• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of machine learning algorithms to screen potential biomarkers under cadmium exposure based on human urine metabolic profiles

    2023-01-30 06:49:10TingZengYnshnLingQingyunDiJinglinTinJinyoChenBoLeiZhuYngZongweiCi
    Chinese Chemical Letters 2022年12期

    Ting Zeng ,Ynshn Ling ,Qingyun Di ,Jinglin Tin,Jinyo Chen,Bo Lei ,Zhu Yng ,Zongwei Ci ,*

    a Food Science and Technology Program,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai 519087,China

    b State Key Laboratory of Environmental and Biological Analysis,Department of Chemistry,Hong Kong Baptist University,Hong Kong,China

    c Department of Nutrition,Food Safety and Toxicology,West China School of Public Health,Sichuan University,Chengdu 6100 41,China

    Keywords:Human urine High-resolution mass spectrometry Cadmium exposure Metabolic profiles Machine learning

    ABSTRACT Exposure to environmental cadmium increases the health risk of residents.Early urine metabolic detection using high-resolution mass spectrometry and machine learning algorithms would be advantageous to predict the adverse health effects.Here,we conducted machine learning approaches to screen potential biomarkers under cadmium exposure in 403 urine samples.In positive and negative ionization mode,4207 and 3558 features were extracted,respectively.We compared seven machine learning algorithms and found that the extreme gradient boosting(XGBoost)and random forest(RF)classifiers showed better accuracy and predictive performance than others.Following 5-fold cross-validation,the value of area under curve(AUC)was both 0.93 for positive and negative ionization modes in XGBoost classifier.In the RF classifier,AUC were 0.80 and 0.84 for positive and negative ionization modes,respectively.We then identified a biomarker panel based on XGBoost and RF classifiers.The incorporation of machine learning models into urine analysis using high-resolution mass spectrometry could allow a convenient assessment of cadmium exposure.

    Despite the fact that the official regulations of environmental cadmium(Cd)pollution have been in place for over one hundred years,the screening of potential biomarkers related to Cd toxicity is still in need to safeguard human health[1].The tolerable Cd exposure level is 0.83μg/kg body weight/day and urinary Cd is 5.24μg/g creatinine according to the Food and Agriculture Organization/World Health Organization(FAO/WHO)guideline[2].Appropriately,the safety standard of Cd in rice is 0.2 mg/kg according to the China Food Safety National Standard for Maximum Levels of Contaminants in Foods(GB2762-2017).In many cases,urine is routinely and robustly used to diagnose and monitor health conditions because it is easy-obtained and non-invasive sampling[3,4].The interpretation of the urinary profile under Cd exposure would be beneficial to the determination of Cd exposure grades based on the screening markers.Mass spectrometry(MS)is able to provide data information including the retention time,ion mass spectral data and peak intensities for thousands of molecules concurrently,which could deepen our knowledge in the urinary samples.Considering the growing capacities of high-resolution MS(HRMS)to reveal and characterize the pollutant-relevant health status,as well as the accessible nature of urine samples,a bunch of relevant studies has been conducted over the past years[5–7].

    Machine learning(ML)algorithms,in parallel,have been successfully applied in clinical laboratories for years,demonstrating their ability to deal with complex data sets[8].The machine learning approach is a type of artificial intelligence,which contains supervised and unsupervised learning,and has been used to improve the diagnostic capabilities of HRMS on urinary samples for more challenging problems[9].Briefly,a typical application of ML works as follows.First,it is the infrastructure data collection and pre-processing.The most appropriate machine learning algorithms for the type of data would be selected after loading the data and adjusting the parameters.After training and testing the model on data,cross-validation would be properly used for evaluation through the best-performing machine learning algorithms and the optimized signatures[10,11].The ratio of the training to testing set was usually set at 70:30 or 80:20,and several compounds were pinpointed to distinguish the exposure status[12].Altogether,machine learning algorithms have great potential for automating the interpretation and analysis of the urinary sample under Cd exposure[13,14].

