a radial length of 0.1 m.The left model boundary in the discharge channel is the anode boundary,and in this boundary,the potential is fixed at the anode voltage and the electrons are removed.The upper boundary in the discharge channel region is the boron nitride ceramic boundary and the lower boundary is the axis symmetric boundary.When the electrons move to the axis symmetric boundary,they are elastically reflected to the simulation region.The left boundary of the plume region is the conductor boundary,which represents the thruster magnet mounting plate.The right boundary of the plume region is the cathode boundary,and its potential is set at 0 V.The electrons are ejected in the simulation region by the cathode with a 2 eV average initial temperature and they meet with a half Maxwell distribution.The upper boundary in the plume region is the infinite boundary,and the electrons are removed at this boundary [17,29].

    The algorithm flow of the PIC model is shown in figure 4.At the beginning of each simulation cycle,the model uses the magnetic field and electric field from the previous cycle,and the force F of the particle can be calculated.The magnetic field is imported by the simulation of two-dimensional FEMM software.The particle velocities and positions are updated by the particle movement equation,which is solved by the Boris leapfrog method.

    The direct simulation Monte Carlo (DSMC) method is adopted to solve the collision process of atoms.The single ionization,elastic scattering,and excitation between atoms and electrons are simulated with the MCC method.The ion-neutral Coulomb collisions and three-body and radiative re-combinations are neglected due to their small collision probabilities.This model is self-consistent except for the anomalous cross-field electron diffusion,and the Bohm coefficient of 1/64 is used in this model.

    At the end of each electron loop,ions are generated at the collision positions,and the initial ion velocity is equal to the local neutral background velocity.The Poisson equation is solved by the dynamic alternating direct implicit method,and then the electric field could be updated.Both the time step and space step satisfy the following inequalities:

    Table 1.Comparisons of the parameters in different simulation models.

    In these inequalities,ωpis the plasma oscillation frequency,ωcis the electron cyclotron frequency,andλDis the Debye length.In the simulation model,Δt=0.1ωp-1and Δx=0.5 mm.Other constants in the model are consistent with the previous works [32].A steady-state PIC model could be gradually established through the iterative processes.The numbers of macro particles in the model are increased and a convergence state can be formed.The simulations are calculated by using a personal computer.After about 7 days of calculation,the convergent results could be obtained successfully.Detailed parameter comparisons of different simulation models are shown in table 1.

    3.Simulation results and discussions

    3.1.Optimization of magnet stage number

    According to the previous experimental results,the distributions of ionization regions in a multi-cusped field thruster have strict corresponding relationships with the number and the length of magnet stages [19].The numberof ionization regions is determined by the number of magnet stages,but the distributions of ionizations at each stage are dramatically different with the change of electron input boundaries[20].In this study,a two-stage thruster and a three-stage thruster are simulated separately by the PIC models,as shown in table 2.The length of the third stage is changed and the lengths of the first and second stages remain the same.

    Table 2.The magnetic fields with different magnet lengths.

    As shown in figure 5,the potential distributions in these two magnetic fields are highly similar:the dominant acceleration regions are located at the outlet plane.These results mean that changing the magnet number has an insignificant impact on the electric field.

    It can be seen in figure 6 that the distributions of the electron number density and the ion number density are nearly the same,which satisfies the basic physical characteristics of the plasma quasi-neutrality.The plasmas in the thruster are concentrated near the axis due to the inherent magnetic confinement characteristics:the threestage magnetic field thruster has two ionization regions while the two-stage magnetic field thruster has only one ionization region.

    It can be seen in figure 7 that the distributions of ionization rate are changed in cases with different magnet number.In the three-stage magnetic field,the ionization region in Z=0.02-0.06 m has a relatively uniform distribution in the radial direction.Due to the weak confinement in the two-stage magnetic field,the electron leakage along the axis is increased [17],and the ionization rate is not evenly distributed along the radial direction.Therefore,the three-stage magnetic field shows a higher ionization rate.

