• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode

    2023-01-30 06:49:14YuxinZengSiyoZhngLifengYinYunrongDi
    Chinese Chemical Letters 2022年12期

    Yuxin Zeng ,Siyo Zhng ,Lifeng Yin,*,Yunrong Di

    a School of Environment,Beijing Normal University,Beijing 10 0875,China

    b School of Water Resources and Environment,China University of Geosciences(Beijing),Beijing 100083,China

    Keywords:Electrocatalysis Magnetron sputtering Pesticide Degradation mechanism Dichlorvos Azoxystrobin

    ABSTRACT The increasing occurrence of pesticide micropollutants highlights the need for innovative water treatment technologies,particularly for small-community and household applications.Electro-oxidation is being widely studied in this area,unfortunately,safe,stable and efficient electrocatalytic anodes without released heavy metal ions are still highly required.In this study,we fabricated a Pt/Ti anode by high energy pulse magnetron sputtering(HiPIMS-PtTi)which was used to decompose dichlorvos(DDVP)and azoxystrobin(AZX)in water.The results show that the reaction rate constant(k ENR)on HIPIMS was 35.7 min–1(DDVP)and 41.3 min–1(AZX),respectively,superior to electroplating Pt/Ti anode(EP-PtTi).The identification of radicals(?OH,1O2,?O2?)and micro-area analyses evidenced that Pt atoms were embedded into the TiO2 lattice on the surface of Ti plate by high-energy ions,which resulted in more adsorbed hydroxyls,and higher production of?OH under polarization conditions.Besides,the electro-oxidation intermediates of DDVP and AZX were identified and the degradation pathways were speculated:(1)indirect oxidation dominated by?OH attack,and(2)direct electron transfer reaction of pesticides on the anode surface.The cooperated reactions achieve the complete degradation and highly efficient mineralization of DDVP and AZX.

    The increasing usage of pesticides in the field of agricultural cultivation has been found to be a significant risk to water supplies[1,2].More than 90%of pesticides used are released to the aqueous environment by leaching and surface runoff[3].For examples,the residues of organophosphorus pesticides such as dichlorvos(DDVP)may lead to respiratory failure,delayed neuropathy and endocrine disorders[4].More than 70%of strobilurins pesticides such as azoxystrobin(AZX)were leached into the environment by rainfall,posing a potential threat to human health and the ecological environment[5].Pesticide residues can accumulate along with food chain,which may cause a long-lasting effect on ecosystems[6].Closely related to daily life,it is difficult to completely remove pesticide residues on the surface of vegetables and fruits by rinsing.Therefore,how to rapidly and efficiently clarify the pesticide residues and eliminate the threat to human health is an important scientific issue.

    Electrocatalysis has been widely applied to treat the pesticidecontaminated water[7–10].The removal efficiency of boron-doped diamond(BDD)anode for various pesticides can reach above 90%[11–14].Dimensionally stable anodes(DSA),such as Ti/SnO2-Sb/Ce-PbO2anode,can also degrade 2,4,5-trichlorophenoxyacetic acid and benzophenone effectively[15–18].Unfortunately,BDD anode is too expensive for practical application.As for traditional DSA anode,the Sn4+,Pb2+,Sb3+and other non-noble metal ions are potentially released from the surface and lead to the secondary pollutions and health problems[19–21].By contrast,noble metal anodes(NMAs)take advantage of low toxicity,high conductivity,and oxidation resistance[21–23].Among NMAs,Pt/Ti composite anodes are used more on laboratory due to strong tolerance and high plasticity[24,25].However,the traditional electroplating Pt/Ti anodes usually have low efficiency and short lifetime,which is caused by the weak binding between Pt and Ti substrate[26,27].Generally,the Pt/Ti anodes will lose their electrocatalytic activity in several weeks,even in several days under the actual working conditions.