    The purpose of this study was to develop ML-based models that used urinary metabolic characteristics to screen potential biomarkers under Cd exposure.We collected 403 urine samples and analyzed them using liquid chromatography-HRMS(LC–HRMS).We then compared seven machine learning algorithms on the LC–HRMS data set,including extreme gradient boosting classifier(XGBoost classifier),logistic regression classifier,support vector classifier(SVC),multi-layer perceptron classifier(MLP classifier),K-nearest neighbor classifier(KNN classifier),Gaussian naive Bayes classifier(GaussianNB classifier)and random forest classifier(RF classifier).Via5-fold cross-validation,the area under curve(AUC),accuracy,sensitivity,specificity,positive predictive value,and negative predictive value were calculated.Finally,we identified a biomarker panel based on the selected machine learning models.The incorporation of machine learning models into urine analysis by HRMS allows a convenient assessment for Cd exposure.

    As for the urinary characteristics of Cd-exposed humans,the present study included 403 participants,among which 280 and 123 belong to the exposure and control groups,respectively.The discriminating criterion was whether the villagers lived in Cd exposure or control areas.The main exposure route of Cd to the villagers was dietary Cd intake.The Cd exposure area was miningaffected and the villagers mainly subsisted on home-grown rice.The Cd concentration of home-grown rice greater than 0.2 mg/kg in the polluted area was reported in the previous study[15].The villagers in the control area with a Cd concentration of homegrown rice lower than 0.05 mg/kg have a similar lifestyle to the villagers in the polluted area.Table 1 showed the demographic characteristics of the Cd exposure and the control group.Of the 403 participants included in this study,the characteristics such as gender,frequency of smoking,age,residence duration and body mass index between Cd exposure and the control group showed no significant differences(P>0.05).Nevertheless,there were significant differences(P<0.05)in the concentrations of urinary cadmium(UCd),blood cadmium(BCd)andβ2-microglobulin between the Cd exposure and the control groups.Among them,β2-microglobulin is one of the nephrotoxicity signal molecules.The renal function tests,hepatic function tests and cardiac function tests were conducted.The results of cardiac function tests revealed no significant differences(P>0.05)between the two groups.While some of the clinical traits in the renal function tests(creatinine and blood urea nitrogen)and the hepatic function tests(total bile acid,alkaline phosphatase,gamma-glutamyl transpeptidase,indirect bilirubin,direct bilirubin and total bilirubin)showed a significant difference(P<0.05)between Cd exposure and the control groups.After the acquisition of urine metabolic profiles,4207 and 3558 features were extracted in positive and negative ionization mode,respectively.Then the partial least squares-discriminant analysis(PLS-DA)and the following metabolic pathway analysis were conducted using MetaboAnalyst(https://www.metaboanalyst.ca).As shown in Fig.S1(Supporting information),the exposure group clustered away from the control group and the peak intensities of the quality control sample were stable during the whole analysis guaranteeing the system stability(RSD<30%).

    Then,these samples were randomly split into two parts at a ratio of 7:3.The forest plot analysis of different machine learning algorithms based on positive and negative ionization mode mass spectra was conducted in terms of classifying the Cd exposure using data from sufficient metabolic features(Fig.1).In this step,the random subsampling method was applied primarily due to its convenient comparison among multiple algorithms.The XGBoost and RF classifiers outperformed other algorithms when applied to the data from both positive and negative ionization modes.Following 5-fold cross-validation,accuracy,sensitivity,specificity,positive and negative predictive values of both models were calculated.The AUC for positive and negative ionization modes were both 0.93 in the XGBoost classifier.In the RF classifier,the AUC were 0.80 and 0.84 for positive and negative ionization modes,respectively(Table 2).