    Figure 5.The potential distributions.(a) Three-stage magnetic field,and (b) two-stage magnetic field.

    Figure 6.The plasma density distributions.(a)Electron number density in the three-stage magnetic field,(b)electron number density in the two-stage magnetic field,(c)ion number density distribution in the three-stage magnetic field,and(d)ion number density distribution in the two-stage magnetic field.

    Figure 7.The ionization rate distributions.(a) Three-stage magnetic field,and (b) two-stage magnetic field.

    Figure 8.The electron temperature.(a) Three-stage magnetic field,and (b) two-stage magnetic field.

    Figure 9.The ion flux density at the channel wall.(a) Three-stage magnetic field,and (b) two-stage magnetic field.

    It can be seen in figure 8 that the high-energy electrons in the two magnetic field configurations are concentrated near the axis close to the exit,and the high-energy electrons in the three-stage magnetic field are more widely distributed in the axial direction than those in the two-stage magnetic field.The differences in electron temperature distributions should be attributed to the energy loss processes.The threestage magnetic field has a higher electron confinement efficiency,low energy loss,and wide distribution range of high-energy electrons,while in the two-stage magnetic field,the electron confinement efficiency is lower,and it has more energy loss and a narrower distribution range of highenergy electrons.The differences of electron confinement abilities are attributed to the higher magnetic field strength and higher magnetic mirror ratio of the three-stage magnetic field.A higher magnetic mirror ratio will eventually reduce the plasma corrosion rate on the channel wall.As we can see in figure 9,the ion flux density on the wall surface in the three-stage magnetic field thruster is about 6.5×1021s?1m?2,while it is about 9×1021s?1m?2in the twostage magnetic field.Therefore,the plasma erosion on the channel wall in the three-stage magnetic field is nearly 27.8% lower than the two-stage magnetic field.

    3.2.Optimization of magnet length

    Compared with the two-stage magnetic field,the three-stage magnetic field has a higher electron confinement efficiency,lower ion energy loss,wider distribution of high-energy electrons,and higher ionization rate.Therefore,the threestage magnetic field has a superior configuration.In this part,several three-stage magnetic fields with different magnet lengths are simulated.As we have validated in the previous experiments,the magnet length of the first stage has the most significant effect on the thruster performance[34].So the length optimization of this stage is simulated in this paper,as shown in table 3.Five cases with different magnet lengths from 68 mm to 88 mm are simulated separately.

    Figure 10.The potential distributions in different magnet length cases.(a) L1=68 mm,(b) L1=73 mm,(c) L1=78 mm,(d)L1=83 mm,and (e) L1=88 mm.

    Table 3.The magnetic fields with different magnet lengths.

    As can be seen in figure 10(a),the acceleration region(the region with large potential drop)is located near the exit plane in the L1=68 mm case,but its electric field is divergent.With the increase of L1,the direction of the electric field tends to bend towards the axis,and in the L1=78 mm case,the acceleration electric field is well focused.Meanwhile,the change of electric field leads to a variation of ion velocity distributions.As shown in figure 11(b),the distribution of axial high-speed ions extends to move downwards along the axis,and the radial velocity component is decreased significantly.

    Figure 11.Ion velocity components in different magnet length cases.(a) L1=68 mm,(b) L1=78 mm,and (c) L1=88 mm.

    However,when the length of the first stage is increased from 83 mm to 88 mm,the acceleration region moves upstream,and the relative distance between the ionization region and acceleration region is decreased accordingly.This means that some ions cannot acquire high energy from the electric field,and as a result,both the axial velocity components and radial velocity components are decreased,as shown in figure 11(c).It is concluded that the L1=78 mm case is a more efficient magnetic field for the optimization of the acceleration region.