    In this study,we fabricated Pt/Ti anodes by high energy pulse magnetron sputtering(HiPIMS-PtTi),and electroplating processes(EP-PtTi)as a comparison(Materials and methods in Supporting information),and named them after their processing time(min).The surface structures of four Ti-based modified anodes were observed under scanning electron microscope(SEM,Fig.S2 in Supporting information).The surfaces of HiPIMS-PtTi30 and HiPIMSPtTi120 prepared by magnetron sputtering show more ravines and gullies.The uneven structures are obviously generated by the oxalic acid etching of Ti plate.The Pt/Ti anode prepared by HiPIMS is still a pristine place.In other words,the HiPIMS results in the Pt atoms implanted into the crystalline of the Ti plates and integrated with them together to improve the adhesion between the coating and the substrate,and thus ensures the coating attached tightly to the metal surface[28,29].While the EP-PtTi30 and EPPtTi120 prepared by electroplating show smoother surfaces.More particles and compact structures were observed.Based on the statistical calculation of the surface particle size,it is found that the particle sizes of HiPIMS-PtTi30 are 5–10 nm,and the average size is about 7 nm.While the particles on HiPIMS-PtTi120 are similar but bigger,with an average size of 8.5 nm.As for EP-PtTi30 and EP-PtTi120,the average particle size is about 15 nm and 18 nm,respectively.

    The crystal structures of four anodes were investigated by X-ray diffraction(XRD,Fig.1a).The diffraction peaks at 2θ=35.1°,38.4°,40.2°,53.0°and 70.7°correspond to the(110),(101),(200),(102)and(103)crystal planes of Ti.The diffraction peaks of HiPIMSPtTi30 and HiPIMS-PtTi120 anodes at 2θ=39.9°and 46.4°correspond to the(111)and(201)crystal planes of Pt,respectively,with the spacing distances of 0.226 nm and 0.196 nm.As shown in Fig.1a,the Pt coatings grow along with the(111)crystal plane orientation,indicating typical face-centered cubic crystals were formed on four anodes[4,5].The Pt on HiPIMS-PtTi30,HiPIMSPtTi120,EP-PtTi30 and EP-PtTi120 were identified as PDFs#89–7382,70–2057,87–0640 and 87–0640,respectively,indicating that the Pt crystal structures were slightly different.The average diameters of Pt particles in HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120 anodes are 5.7 nm,8.4 nm,13.5 nm and 20.2 nm,respectively,calculated by Scherrer formula and half peak width of Pt(111)diffraction peak.These results are consistent with that of SEM.The size of Pt particles prepared by electroplating was larger than that by magnetron sputtering.Under a high current density,the cathodic polarization will be enhanced,so the sizes of Pt particle are reinforced[30].

    The X-ray photoelectron spectroscopies(XPS)of four Pt/Ti anodes are shown in Fig.1b.It is also inferred that Pt was uniformly loaded onto the surface of Ti matrix,forming a stable metal coating[31].The Pt on four anode surfaces was further critically scanned and fitted by deconvolution,as shown in Figs.1c-f.The Pt 4f binding energies corresponding to the two maximum absorption peaks of HiPIMS-PtTi30 anode are 71.8 eV and 75.0 eV,respectively.The binding energies of metallic Pt are mainly 71.7–71.9 eV(4f7/2)and 74.8–75.0 eV(4f5/2),while those of oxidized Pt are higher[32].Therefore,it can be concluded that the main existing form of Pt in HiPIMS-PtTi30 anode is the metallic state.Comparing the peak positions of Pt 4f prepared by two methods(Table S3 in Supporting information),the 4f7/2peaks in HiPIMS-PtTi30 and HiPIMS-PtTi120 are split into duet and triplet,and slightly redshift,which may be due to the Pt particles on the HiPIMS-PtTi surface prepared by magnetron sputtering had higher dispersion and were partially oxidized[32,33].

    The oxygen evolution potentials(OEP)of four anodes were tested by linear voltammetry.The linear sweep voltammetry(LSV)curves were obtained under the scanning voltage range of 0–2.0 V,as shown in Fig.1g.The OEPs of HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120 were 1.42 V,1.48 V,1.52 V,and 1.55 V(vs.Ag/AgCl),respectively.The higher OEP effectively expands potential windows for the degradation of organic pesticides in water[34–36].The similarly OEPs indicated that the ability of these four electrodes to occur oxygen evolution side reaction is equivalent.Meanwhile,Fig.1h shows that the impedance values of three electrodes are low,indicating that the conductivity of HiPIMS-PtTi30 and EP-PtTi30 are good.