    As XGBoost and RF classifiers were preferred,the top thirty features calculated from their feature importance were selected from positive and negative ionization modes,as shown in Fig.2.Among the top thirty features selected from the XGBoost classifier and RF classifier,biomarkers were identified by matching their mass fragmentation patterns with those in the Human Metabolome Database(HMDB,https://hmdb.ca).In total,seven biomarkers were found,includingS-adenosylmethionine,dehydroepiandrosterone sulfate,propionic acid,L-asparagine,homovanillic acid,deoxyinosine and deoxycytidine(Table 3).These compounds are involved in amino acid metabolism,purine metabolism,steroid hormone biosynthesis,etc.(Fig.S2 in Supporting information)[16–20].The Spearman correlation matrix of the identified compounds from human urine under Cd exposure was shown in Fig.3.Correlation were obtained between UCd and BCd(r=0.26),UCd and L-asparagine(r=?0.22),deoxycytidine and dehydroepiandrosterone sulfate(r=?0.32),deoxycytidine and homovanillic acid (r= ?0.34),deoxycytidine and S-adenosylmethionine(r=?0.31),S-adenosylmethionine and L-asparagine(r=0.36),S-adenosylmethionine and dehydroepiandrosterone sulfate(r=0.53),S-adenosylmethionine and homovanillic acid(r=0.73),homovanillic acid and L-asparagine(r=0.37),homovanillic acid and dehydroepiandrosterone sulfate(r=0.51)as well as dehydroepiandrosterone sulfate and Lasparagine(r=0.23).It is worth noting that additional work is required to identify more endogenous metabolites in urine and to expand the depth and breadth of this altered profile.The current models had scientific merits but were not comprehensive.

    Table 1 Characteristics of the populations between Cd exposure and control group at baseline(n=403).

    Table 2 Summary of 5-fold cross-validation result of different machine learning models on the dataset.

    Table 3 Biomarkers identified from human urine under Cd exposure based on different machine learning models.

    Although popular machine learning algorithms have been applied to predict Cd pollution in water springs,agricultural soil and lettuce leaves,to name a few[21–24],our research was the first study using seven different machine learning algorithms to screen potential biomarkers under Cd exposure based on human urine metabolic profiles.After the acquisition of MS data,fitting,coding,debugging,and fine-tuning of the specific machine learning algorithms,the XGBoost and RF classifiers showed better accuracy and predictive performance than others.These two algorithms are both decision tree-based supervised ensemble machine learning methods[25,26].To avoid overfitting,k-fold cross-validation is commonly used in these two algorithms[27].The most suitable one for our dataset is 5-fold cross-validation.The principles of various algorithms differ[28,29].The superior performances of XGBoost and RF classifiers in the present study may attribute to the skewed feature distributions and the unbalanced class distributions(123 control samples and 280 exposure samples)according to previous literature[30].XGBoost and RF classifiers are both promising in constructing predictive models and,as a result,providing variables of relatively high importance[31].To gain insights into these variables and several clinicopathologic characteristics,we may find more useful information hidden inside the high-dimensional mass spectrometry dataset.We trained and tested the models with a binary classified dataset(polluted or non-polluted)in this study.In reality,the polluted situations could be classified as non-polluted,low-polluted and high-polluted areas which would be more complex than binary classification.Thus,more human biological samples and optimized algorithms should be used to improve this multi-classification point in future studies.In short,the present study has added a new reference for selecting data-driven machinelearning algorithms for a metabolic analysis of urine upon Cd exposure.

    Fig.1.Forest plot of different machine learning algorithms based on positive(a)and negative(b)ionization mode mass spectra.The red,blue,orange,green,purple,light blue and light yellow represent the results from XGBoost,RF,Logistic regression,GaussianNB,SVM,MLP and KNN classifiers,respectively.

    Fig.2.Top thirty features calculated from their feature importance selected from positive(a)and negative(b)ionization mode mass spectra based on the random forest classifier and positive(c)and negative(d)ionization mode mass spectra based on the extreme gradient boosting classifier.The x-axis represents the results of mean decrease Gini and weight-based feature importance to RF and XGBoost classifiers,respectively.