    Figure 12 shows the simulation results of plasma density in different magnet length cases.Compared with the condition of L1=68 mm,the thruster has a longer ionization region and higher ionization rate in the condition of L1=78 mm.However,the length of the ionization region is increased with the increase of the first stage length from 78 mm to 88 mm,but the plasma density shows a contrary decreasing tendency,as shown in figure 12.These changes are consistent with the simulation results of electron temperature.In the cases of L1=68 mm and L1=73 mm,the highest electron temperatures are located at the axial position of Z=0.1 mm,as shown in figures 13(a) and (b).The ionization region moves downwards with the increase of the first magnet length from 73 mm to 78 mm,and the position of maximum electron temperature also moves downward accordingly,as shown in figures 13(c) and (d).However,when the length of the first stage is further increased to 88 mm,the ion loss rate at the discharge channel is increased excessively.As a result,the plasma density is decreased,as shown in figure 12(e),and the highest electron temperature moves upwards to the axial position near Z=0.1 mm,as shown in figure 13(e).

    Figure 12.Simulation results of plasma density in different magnet length cases.(a) L1=68 mm,(b) L1=73 mm,(c) L1=78 mm,(d)L1=83 mm,and (e) L1=88 mm.

    4.Conclusion

    In this paper,the number of magnet stages is firstly studied for the performance optimization of a 5 kW multi-cusped field thruster by the PIC simulation method.The results indicate that the change of the magnet number has no significant effect on the distribution of the accelerating electric field.It mainly affects the ionization process of the thruster,which can be summarized as follows.Firstly,the three-stage magnetic field thruster has two dominant ionization regions,while the twostage magnetic field has only one dominant ionization region.Secondly,the three-stage magnetic field thruster has a stronger electron confinement ability,and the ion energy loss is lower.Thirdly,the three-stage magnetic field shows a higher ionization rate.Therefore,the three-stage magnetic field has a superior magnetic field configuration.In addition,the three-stage magnetic fields with different magnet lengths are also simulated.The results indicate that the change of the magnet length affects both the acceleration region and ionization region,and an optimal accelerating electric field distribution and ionization region distribution could be obtained when the magnet length ratio is 78:25:20.

    Figure 13.Simulation results of electron temperature in different magnet length cases.(a)L1=68 mm,(b)L1=73 mm,(c)L1=78 mm,(d) L1=83 mm,and (e) L1=88 mm.

    Acknowledgments

    The authors would like to acknowledge the support of National Natural Science Foundation of China (No.51806011),the Advance Research Project of Equipment Development(No.30501050203),and the Advance Research Project of the Civil Space Program (No.D010509).

    夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 午夜精品在线福利| 日本精品一区二区三区蜜桃| 国产精品一及| 波多野结衣高清作品| 精品一区二区免费观看| av国产免费在线观看| 亚洲精品成人久久久久久| 白带黄色成豆腐渣| 欧美日韩国产亚洲二区| 成人欧美大片| 日韩欧美在线乱码| 小蜜桃在线观看免费完整版高清| 免费一级毛片在线播放高清视频| 成年女人毛片免费观看观看9| 欧美日韩亚洲国产一区二区在线观看| 国产色爽女视频免费观看| 日韩在线高清观看一区二区三区 | 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 成人二区视频| 亚洲久久久久久中文字幕| 午夜久久久久精精品| 午夜精品一区二区三区免费看| 成人一区二区视频在线观看| 搡老熟女国产l中国老女人| 亚洲色图av天堂| 黄色一级大片看看| 国产探花在线观看一区二区| 久久草成人影院| 最近在线观看免费完整版| a在线观看视频网站| 日韩欧美精品免费久久| 免费搜索国产男女视频| 高清毛片免费观看视频网站| 久久九九热精品免费| 久久久久久久精品吃奶| 最近中文字幕高清免费大全6 | 精华霜和精华液先用哪个| 日韩人妻高清精品专区| 18禁黄网站禁片免费观看直播| 午夜a级毛片| 精品久久久久久久久亚洲 | 老司机福利观看| 亚洲美女搞黄在线观看 | 最近最新中文字幕大全电影3| 亚洲第一电影网av| xxxwww97欧美| 一卡2卡三卡四卡精品乱码亚洲| 亚洲天堂国产精品一区在线| 久久精品国产鲁丝片午夜精品 | 欧美bdsm另类| 亚洲精品成人久久久久久| 色综合亚洲欧美另类图片| 91麻豆精品激情在线观看国产| 在线免费观看的www视频| 丰满乱子伦码专区| 91在线精品国自产拍蜜月| 亚洲精品影视一区二区三区av| 欧美色视频一区免费| 成人鲁丝片一二三区免费| 在线播放国产精品三级| 久久久成人免费电影| 我的女老师完整版在线观看| 国产乱人视频| 久久久久久九九精品二区国产| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 在线免费观看的www视频| 欧美性猛交╳xxx乱大交人| av在线天堂中文字幕| 成人无遮挡网站| 一级黄片播放器| 日韩欧美在线二视频| 久久久久久久久中文| 亚洲av五月六月丁香网| 麻豆久久精品国产亚洲av| av天堂在线播放| 久久久久久伊人网av| 欧美性感艳星| 免费搜索国产男女视频| 人妻少妇偷人精品九色| 毛片女人毛片| 91午夜精品亚洲一区二区三区 | 狂野欧美激情性xxxx在线观看| 少妇的逼好多水| 俄罗斯特黄特色一大片| 亚洲va在线va天堂va国产| 人妻少妇偷人精品九色| 蜜桃亚洲精品一区二区三区| 国产精品电影一区二区三区| 欧美日韩国产亚洲二区| 成人国产麻豆网| 亚洲七黄色美女视频| 亚洲精品456在线播放app | 99久久无色码亚洲精品果冻| 欧美成人免费av一区二区三区| 午夜日韩欧美国产| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 在线看三级毛片| 日韩欧美在线乱码| www日本黄色视频网| 校园人妻丝袜中文字幕| 国产精品伦人一区二区| 久久精品国产亚洲av涩爱 | 在线a可以看的网站| 国产不卡一卡二| av视频在线观看入口| 老熟妇乱子伦视频在线观看| av福利片在线观看| 久久久久久久久大av| 亚洲精品影视一区二区三区av| 九九爱精品视频在线观看| 亚洲最大成人中文| 久久精品国产亚洲av香蕉五月| 深夜精品福利| 嫩草影院精品99| 久久6这里有精品| 一夜夜www| 一区二区三区免费毛片| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| 看片在线看免费视频| 人妻制服诱惑在线中文字幕| 欧美+亚洲+日韩+国产| 色哟哟·www| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 一区二区三区激情视频| 国产av不卡久久| 成人av在线播放网站| 欧美最黄视频在线播放免费| 国产女主播在线喷水免费视频网站 | 特级一级黄色大片| 国产伦精品一区二区三区视频9| 亚洲aⅴ乱码一区二区在线播放| 一卡2卡三卡四卡精品乱码亚洲| 色综合色国产| 国产精品国产三级国产av玫瑰| 亚洲四区av| 免费观看精品视频网站| 亚洲 国产 在线| 嫩草影院精品99| 美女高潮的动态| 欧美绝顶高潮抽搐喷水| avwww免费| 欧美成人一区二区免费高清观看| 国产aⅴ精品一区二区三区波| 麻豆成人av在线观看| 久久久久久伊人网av| 国产亚洲精品久久久com| 欧美一级a爱片免费观看看| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 日本黄色片子视频| 熟女电影av网| 