    The degradation of DDVP and AZX on different Pt/Ti anodes was evaluated as shown in Fig.2.On HiPIMS-PtTi30 anode,removal efficiency of DDVP and AZX reached 88.2%and 91.7%respectively within 1 h.By applying pseudo-first-order kinetics model(Eq.S1 in Supporting information),the removal kinetics of AZX and DDVP by four anodes shows significant linear relationship(Figs.2b and d).As shown in Table S4(Supporting information),the degradation efficiency constant(kENR)on HiPIMS-PtTi30 for DDVP is 35.7 min?1,which is 2.04,1.59 and 2.46 times of HiPIMS-PtTi120,EPPtTi30 and EP-PtTi120,respectively.ThekENRon HiPIMS-PtTi30 for AZX is 41.3 min?1,which is 3.36,1.07 and 3.47 times of HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120,respectively.Furthermore,HiPIMS-PtTi30 possesses the highest quantum efficiency for the degradation of pesticides,which is consistent with the results of the above discussion(Table S5 in Supporting information).

    Fig.2.Electrocatalytic degradation of DDVP(a,b)and AZX(c,d)on HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30,EP-PtTi120,and the effects of pH on degradation of DDVP(e,f)on HiPIMS-PtTi30.Current density 60 mA/cm2;[Na2SO4]=22.5 mmol/L,d=2 mm,[DDVP]0 and[AZX]0 10 mg/L;reaction volume:500 mL.

    Fig.3.(a)Electron spin resonance detection results of ROS.The law of?OH(b),?O2?(c)and 1 O2(d)production on four anodes.

    The effects of pH on the degradation of DDVP([DDVP]0=10 mg/L)by HiPIMS-PtTi30 were investigated at pH 2.0,4.0,7.0,8.0 and 10.0.The DDVP degradation efficiency was measured and fitted by first-order kinetics.The results are shown in Figs.2e and f.At pH 4.0,kENRis the highest(35.5 min?1),which is 7.8 times higher than that under neutral conditions(Table S6 in Supporting information).This may be due to the reinforced oxidizability of?OH under acidic conditions[37–39].However,when pH value is too low,the formation of?OH will be suppressed[40,41]and the high concentration of H+may result in side reaction of hydrogen evolution(HER)[42].At pH 8.0 and 10.0,kENRare 9.98 and 13.5 min?1,respectively,due to the slightly decrease of oxidizability of?OH under alkaline conditions[43].Meanwhile,studies have shown that DDVP becomes more active and prone to hydrolysis under alkaline conditions than under neutral conditions,depending on its pKavalue[39].The degradation of AZX on HiPIMS-PtTi30 anode was also carried out under different current densities.The variation of AZX removal efficiency against reaction time is shown in Fig.S4 in Supporting information,as well as the kinetic parameters(Table S6 in Supporting information).When the current density increases from 6 mA/cm2to 60 mA/cm2,the degradation efficiency of AZX raised from 3.89 min?1to 41.81 min?1in 1 h.The removal efficiency reaches 91%as well.Obviously,the yields of reactive oxygen species(ROS)are reinforced dramatically under higher exchange current density[23].The energy consumption of AZX increases with the increase of the current density within 6–48 mA/cm2(Fig.S4c in Supporting information).However,when the current density was 60 mA/cm2,the energy consumption dropped,due to the lower power applied to the degradation of AZX[39].AZX cyclic electrolysis experiment was carried out on the four anodes to test stability of Pt/Ti anode(Fig.S5 in Supporting information).Although the Pt coating of EP-PtTi spalled in different degrees after the strengthening life test,the catalytic effect did not fluctuate greatly.

    Fig.4.Potential reaction pathway of DDVP(a)and AZX(b)in electrocatalytic system.

    The electron spin-resonance spectroscopy(ESR)for ROS generated during the electrocatalysis reaction is shown in Fig.3a.There was not only 4-oxo-2,2,6,6-tetramethyl-1-peridinoxy(TEMPO)produced by1O2in the system but also the production of?OH.The peak strength ratio of?OH was 1:2:2:1,corresponding to the spin adduct DMPO-?OH[44].Also,?O2?was captured by DMPO in methanol solution,and six typical peaks of DMPO-?O2?signal appeared on ESR.Therefore,it can be assumed that ROS in the electrocatalysis system mainly included?OH,1O2and?O2?,acting together to degrade the typical pesticide in water.The production of?OH on the surface of four Pt/Ti anodes was measured.As shown in Fig.3b,the yield of?OH concentration prepared by magnetron sputtering(HiPIMS-PtTi30,HiPIMS-PtTi120)was higher than that by electroplating(EP-PtTi30,EP-PtTi120).When the current density was 60 mA/cm2,the cumulative concentration on each anode within 30 min conformed to the quasi-zero order reaction kinetics[44].