    Due to the public health concerns about Cd,many metabolomics studies have been conducted.These reports have evidenced that amino acid metabolism,carbohydrate metabolism,purine metabolism,steroid hormone biosynthesis,creatine pathway,fatty acid oxidation,lipid metabolism,etc.would be influenced by Cd exposure[32–35].The biomarkers identified in this study were related to the changes in amino acid metabolism(Sadenosylmethionine,L-asparagine and homovanillic acid),purine metabolism (deoxyinosine)and steroid hormone biosynthesis(dehydroepiandrosterone sulfate).By convention,the aberration of amino acid metabolism indicated its energy expenditure under Cd exposure.As an illustration,S-adenosylmethionine,metabolized from the essential amino acid,methionine,is related to liver disease[16].Concomitantly,purine metabolism is associated with nephrotoxicity[36,37].The alteration of purine metabolism in this study also indicated the influence of Cd on the kidney.Dehydroepiandrosterone sulfate is a rich circulating steroid in humans and the steroid hormone biosynthesis dedicates to the normal development of the individual.These findings were generally consistent with the previous reports.As shown in the Spearman correlation analysis,the positive correlation coefficient between the concentration of UCd and BCd,two typical indexes for evaluating Cd exposure,was relatively higher than others.It was worth mentioning that mean decrease Gini and weight-based feature importance ranking were applied to RF and XGBoost classifiers,respectively.Other feature selection methodologies in these two algorithms could also be good alternatives for obtaining metabolic information to distinguish Cd exposure from control.Inferred from the information about hepatic and renal damage collected in the present study(Table 1)and supported by similar findings in the previous study[38–41],we concluded that the liver and kidney were susceptible to Cd exposure regardless of acute and chronic toxicity.As more and more omics data are accumulated[42,43],artificial intelligence-based techniques in combination with omics might be effective in recognizing unknown metabolic biomarkers and pathways,allowing for personalized risk assessments.

    In conclusion,we acquired high-resolution mass spectrometry datasets from 403 human urine samples,trained XGBoost and RF classifiers and identified a biomarker panel under Cd exposure.Taking into account the vast potential of big data,prospective risk stratification of machine learning algorithms,more sophisticated models are needed based on the two algorithms.

    Fig.3.Spearman correlation matrix of the identified compounds from human urine under Cd exposure.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was supported by the National Key Research and Development Program of China(No.2017YFC1600500).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.020.