国产精品三级大全| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 一a级毛片在线观看| 欧美成人一区二区免费高清观看| 男女那种视频在线观看| 成人av一区二区三区在线看| 亚洲精品国产成人久久av| 日本黄色片子视频| 成年女人看的毛片在线观看| 免费高清视频大片| 欧美3d第一页| 搞女人的毛片| 国产午夜精品久久久久久一区二区三区 | 99久久精品热视频| 三级毛片av免费| 内射极品少妇av片p| 精品国产三级普通话版| bbb黄色大片| 国产伦在线观看视频一区| 国产不卡一卡二| 美女cb高潮喷水在线观看| 国产精品电影一区二区三区| 亚洲美女黄片视频| 成年人黄色毛片网站| 少妇的逼水好多| 午夜福利18| 欧美激情在线99| 乱码一卡2卡4卡精品| ponron亚洲| 一夜夜www| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 精品久久国产蜜桃| 国产v大片淫在线免费观看| 又紧又爽又黄一区二区| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| 久久精品国产亚洲av涩爱 | 成年人黄色毛片网站| 99热这里只有是精品在线观看| 尤物成人国产欧美一区二区三区| 亚洲无线观看免费| 嫩草影视91久久| 变态另类丝袜制服| 亚洲四区av| 国内精品久久久久精免费| 日本成人三级电影网站| 国产精品av视频在线免费观看| 观看美女的网站| 无人区码免费观看不卡| 午夜日韩欧美国产| 日韩精品青青久久久久久| 亚洲av免费在线观看| 一区二区三区免费毛片| 亚洲欧美日韩高清专用| 亚洲图色成人| 国内精品美女久久久久久| 亚洲性夜色夜夜综合| 别揉我奶头 嗯啊视频| 一区二区三区高清视频在线| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 日本黄大片高清| 在线观看美女被高潮喷水网站| 级片在线观看| 国产真实伦视频高清在线观看 | 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 亚洲不卡免费看| 一区二区三区高清视频在线| а√天堂www在线а√下载| 国产成人a区在线观看| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 亚洲精品成人久久久久久| 在现免费观看毛片| 色综合色国产| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 亚洲精华国产精华精| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| www.www免费av| 韩国av一区二区三区四区| 久久99热这里只有精品18| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 国内毛片毛片毛片毛片毛片| 男女那种视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 十八禁网站免费在线| 如何舔出高潮| 欧美一区二区精品小视频在线| 91在线精品国自产拍蜜月| 精品国内亚洲2022精品成人| 一区福利在线观看| 色视频www国产| 亚洲中文字幕日韩| 精品免费久久久久久久清纯| 欧美最黄视频在线播放免费| 日本 av在线| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 99久国产av精品| 国产精品1区2区在线观看.| 亚洲最大成人av| 极品教师在线视频| 最好的美女福利视频网| 国产精品美女特级片免费视频播放器| av.在线天堂| 久久6这里有精品| 波多野结衣巨乳人妻| 99热网站在线观看| 亚洲欧美精品综合久久99| 91久久精品电影网| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 精品久久国产蜜桃| 黄色欧美视频在线观看| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 麻豆久久精品国产亚洲av| 欧美黑人巨大hd| 人人妻人人看人人澡| 99热网站在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产男靠女视频免费网站| 真人一进一出gif抽搐免费| 国产乱人伦免费视频| 舔av片在线| 99热这里只有是精品50| 免费av毛片视频| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 91在线观看av| 丰满乱子伦码专区| 国产av麻豆久久久久久久| 他把我摸到了高潮在线观看| 91精品国产九色| 又粗又爽又猛毛片免费看| 亚洲va在线va天堂va国产| 免费看光身美女| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 