    In an electrocatalytic reaction,the formation process of?O2?is relatively complex,mainly concluding two reactions.One reaction is?OH and H2O molecules are anodically adsorbed and oxidized to form?OH(Eq.1),then the quenching reaction between?OH takes place to form?O2?(Eq.2)[45].The other is the reduction of O2adsorbed on cathode to generate?O2?(Eq.3)[44].Therefore,the production of?O2?does not conform to the pseudo-first-order kinetics.Fig.3c shows that?O2?was produced in all four electrocatalysis systems,and the yield efficiency fluctuated.Meanwhile,the1O2concentrations on the four anodes gradually decreased with reaction processing(Fig.3d)due to the furfural alcohol was destroyed by the stronger oxidants than1O2.

    In a Pt/Ti electrocatalysis reaction,?OH has the strongest oxidation capacity,which plays a dominating role in the electrocatalytic degradation of pesticide pollutants[46].Based on the identification of intermediates,DDVP can be transformed into trimethyl phosphate,formic acid and acetic acid,and then these intermediates will be further decomposed into small molecular inorganic substances[47].There are four main reaction pathways(Fig.4a),where pathways 2 and 4 are direct oxidation.The anodic adsorption of DDVP occurs redox reaction through electrons gain and loss.Pathways 1 and 3 are indirect electrocatalytic oxidation processes dominated by?OH.DDVP is eventually degraded into inorganic small molecules such as CO2,H2O,PO43–.

    AZX is structurally stable and requires a high positive potential to launch the redox reaction[47].The degradation of AZX is mainly through the oxidation of aromatics and alkylaromatics,that is,the solvent in the system promotes the nucleophilic attack of electron-deficient carbon atoms,which leads to the formation of substitution products.Fig.4b shows two main possible mechanisms.Firstly,AZX loses electrons to form radicals(pathways 1 and 2 take place at different reaction sites).By reacting with proton(H+),radicals are formed and the formation of carbocation is promoted[48].In the presence of polar solvents,the carbocation is vulnerable to nucleophilic attack,generating four intermediate products.Some intermediates may exist stably in the system,and others may be further oxidized to small molecules[47,49].

    In summary,the catalytic degradation activity of Pt/Ti anodes prepared by magnetron sputtering method for DDVP and AZX is significantly better than those prepared by electroplating.Evidentially,thekENRof HiPIMS-PtTi30 anode for DDVP and AZX was 35.7 min?1and 41.3 min?1,higher than that on EP-Pt/Ti by 2.46 and 3.47 times,respectively.Ti substrate is also firmly bonded with Pt coating,which results in more adsorption sites for?OH under polarization conditions,and higher production of hydroxyl radical(?OH).Based on the analyses of the degradation mechanism of DDVP and AZX,two reaction pathways involving direct oxidization,indirect oxidization,electron transfer,and hydrolysis are proposed.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.21777009),Beijing Natural Science Foundation(No.8182031).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.031.