    国产 一区 欧美 日韩| 丁香欧美五月| 黄片小视频在线播放| 成人特级av手机在线观看| 夜夜爽天天搞| 欧美日韩一级在线毛片| www.www免费av| 丰满人妻一区二区三区视频av | 我要搜黄色片| 国产私拍福利视频在线观看| 亚洲精品成人久久久久久| 午夜福利在线在线| 男女午夜视频在线观看| 亚洲精品一区av在线观看| 悠悠久久av| 亚洲专区中文字幕在线| 国内少妇人妻偷人精品xxx网站| 中文亚洲av片在线观看爽| 精品国产亚洲在线| 好男人电影高清在线观看| 特大巨黑吊av在线直播| x7x7x7水蜜桃| 国产美女午夜福利| 十八禁人妻一区二区| 天天添夜夜摸| 淫秽高清视频在线观看| 欧美一区二区国产精品久久精品| 精品乱码久久久久久99久播| 午夜福利18| 久久人人精品亚洲av| 黄色女人牲交| 天堂动漫精品| 琪琪午夜伦伦电影理论片6080| 在线视频色国产色| 不卡一级毛片| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲内射少妇av| 97超视频在线观看视频| 日韩欧美三级三区| 国产三级黄色录像| 亚洲性夜色夜夜综合| 一个人免费在线观看电影| 18美女黄网站色大片免费观看| 午夜精品在线福利| 精品无人区乱码1区二区| 久久久久久久亚洲中文字幕 | 男女下面进入的视频免费午夜| 国产精品自产拍在线观看55亚洲| 美女高潮的动态| 精品久久久久久久人妻蜜臀av| 人妻夜夜爽99麻豆av| 婷婷六月久久综合丁香| 黄片大片在线免费观看| 午夜精品一区二区三区免费看| 国产亚洲精品久久久久久毛片| 国产伦精品一区二区三区视频9 | 亚洲va日本ⅴa欧美va伊人久久| 婷婷精品国产亚洲av在线| 国产成人福利小说| 久久久国产成人免费| 日本一本二区三区精品| 老熟妇仑乱视频hdxx| 麻豆国产97在线/欧美| 精品一区二区三区视频在线 | 午夜福利免费观看在线| av女优亚洲男人天堂| 国产精品一区二区免费欧美| av在线蜜桃| 亚洲18禁久久av| 久久九九热精品免费| 两个人看的免费小视频| 91字幕亚洲| 琪琪午夜伦伦电影理论片6080| 可以在线观看的亚洲视频| 天堂网av新在线| 国产精品亚洲一级av第二区| 亚洲av成人av| 久久久久性生活片| 国产精品乱码一区二三区的特点| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 99久国产av精品| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 桃红色精品国产亚洲av| 丁香六月欧美| 亚洲精品亚洲一区二区| 最近最新中文字幕大全免费视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区 | 99精品久久久久人妻精品| 级片在线观看| 91久久精品电影网| 九九热线精品视视频播放| 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 日本 av在线| 久久精品91无色码中文字幕| 亚洲在线自拍视频| 亚洲精品一区av在线观看| 一个人免费在线观看的高清视频| 久久久久性生活片| 少妇熟女aⅴ在线视频| 日本五十路高清| 舔av片在线| 成年女人毛片免费观看观看9| 国产毛片a区久久久久| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 中文在线观看免费www的网站| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| www国产在线视频色| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| 母亲3免费完整高清在线观看| 欧美国产日韩亚洲一区| 悠悠久久av| 九九热线精品视视频播放| 午夜激情福利司机影院| 好看av亚洲va欧美ⅴa在| 欧美日本亚洲视频在线播放| 国内毛片毛片毛片毛片毛片| 亚洲不卡免费看| 精品不卡国产一区二区三区| 国产成人福利小说| 国产97色在线日韩免费| 国产精品亚洲一级av第二区| 亚洲精品国产精品久久久不卡| 一级黄片播放器| 国产成+人综合+亚洲专区| 男女下面进入的视频免费午夜| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 黄色丝袜av网址大全| 国产精品98久久久久久宅男小说| 国产av不卡久久| 免费在线观看亚洲国产| 欧美日韩精品网址| 成年女人永久免费观看视频| 成熟少妇高潮喷水视频| 日韩欧美 国产精品| 久久精品综合一区二区三区| 亚洲av电影不卡..