久久99热6这里只有精品| 亚洲成人久久性| www.www免费av| 黄色一级大片看看| 欧美成人性av电影在线观看| 国产亚洲精品综合一区在线观看| 99热只有精品国产| aaaaa片日本免费| 国产精品一区二区三区四区免费观看 | 亚洲av成人av| 男人狂女人下面高潮的视频| 成年版毛片免费区| 99九九线精品视频在线观看视频| 国产精品久久电影中文字幕| 一区二区三区激情视频| 97热精品久久久久久| 91在线观看av| 我的女老师完整版在线观看| 精品久久久久久成人av| 国产不卡一卡二| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 日韩高清综合在线| 又紧又爽又黄一区二区| 久久午夜福利片| 搞女人的毛片| 天美传媒精品一区二区| 熟妇人妻久久中文字幕3abv| 欧美性猛交黑人性爽| 九九爱精品视频在线观看| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 精品一区二区三区人妻视频| 在线观看午夜福利视频| 一级黄色大片毛片| 啪啪无遮挡十八禁网站| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 69av精品久久久久久| 一本一本综合久久| 亚洲天堂国产精品一区在线| 99久久久亚洲精品蜜臀av| 美女xxoo啪啪120秒动态图| 国产久久久一区二区三区| 99久久久亚洲精品蜜臀av| 一夜夜www| 国产精品电影一区二区三区| 91av网一区二区| a在线观看视频网站| 中文字幕av在线有码专区| 日日撸夜夜添| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 精品久久久久久久末码| 国产精品不卡视频一区二区| 亚洲精品色激情综合| 亚洲一区高清亚洲精品| 不卡一级毛片| 成人午夜高清在线视频| 免费看a级黄色片| 99国产精品一区二区蜜桃av| 真人做人爱边吃奶动态| 国产精品av视频在线免费观看| 精品无人区乱码1区二区| 国产高清不卡午夜福利| 色综合亚洲欧美另类图片| 91精品国产九色| 久久欧美精品欧美久久欧美| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 日本在线视频免费播放| 波多野结衣高清无吗| 俺也久久电影网| 国产精品国产高清国产av| 国产精品精品国产色婷婷| 免费观看精品视频网站| 午夜a级毛片| xxxwww97欧美| 亚洲中文字幕一区二区三区有码在线看| 亚洲av第一区精品v没综合| 看黄色毛片网站| 美女黄网站色视频| 欧美极品一区二区三区四区| 亚洲精品亚洲一区二区| 久久午夜福利片| 国产精品电影一区二区三区| 少妇被粗大猛烈的视频| 亚洲欧美日韩高清专用| 又黄又爽又免费观看的视频| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 12—13女人毛片做爰片一| 欧美成人a在线观看| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 欧美日韩亚洲国产一区二区在线观看| 午夜福利高清视频| 精品久久久久久久末码| 两个人视频免费观看高清| av黄色大香蕉| 免费看a级黄色片| 午夜精品久久久久久毛片777| 又黄又爽又刺激的免费视频.| 精品久久久久久久久亚洲 | 亚洲成人久久爱视频| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99久久成人亚洲精品观看| 日本色播在线视频| 国产人妻一区二区三区在| 网址你懂的国产日韩在线| 天堂√8在线中文| 国产aⅴ精品一区二区三区波| 国产高潮美女av| 嫩草影院入口| 精品无人区乱码1区二区| 午夜福利高清视频| 国产真实乱freesex| 麻豆久久精品国产亚洲av| 亚洲精华国产精华精| 黄色配什么色好看| 免费电影在线观看免费观看| 久久精品国产亚洲av天美| 久久人人精品亚洲av| 午夜福利在线观看吧| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 成人一区二区视频在线观看| 国产成年人精品一区二区| 精品久久久久久久久久久久久| 国产高清激情床上av| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 99久国产av精品| 亚洲精品亚洲一区二区| 欧美色视频一区免费| 欧美不卡视频在线免费观看| 天天躁日日操中文字幕| 日本一本二区三区精品| 精品久久久久久,| 免费大片18禁| 婷婷丁香在线五月| 国产免费一级a男人的天堂| 精品久久久久久久末码| 韩国av一区二区三区四区| 丰满的人妻完整版| 国产v大片淫在线免费观看| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 欧美激情久久久久久爽电影| 综合色av麻豆| 又爽又黄a免费视频| 亚洲精品成人久久久久久| 亚洲国产色片| 国产精品1区2区在线观看.