    99精品久久久久人妻精品| 亚洲欧美一区二区三区黑人| 嫩草影院精品99| 九九热线精品视视频播放| 一个人观看的视频www高清免费观看| 国产成人aa在线观看| 国产aⅴ精品一区二区三区波| 久久久久免费精品人妻一区二区| 女人高潮潮喷娇喘18禁视频| 国产一区二区在线av高清观看| 国产精品,欧美在线| 精品不卡国产一区二区三区| 亚洲av电影在线进入| 国产真实伦视频高清在线观看 | 久久久久久国产a免费观看| 久久久久久国产a免费观看| a级毛片a级免费在线| 极品教师在线免费播放| 女人十人毛片免费观看3o分钟| 亚洲精品影视一区二区三区av| 日本一二三区视频观看| 在线免费观看不下载黄p国产 | 中文字幕熟女人妻在线| 青草久久国产| 国产精品电影一区二区三区| 又粗又爽又猛毛片免费看| 亚洲精品美女久久久久99蜜臀| 亚洲精品久久国产高清桃花| 两个人视频免费观看高清| 精品无人区乱码1区二区| 脱女人内裤的视频| 国产爱豆传媒在线观看| 长腿黑丝高跟| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 一区二区三区高清视频在线| 成人特级av手机在线观看| 国产欧美日韩一区二区精品| a级一级毛片免费在线观看| 成人特级黄色片久久久久久久| 九九久久精品国产亚洲av麻豆| 成人午夜高清在线视频| 欧美中文综合在线视频| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 国产亚洲精品久久久com| 制服人妻中文乱码| 亚洲电影在线观看av| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 99热精品在线国产| 一区二区三区高清视频在线| www.999成人在线观看| 国内毛片毛片毛片毛片毛片| 成人国产综合亚洲| 麻豆成人av在线观看| 成人国产一区最新在线观看| 日韩欧美国产一区二区入口| 91字幕亚洲| 精品人妻1区二区| 高清日韩中文字幕在线| 亚洲精华国产精华精| 99久国产av精品| aaaaa片日本免费| 黄色女人牲交| 国产免费av片在线观看野外av| 九色成人免费人妻av| 亚洲精品美女久久久久99蜜臀| a级毛片a级免费在线| 最近视频中文字幕2019在线8| 久久久精品欧美日韩精品| 搡老妇女老女人老熟妇| 18禁裸乳无遮挡免费网站照片| 成人性生交大片免费视频hd| 婷婷丁香在线五月| 尤物成人国产欧美一区二区三区| 天堂影院成人在线观看| 桃色一区二区三区在线观看| 国产单亲对白刺激| 亚洲国产日韩欧美精品在线观看 | 国产av不卡久久| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 性色avwww在线观看| 淫秽高清视频在线观看| 欧美又色又爽又黄视频| 又粗又爽又猛毛片免费看| 午夜福利欧美成人| 亚洲熟妇中文字幕五十中出| 亚洲av一区综合| 青草久久国产| 久久久国产成人精品二区| 午夜激情欧美在线| 伊人久久大香线蕉亚洲五| 亚洲一区二区三区不卡视频| 亚洲第一欧美日韩一区二区三区| www国产在线视频色| 欧美一级a爱片免费观看看| 久久精品国产综合久久久| 99视频精品全部免费 在线| 欧美日韩黄片免| 十八禁网站免费在线| 日韩亚洲欧美综合| 亚洲国产日韩欧美精品在线观看 | 非洲黑人性xxxx精品又粗又长| 97超碰精品成人国产| 亚洲精品,欧美精品| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 免费观看在线日韩| 最近视频中文字幕2019在线8| 亚洲成人一二三区av| 国产欧美日韩精品一区二区| 性插视频无遮挡在线免费观看| 少妇猛男粗大的猛烈进出视频 | 国产综合懂色| 久久久久久九九精品二区国产| 久久久久久国产a免费观看| 三级毛片av免费| 中国美白少妇内射xxxbb| 深夜a级毛片| 69av精品久久久久久| 丝瓜视频免费看黄片| 在线天堂最新版资源| 亚洲熟妇中文字幕五十中出| 久热久热在线精品观看| 成年女人看的毛片在线观看| 最近视频中文字幕2019在线8| 黄色欧美视频在线观看| 国产免费福利视频在线观看| 国产精品精品国产色婷婷| 国产美女午夜福利| 国产视频内射| 高清日韩中文字幕在线| 亚洲18禁久久av| www.