在线观看| av天堂中文字幕网| 亚洲无线在线观看| 亚洲久久久久久中文字幕| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 一二三四社区在线视频社区8| 一进一出抽搐动态| 国产午夜精品论理片| 亚洲国产精品999在线| 久久天躁狠狠躁夜夜2o2o| 天堂影院成人在线观看| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 亚洲在线自拍视频| 久久国产乱子伦精品免费另类| 国产高清有码在线观看视频| av黄色大香蕉| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 精品午夜福利视频在线观看一区| 国产一区二区三区视频了| 成年女人永久免费观看视频| 成人鲁丝片一二三区免费| 国产精品国产高清国产av| 五月玫瑰六月丁香| 久久草成人影院| h日本视频在线播放| www.999成人在线观看| 欧美色欧美亚洲另类二区| 国产乱人伦免费视频| 99热只有精品国产| 久久久久性生活片| 国产老妇女一区| 99精品欧美一区二区三区四区| 精品欧美国产一区二区三| 黑人欧美特级aaaaaa片| 亚洲乱码一区二区免费版| 99国产精品一区二区蜜桃av| 成人一区二区视频在线观看| 少妇丰满av| 久久午夜亚洲精品久久| 网址你懂的国产日韩在线| 国产91精品成人一区二区三区| 禁无遮挡网站| 久久精品亚洲精品国产色婷小说| 国产精品一区二区三区四区久久| 特大巨黑吊av在线直播| 好男人电影高清在线观看| 日本a在线网址| 久久久久久久亚洲中文字幕 | 黄色视频,在线免费观看| 熟女少妇亚洲综合色aaa.| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 日本免费a在线| 国产久久久一区二区三区| 一进一出抽搐gif免费好疼| 成人午夜高清在线视频| xxx96com| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 国产伦在线观看视频一区| 久久久久久久久大av| x7x7x7水蜜桃| 国产一区二区三区视频了| 超碰av人人做人人爽久久 | 中文字幕人成人乱码亚洲影| 无人区码免费观看不卡| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 人妻久久中文字幕网| 动漫黄色视频在线观看| 国产精品久久久久久人妻精品电影| av黄色大香蕉| 少妇人妻一区二区三区视频| 日韩亚洲欧美综合| 黄色成人免费大全| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播| av在线蜜桃| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 色吧在线观看| 成人鲁丝片一二三区免费| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 中文资源天堂在线| 有码 亚洲区| 亚洲久久久久久中文字幕| 1000部很黄的大片| 成人无遮挡网站| 成人欧美大片| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 亚洲 欧美 日韩 在线 免费| 欧美激情在线99| 免费观看精品视频网站| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 1000部很黄的大片| 最近最新免费中文字幕在线| 国产伦一二天堂av在线观看| 亚洲内射少妇av| 欧美中文综合在线视频| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久 | 亚洲国产精品999在线| 真人一进一出gif抽搐免费| 久久精品国产亚洲av涩爱 | 免费观看的影片在线观看| 熟妇人妻久久中文字幕3abv| 色综合站精品国产| 99久久成人亚洲精品观看| 日韩人妻高清精品专区| 俺也久久电影网| 亚洲一区二区三区不卡视频| 有码 亚洲区| svipshipincom国产片| 此物有八面人人有两片| 精品欧美国产一区二区三| 手机成人av网站| 亚洲精品粉嫩美女一区| 真实男女啪啪啪动态图| 97人妻精品一区二区三区麻豆| 别揉我奶头~嗯~啊~动态视频| 老熟妇乱子伦视频在线观看| 国产黄色小视频在线观看| av专区在线播放| 免费av毛片视频| 久久久国产成人精品二区| 国产一区二区三区视频了| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 中文在线观看免费www的网站| 99国产综合亚洲精品| 精品日产1卡2卡| 悠悠久久av| 欧美成人a在线观看| 在线播放无遮挡| 美女高潮喷水抽搐中文字幕| 精品人妻一区二区三区麻豆 | 毛片女人毛片| 一级黄色大片毛片| 亚洲精华国产精华精| 欧美+日韩+精品| 亚洲国产欧美人成| 成人一区二区视频在线观看| 97超视频在线观看视频| 亚洲人成网站在线播| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 亚洲色图av天堂| 天天添夜夜摸| 国产亚洲精品av在线| 一进一出好大好爽视频| 亚洲av电影不卡..