| 观看美女的网站| 亚洲成av人片在线播放无| 久久精品影院6| 直男gayav资源| 男人舔奶头视频| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| 3wmmmm亚洲av在线观看| x7x7x7水蜜桃| 女同久久另类99精品国产91| 日本免费a在线| 免费在线观看日本一区| 丰满人妻一区二区三区视频av| 特大巨黑吊av在线直播| 亚洲av中文av极速乱 | 99久久九九国产精品国产免费| 极品教师在线免费播放| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 亚洲乱码一区二区免费版| 国产真实乱freesex| 中文亚洲av片在线观看爽| 亚洲精品影视一区二区三区av| 91在线观看av| 欧美性猛交黑人性爽| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 亚洲美女搞黄在线观看 | 成人国产麻豆网| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 热99re8久久精品国产| 精品一区二区三区人妻视频| 成人国产麻豆网| 日本免费a在线| 日韩在线高清观看一区二区三区 | 一a级毛片在线观看| 很黄的视频免费| 国产高潮美女av| 高清毛片免费观看视频网站| 小说图片视频综合网站| 欧美成人性av电影在线观看| 搡老熟女国产l中国老女人| 综合色av麻豆| 色综合婷婷激情| 成年女人永久免费观看视频| 免费观看精品视频网站| 亚洲国产欧洲综合997久久,| 99热这里只有是精品50| 在线免费观看的www视频| 精品久久久久久久久久久久久| www日本黄色视频网| 麻豆国产97在线/欧美| 日日摸夜夜添夜夜添小说| 我要看日韩黄色一级片| a级一级毛片免费在线观看| 88av欧美| 窝窝影院91人妻| 中文字幕熟女人妻在线| 91在线观看av| 美女xxoo啪啪120秒动态图| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 色综合色国产| 午夜福利在线观看吧| 久久香蕉精品热| 一区二区三区免费毛片| 久久精品91蜜桃| 夜夜爽天天搞| 久久香蕉精品热| 国产精华一区二区三区| 三级国产精品欧美在线观看| 久9热在线精品视频| 动漫黄色视频在线观看| 好男人在线观看高清免费视频| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 欧美精品啪啪一区二区三区| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 简卡轻食公司| 午夜免费成人在线视频| 久久草成人影院| 日韩欧美一区二区三区在线观看| 九色国产91popny在线| 欧美精品国产亚洲| 亚洲欧美激情综合另类| 深夜a级毛片| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av| 国产精品野战在线观看| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 久久久精品欧美日韩精品| 欧美日本视频| 露出奶头的视频| 欧美+日韩+精品| 国内毛片毛片毛片毛片毛片| 在线观看舔阴道视频| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 亚洲av一区综合| 看免费成人av毛片| 毛片一级片免费看久久久久 | 免费av不卡在线播放| 俺也久久电影网| 三级国产精品欧美在线观看| 在线免费十八禁| 91午夜精品亚洲一区二区三区 | 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 日本黄色视频三级网站网址| 99久久精品国产国产毛片| 日韩欧美 国产精品| 可以在线观看的亚洲视频| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 1000部很黄的大片| 久久久国产成人免费| 国产爱豆传媒在线观看| 国产人妻一区二区三区在| 中文字幕av成人在线电影| 国产精品一区www在线观看 | 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在 | 最近在线观看免费完整版| 我的老师免费观看完整版| 国产真实乱freesex| 精品人妻偷拍中文字幕| 午夜爱爱视频在线播放| 成人国产一区最新在线观看| 韩国av在线不卡| 色在线成人网| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 久久人妻av系列| 国产黄a三级三级三级人| 国产伦精品一区二区三区四那|