色视频.com| 国产黄a三级三级三级人| 一本一本综合久久| 国产精品蜜桃在线观看| 欧美一级a爱片免费观看看| 18禁动态无遮挡网站| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| 美女国产视频在线观看| 男女国产视频网站| 熟女人妻精品中文字幕| 午夜精品一区二区三区免费看| 色尼玛亚洲综合影院| 中文资源天堂在线| 久久久亚洲精品成人影院| 国产成人精品婷婷| 两个人视频免费观看高清| 国产中年淑女户外野战色| 精品国内亚洲2022精品成人| 人妻夜夜爽99麻豆av| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 亚洲欧美一区二区三区国产| 国产乱来视频区| 欧美高清性xxxxhd video| 国产午夜精品论理片| 你懂的网址亚洲精品在线观看| 久久久久精品久久久久真实原创| 国产探花极品一区二区| 热99在线观看视频| 国产黄色视频一区二区在线观看| 又爽又黄a免费视频| 国产白丝娇喘喷水9色精品| 午夜福利网站1000一区二区三区| 国产精品福利在线免费观看| 亚洲综合色惰| 亚洲内射少妇av| 97在线视频观看| 欧美另类一区| 综合色丁香网| 婷婷色麻豆天堂久久| 黑人高潮一二区| 免费大片18禁| 亚洲国产色片| 老女人水多毛片| 22中文网久久字幕| 天天躁日日操中文字幕| 欧美xxxx黑人xx丫x性爽| 国语对白做爰xxxⅹ性视频网站| 丰满少妇做爰视频| 能在线免费观看的黄片| 欧美3d第一页| 免费观看精品视频网站| 欧美+日韩+精品| 免费观看av网站的网址| www.av在线官网国产| 1000部很黄的大片| 亚洲国产精品专区欧美| 国产精品爽爽va在线观看网站| 国内精品宾馆在线| 真实男女啪啪啪动态图| .国产精品久久| 一级片'在线观看视频| 亚洲精品第二区| 十八禁网站网址无遮挡 | 精品不卡国产一区二区三区| 亚洲国产精品sss在线观看| 欧美性感艳星| 男人和女人高潮做爰伦理| 如何舔出高潮| 大又大粗又爽又黄少妇毛片口| 亚洲色图av天堂| www.色视频.com| 亚洲综合精品二区| 成人美女网站在线观看视频| 男的添女的下面高潮视频| 97在线视频观看| 国产精品美女特级片免费视频播放器| av专区在线播放| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 久久人人爽人人片av| 免费看不卡的av| 国内少妇人妻偷人精品xxx网站| 色综合站精品国产| 秋霞在线观看毛片| a级一级毛片免费在线观看| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 最近视频中文字幕2019在线8| av免费在线看不卡| 99久久中文字幕三级久久日本| 丝袜美腿在线中文| 亚洲精品日本国产第一区| 在线观看人妻少妇| 久久久久久久久久久免费av| 欧美bdsm另类| 国产av国产精品国产| 超碰97精品在线观看| 成人一区二区视频在线观看| 中文天堂在线官网| 日韩大片免费观看网站| 国产免费视频播放在线视频 | 亚洲av日韩在线播放| 久久久久久久久大av| 久久99热这里只频精品6学生| 少妇人妻精品综合一区二区| 一级毛片aaaaaa免费看小| 国产女主播在线喷水免费视频网站 | 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 国产午夜精品论理片| 国产精品国产三级专区第一集| 又粗又硬又长又爽又黄的视频| 最近中文字幕高清免费大全6| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 亚洲18禁久久av| 欧美xxxx性猛交bbbb| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 色吧在线观看| 在线免费十八禁| 伦精品一区二区三区| 黄片wwwwww| 婷婷色综合www| 日韩欧美一区视频在线观看 | 欧美bdsm另类| 国产精品久久久久久av不卡| 国产91av在线免费观看| 国产白丝娇喘喷水9色精品| 在线免费观看的www视频| 2021少妇久久久久久久久久久| 天堂av国产一区二区熟女人妻| 蜜臀久久99精品久久宅男| 在线观看免费高清a一片| 国产在视频线在精品| 大话2 男鬼变身卡| 国产国拍精品亚洲av在线观看| 国产中年淑女户外野战色| 日本熟妇午夜| 亚洲一级一片aⅴ在线观看| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 亚洲自拍偷在线| 日本猛色少妇xxxxx猛交久久| 乱系列少妇在线播放| 一级毛片aaaaaa免费看小| 日本与韩国留学比较| 午夜亚洲福利在线播放| 高清毛片免费看| 亚洲精品乱码久久久久久按摩| 午夜老司机福利剧场| 天天一区二区日本电影三级| 亚洲av一区综合| 日韩欧美一区视频在线观看 | 观看免费一级毛片| 日日撸夜夜添| 色尼玛亚洲综合影院| 日本色播在线视频| 国产69精品久久久久777片| 纵有疾风起免费观看全集完整版 | 亚洲性久久影院| 国产亚洲午夜精品一区二区久久 | 你懂的网址亚洲精品在线观看| 丝袜美腿在线中文| 色综合色国产| 一二三四中文在线观看免费高清| 一个人看视频在线观看www免费| 男女国产视频网站| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 