在线观看| 午夜福利18| 在线观看免费午夜福利视频| 婷婷精品国产亚洲av| 99国产综合亚洲精品| 欧美最黄视频在线播放免费| 日韩欧美三级三区| 国产在视频线在精品| 在线观看一区二区三区| 亚洲久久久久久中文字幕| 人人妻人人澡欧美一区二区| 精品无人区乱码1区二区| 欧美三级亚洲精品| 男人的好看免费观看在线视频| 国产毛片a区久久久久| a级毛片a级免费在线| 内地一区二区视频在线| 午夜福利在线在线| 99热6这里只有精品| 国产极品精品免费视频能看的| 亚洲精品影视一区二区三区av| 91在线观看av| 久久香蕉国产精品| svipshipincom国产片| www日本黄色视频网| 午夜激情欧美在线| 三级国产精品欧美在线观看| 18禁裸乳无遮挡免费网站照片| 手机成人av网站| 天美传媒精品一区二区| 无限看片的www在线观看| 综合色av麻豆| a级一级毛片免费在线观看| 五月玫瑰六月丁香| 欧美最黄视频在线播放免费| 久久婷婷人人爽人人干人人爱| 欧美成人免费av一区二区三区| 久久国产乱子伦精品免费另类| 三级毛片av免费| 精品电影一区二区在线| 三级毛片av免费| 日韩免费av在线播放| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站| 久久久国产成人免费| 精品一区二区三区人妻视频| 国产淫片久久久久久久久 | 亚洲一区二区三区色噜噜| 久久性视频一级片| 国产免费一级a男人的天堂| 久久九九热精品免费| 亚洲 欧美 日韩 在线 免费| 亚洲欧美日韩高清专用| 一区二区三区高清视频在线| 国产美女午夜福利| 亚洲精品一区av在线观看| aaaaa片日本免费| 亚洲精品亚洲一区二区| 国产97色在线日韩免费| 五月伊人婷婷丁香| 日本在线视频免费播放| 国产精品免费一区二区三区在线| 久久久久久久亚洲中文字幕 | 好男人在线观看高清免费视频| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 国产精品久久久久久久电影 | 欧美+亚洲+日韩+国产| 亚洲人成电影免费在线| 嫩草影视91久久| 国产中年淑女户外野战色| 此物有八面人人有两片| 女人被狂操c到高潮| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 18禁国产床啪视频网站| 免费观看精品视频网站| 露出奶头的视频| 日韩欧美在线乱码| 51午夜福利影视在线观看| 日韩国内少妇激情av| 成人午夜高清在线视频| 小说图片视频综合网站| 亚洲欧美日韩高清专用| 亚洲av成人不卡在线观看播放网| 桃色一区二区三区在线观看| 亚洲国产精品999在线| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| 亚洲精品乱码久久久v下载方式 | 午夜免费男女啪啪视频观看 | 精品不卡国产一区二区三区| 久久久色成人| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app | 亚洲精品在线观看二区| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 欧美中文综合在线视频| 岛国视频午夜一区免费看| 精品久久久久久久久久免费视频| 久久香蕉国产精品| 国产精品亚洲美女久久久| 精品免费久久久久久久清纯| 欧美最新免费一区二区三区 | 一级黄片播放器| 午夜福利18| 成人亚洲精品av一区二区| 国内揄拍国产精品人妻在线| 两个人看的免费小视频| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 亚洲国产高清在线一区二区三| 麻豆成人午夜福利视频| 国产三级在线视频| 亚洲人成网站在线播| 一进一出好大好爽视频| 国产探花在线观看一区二区| or卡值多少钱| 国产精品一区二区三区四区免费观看 | 欧美高清成人免费视频www| 亚洲性夜色夜夜综合| 成人高潮视频无遮挡免费网站| 免费搜索国产男女视频| 亚洲中文字幕一区二区三区有码在线看| 国产真实乱freesex| 日本五十路高清| 99久久综合精品五月天人人| 国产91精品成人一区二区三区| 怎么达到女性高潮| 丰满乱子伦码专区| 内射极品少妇av片p| 男女视频在线观看网站免费| 国内精品久久久久久久电影| 午夜福利18| 国产成人啪精品午夜网站| 在线免费观看的www视频| 国产av麻豆久久久久久久| 国产精品爽爽va在线观看网站| 又黄又粗又硬又大视频| 18美女黄网站色大片免费观看| 国内精品美女久久久久久| 欧美成人a在线观看| 老司机深夜福利视频在线观看| 欧美激情在线99| 