免费黄频网站在线观看国产| 亚洲国产精品专区欧美| 伊人久久国产一区二区| 亚洲伊人久久精品综合| 蜜桃亚洲精品一区二区三区| 亚洲自拍偷在线| 少妇人妻精品综合一区二区| 日韩精品青青久久久久久| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 久久久久久久久久久免费av| 亚洲国产精品成人综合色| 特级一级黄色大片| 精品一区在线观看国产| 国产成人午夜福利电影在线观看| or卡值多少钱| 中文资源天堂在线| 久久久成人免费电影| 蜜臀久久99精品久久宅男| 97超视频在线观看视频| 亚洲国产色片| 亚洲无线观看免费| 亚洲自偷自拍三级| 天堂网av新在线| 在线免费观看的www视频| 国产乱人偷精品视频| 成人国产麻豆网| 中文字幕制服av| 97人妻精品一区二区三区麻豆| 少妇人妻精品综合一区二区| 2022亚洲国产成人精品| 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| 久99久视频精品免费| 永久网站在线| 在现免费观看毛片| 国内精品美女久久久久久| 午夜免费激情av| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| 免费大片黄手机在线观看| 一级毛片久久久久久久久女| 麻豆成人av视频| 一级毛片久久久久久久久女| 亚洲最大成人中文| 久久6这里有精品| 99re6热这里在线精品视频| 中国国产av一级| 亚洲欧美成人精品一区二区| 一级二级三级毛片免费看| 国产又色又爽无遮挡免| a级毛片免费高清观看在线播放| 免费看日本二区| 亚洲国产成人一精品久久久| 国产探花在线观看一区二区| 亚洲欧美精品专区久久| 韩国高清视频一区二区三区| 街头女战士在线观看网站| 久久久久精品性色| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品成人久久小说| 91午夜精品亚洲一区二区三区| 成人性生交大片免费视频hd| 91久久精品电影网| 麻豆乱淫一区二区| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| av黄色大香蕉| 97超视频在线观看视频| 成年女人在线观看亚洲视频 | 国精品久久久久久国模美| 伊人久久精品亚洲午夜| 日日摸夜夜添夜夜爱| 伦理电影大哥的女人| 女人十人毛片免费观看3o分钟| 女人久久www免费人成看片| 国产精品久久久久久av不卡| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 国产免费一级a男人的天堂| 久久久久精品性色| 国产av在哪里看| 女人被狂操c到高潮| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 天堂影院成人在线观看| 一级片'在线观看视频| 久久这里有精品视频免费| av一本久久久久| 尾随美女入室| 91在线精品国自产拍蜜月| 国产探花极品一区二区| 六月丁香七月| 国产免费福利视频在线观看| 午夜激情欧美在线| 97人妻精品一区二区三区麻豆| 中文字幕免费在线视频6| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 亚洲成人一二三区av| 亚洲精品亚洲一区二区| 在线 av 中文字幕| 人体艺术视频欧美日本| 亚洲av一区综合| 欧美97在线视频| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 欧美最新免费一区二区三区| 国产黄片视频在线免费观看| 国产亚洲精品av在线| 欧美精品国产亚洲| 国产日韩欧美在线精品| 久久99热这里只有精品18| 亚洲精品国产av蜜桃| 亚洲成人中文字幕在线播放| 久久久久久久国产电影| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 亚洲av成人av| 成年av动漫网址| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 国产av在哪里看| 国产单亲对白刺激| 最新中文字幕久久久久| 国产在视频线在精品| 久久久久久久久久黄片| 日韩电影二区| 嫩草影院精品99| 99re6热这里在线精品视频| 两个人视频免费观看高清| 精品酒店卫生间| 午夜福利视频精品| 99视频精品全部免费 在线| 日本一二三区视频观看| 国内少妇人妻偷人精品xxx网站| 亚洲成人久久爱视频| 国产av在哪里看| 91精品国产九色| 少妇丰满av| 色尼玛亚洲综合影院| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产日韩欧美精品在线观看| 久久99热这里只频精品6学生| 色综合色国产| 美女cb高潮喷水在线观看| 边亲边吃奶的免费视频| 成年免费大片在线观看| 五月伊人婷婷丁香| 中文在线观看免费www的网站| 亚洲av福利一区| 秋霞伦理黄片| 免费看美女性在线毛片视频| www.av在线官网国产| 能在线免费看毛片的网站| 纵有疾风起免费观看全集完整版 | 国产白丝娇喘喷水9色精品| 精品久久久精品久久久| 国产爱豆传媒在线观看| 免费看av在线观看网站| 久久久久久久久大av| 欧美潮喷喷水| 欧美日韩视频高清一区二区三区二| 亚洲最大成人中文| 最近手机中文字幕大全| 男的添女的下面高潮视频| 成年免费大片在线观看| 草草在线视频免费看| 国产 一区 欧美 日韩| 一级片'在线观看视频| 欧美日本视频| 国产av国产精品国产| 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| av免费观看日本| 亚洲av在线观看美女高潮| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人 | 特级一级黄色大片| 一区二区三区免费毛片| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的 | videossex国产| 日本黄大片高清| 韩国av在线不卡| 欧美日韩精品成人综合77777| 直男gayav资源| 国产国拍精品亚洲av在线观看| 中文资源天堂在线| 好男人视频免费观看在线| 两个人的视频大全免费| 国产精品伦人一区二区| 最近最新中文字幕免费大全7| 国产在线男女| 亚洲国产精品成人综合色| 亚洲欧美精品自产自拍| 色视频www国产| 菩萨蛮人人尽说江南好唐韦庄| 青春草视频在线免费观看| 国产精品女同一区二区软件| 亚洲av二区三区四区| 午夜精品在线福利| 亚洲自拍偷在线| 天堂影院成人在线观看| 精品一区在线观看国产| 亚洲色图av天堂| 国产片特级美女逼逼视频| 亚洲欧美精品专区久久| 国产色爽女视频免费观看| 日韩强制内射视频| 一个人看的www免费观看视频| 男人爽女人下面视频在线观看| 午夜日本视频在线| 欧美成人午夜免费资源| 亚洲欧洲日产国产| 国产精品一区二区三区四区免费观看| 老司机影院成人| 久久久午夜欧美精品| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 看黄色毛片网站| 一个人观看的视频www高清免费观看| 亚洲av日韩在线播放| 久久草成人影院| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕av成人在线电影| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 成人毛片60女人毛片免费| 国产片特级美女逼逼视频| 亚洲欧美精品专区久久| 天堂网av新在线| 两个人视频免费观看高清| 91久久精品电影网| 日本三级黄在线观看| 亚洲最大成人av| 一级毛片黄色毛片免费观看视频| 色视频www国产| 亚洲av免费在线观看| 一个人看视频在线观看www免费| 久久久色成人| av免费观看日本| 美女被艹到高潮喷水动态| av卡一久久| 久久精品人妻少妇| 亚洲精品一区蜜桃| 欧美一区二区亚洲| 成年女人看的毛片在线观看| 晚上一个人看的免费电影| 一级a做视频免费观看| 国产精品一区二区在线观看99 | 国产精品99久久久久久久久| 老司机影院成人| 男女下面进入的视频免费午夜| 小蜜桃在线观看免费完整版高清| 午夜老司机福利剧场| 亚洲欧美日韩无卡精品| 国产免费又黄又爽又色| 两个人视频免费观看高清| 日韩一本色道免费dvd| 国产在线一区二区三区精| 18禁在线播放成人免费| 三级国产精品欧美在线观看| 亚洲久久久久久中文字幕| 国产高清国产精品国产三级 | 精品酒店卫生间| 免费黄色在线免费观看| 在线免费观看的www视频| 亚洲最大成人中文| 狂野欧美白嫩少妇大欣赏| 免费电影在线观看免费观看| 天天一区二区日本电影三级| 国产黄色视频一区二区在线观看| 七月丁香在线播放| 天天一区二区日本电影三级| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 久久久国产一区二区| 亚洲成色77777| 美女高潮的动态| 床上黄色一级片| 亚洲激情五月婷婷啪啪| 国产色爽女视频免费观看| 国精品久久久久久国模美| 国产黄色免费在线视频| 亚洲av成人精品一区久久| av在线播放精品| 日韩欧美 国产精品| 精品人妻一区二区三区麻豆| 免费大片18禁| 精品人妻偷拍中文字幕| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 欧美高清成人免费视频www| 免费观看的影片在线观看| 国内揄拍国产精品人妻在线| 免费av观看视频|