亚洲中文字幕日韩| 51国产日韩欧美| 亚洲自拍偷在线| 欧美日韩亚洲国产一区二区在线观看| 国产精品一及| 色综合婷婷激情| a级毛片a级免费在线| 在线播放无遮挡| 免费人成视频x8x8入口观看| 精品一区二区三区人妻视频| 色视频www国产| 国产精品香港三级国产av潘金莲| 久久国产精品人妻蜜桃| 国产精品日韩av在线免费观看| 国产精品野战在线观看| 亚洲av第一区精品v没综合| 在线a可以看的网站| 99在线视频只有这里精品首页| 神马国产精品三级电影在线观看| 亚洲男人的天堂狠狠| 五月玫瑰六月丁香| 香蕉久久夜色| 欧美成人性av电影在线观看| 麻豆成人av在线观看| tocl精华| 国产精品久久久久久亚洲av鲁大| 亚洲久久久久久中文字幕| 日本精品一区二区三区蜜桃| 在线播放无遮挡| 啪啪无遮挡十八禁网站| 精品一区二区三区人妻视频| 性欧美人与动物交配| 色综合亚洲欧美另类图片| 成人欧美大片| av视频在线观看入口| 成年女人看的毛片在线观看| 国产日本99.免费观看| 热99在线观看视频| 日日夜夜操网爽| 搡老妇女老女人老熟妇| 国产极品精品免费视频能看的| 国内精品久久久久久久电影| 黄色女人牲交| 国产成人av激情在线播放| av在线天堂中文字幕| 免费av不卡在线播放| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 观看免费一级毛片| 叶爱在线成人免费视频播放| 又紧又爽又黄一区二区| x7x7x7水蜜桃| 欧美午夜高清在线| 亚洲国产欧美网| 69av精品久久久久久| 麻豆久久精品国产亚洲av| 久久久国产成人精品二区| 精品乱码久久久久久99久播| 国产熟女xx| 久久久久国内视频| av天堂在线播放| 色综合欧美亚洲国产小说| 亚洲国产欧洲综合997久久,| 日韩国内少妇激情av| 欧美乱妇无乱码| 久久国产乱子伦精品免费另类| 国产aⅴ精品一区二区三区波| 综合色av麻豆| 欧美日韩综合久久久久久 | or卡值多少钱| 国产毛片a区久久久久| 久久久国产成人免费| 搡老岳熟女国产| 男女那种视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲电影在线观看av| 亚洲一区高清亚洲精品| 亚洲,欧美精品.| 成人永久免费在线观看视频| 国产精华一区二区三区| 美女大奶头视频| 国产成人a区在线观看| 性色av乱码一区二区三区2| 亚洲中文字幕日韩| 又爽又黄无遮挡网站| 五月玫瑰六月丁香| 欧美精品啪啪一区二区三区| 国产精品嫩草影院av在线观看 | 亚洲无线观看免费| 美女cb高潮喷水在线观看| 无遮挡黄片免费观看| 九色国产91popny在线| 我要搜黄色片| 三级国产精品欧美在线观看| 成熟少妇高潮喷水视频| 琪琪午夜伦伦电影理论片6080| 国产精品98久久久久久宅男小说| x7x7x7水蜜桃| 国产精品免费一区二区三区在线| 又黄又粗又硬又大视频| 精品一区二区三区视频在线 | 看免费av毛片| 亚洲七黄色美女视频| 国产一区二区三区视频了| 亚洲欧美精品综合久久99| 国产成人福利小说| 亚洲av二区三区四区| 18禁黄网站禁片午夜丰满| 久久精品国产亚洲av香蕉五月| 人人妻人人看人人澡| 18禁裸乳无遮挡免费网站照片| 亚洲乱码一区二区免费版| 天堂网av新在线| 69av精品久久久久久| 亚洲精品亚洲一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 女人十人毛片免费观看3o分钟| 99久久久亚洲精品蜜臀av| 国产成人啪精品午夜网站| 中文字幕熟女人妻在线| 成年女人看的毛片在线观看| 亚洲av不卡在线观看| 成人特级av手机在线观看| 99视频精品全部免费 在线| 国产精品亚洲av一区麻豆| 99在线人妻在线中文字幕| 老司机在亚洲福利影院| 日本撒尿小便嘘嘘汇集6| 欧美黑人欧美精品刺激| 岛国在线观看网站| 51国产日韩欧美| 免费电影在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 国产精品美女特级片免费视频播放器| 黄色女人牲交| 国产精品亚洲美女久久久| 国产淫片久久久久久久久 | 国产精品日韩av在线免费观看| 欧美日韩综合久久久久久 | 欧美在线一区亚洲| 午夜福利在线在线| 天堂网av新在线| 天天躁日日操中文字幕| 亚洲真实伦在线观看| 一级毛片女人18水好多| 中亚洲国语对白在线视频| 亚洲乱码一区二区免费版| 99精品在免费线老司机午夜| 18美女黄网站色大片免费观看| 精品久久久久久,| 欧美最黄视频在线播放免费| 国模一区二区三区四区视频| 亚洲国产精品999在线| 真人做人爱边吃奶动态| 美女cb高潮喷水在线观看| 亚洲自拍偷在线| a级一级毛片免费在线观看| 高清毛片免费观看视频网站| 国产一区在线观看成人免费| 午夜视频国产福利| 欧美乱妇无乱码|