• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode

    2023-01-30 06:49:14YuxinZengSiyoZhngLifengYinYunrongDi
    Chinese Chemical Letters 2022年12期

    Yuxin Zeng ,Siyo Zhng ,Lifeng Yin,*,Yunrong Di

    a School of Environment,Beijing Normal University,Beijing 10 0875,China

    b School of Water Resources and Environment,China University of Geosciences(Beijing),Beijing 100083,China

    Keywords:Electrocatalysis Magnetron sputtering Pesticide Degradation mechanism Dichlorvos Azoxystrobin

    ABSTRACT The increasing occurrence of pesticide micropollutants highlights the need for innovative water treatment technologies,particularly for small-community and household applications.Electro-oxidation is being widely studied in this area,unfortunately,safe,stable and efficient electrocatalytic anodes without released heavy metal ions are still highly required.In this study,we fabricated a Pt/Ti anode by high energy pulse magnetron sputtering(HiPIMS-PtTi)which was used to decompose dichlorvos(DDVP)and azoxystrobin(AZX)in water.The results show that the reaction rate constant(k ENR)on HIPIMS was 35.7 min–1(DDVP)and 41.3 min–1(AZX),respectively,superior to electroplating Pt/Ti anode(EP-PtTi).The identification of radicals(?OH,1O2,?O2?)and micro-area analyses evidenced that Pt atoms were embedded into the TiO2 lattice on the surface of Ti plate by high-energy ions,which resulted in more adsorbed hydroxyls,and higher production of?OH under polarization conditions.Besides,the electro-oxidation intermediates of DDVP and AZX were identified and the degradation pathways were speculated:(1)indirect oxidation dominated by?OH attack,and(2)direct electron transfer reaction of pesticides on the anode surface.The cooperated reactions achieve the complete degradation and highly efficient mineralization of DDVP and AZX.

    The increasing usage of pesticides in the field of agricultural cultivation has been found to be a significant risk to water supplies[1,2].More than 90%of pesticides used are released to the aqueous environment by leaching and surface runoff[3].For examples,the residues of organophosphorus pesticides such as dichlorvos(DDVP)may lead to respiratory failure,delayed neuropathy and endocrine disorders[4].More than 70%of strobilurins pesticides such as azoxystrobin(AZX)were leached into the environment by rainfall,posing a potential threat to human health and the ecological environment[5].Pesticide residues can accumulate along with food chain,which may cause a long-lasting effect on ecosystems[6].Closely related to daily life,it is difficult to completely remove pesticide residues on the surface of vegetables and fruits by rinsing.Therefore,how to rapidly and efficiently clarify the pesticide residues and eliminate the threat to human health is an important scientific issue.

    Electrocatalysis has been widely applied to treat the pesticidecontaminated water[7–10].The removal efficiency of boron-doped diamond(BDD)anode for various pesticides can reach above 90%[11–14].Dimensionally stable anodes(DSA),such as Ti/SnO2-Sb/Ce-PbO2anode,can also degrade 2,4,5-trichlorophenoxyacetic acid and benzophenone effectively[15–18].Unfortunately,BDD anode is too expensive for practical application.As for traditional DSA anode,the Sn4+,Pb2+,Sb3+and other non-noble metal ions are potentially released from the surface and lead to the secondary pollutions and health problems[19–21].By contrast,noble metal anodes(NMAs)take advantage of low toxicity,high conductivity,and oxidation resistance[21–23].Among NMAs,Pt/Ti composite anodes are used more on laboratory due to strong tolerance and high plasticity[24,25].However,the traditional electroplating Pt/Ti anodes usually have low efficiency and short lifetime,which is caused by the weak binding between Pt and Ti substrate[26,27].Generally,the Pt/Ti anodes will lose their electrocatalytic activity in several weeks,even in several days under the actual working conditions.

    In this study,we fabricated Pt/Ti anodes by high energy pulse magnetron sputtering(HiPIMS-PtTi),and electroplating processes(EP-PtTi)as a comparison(Materials and methods in Supporting information),and named them after their processing time(min).The surface structures of four Ti-based modified anodes were observed under scanning electron microscope(SEM,Fig.S2 in Supporting information).The surfaces of HiPIMS-PtTi30 and HiPIMSPtTi120 prepared by magnetron sputtering show more ravines and gullies.The uneven structures are obviously generated by the oxalic acid etching of Ti plate.The Pt/Ti anode prepared by HiPIMS is still a pristine place.In other words,the HiPIMS results in the Pt atoms implanted into the crystalline of the Ti plates and integrated with them together to improve the adhesion between the coating and the substrate,and thus ensures the coating attached tightly to the metal surface[28,29].While the EP-PtTi30 and EPPtTi120 prepared by electroplating show smoother surfaces.More particles and compact structures were observed.Based on the statistical calculation of the surface particle size,it is found that the particle sizes of HiPIMS-PtTi30 are 5–10 nm,and the average size is about 7 nm.While the particles on HiPIMS-PtTi120 are similar but bigger,with an average size of 8.5 nm.As for EP-PtTi30 and EP-PtTi120,the average particle size is about 15 nm and 18 nm,respectively.

    The crystal structures of four anodes were investigated by X-ray diffraction(XRD,Fig.1a).The diffraction peaks at 2θ=35.1°,38.4°,40.2°,53.0°and 70.7°correspond to the(110),(101),(200),(102)and(103)crystal planes of Ti.The diffraction peaks of HiPIMSPtTi30 and HiPIMS-PtTi120 anodes at 2θ=39.9°and 46.4°correspond to the(111)and(201)crystal planes of Pt,respectively,with the spacing distances of 0.226 nm and 0.196 nm.As shown in Fig.1a,the Pt coatings grow along with the(111)crystal plane orientation,indicating typical face-centered cubic crystals were formed on four anodes[4,5].The Pt on HiPIMS-PtTi30,HiPIMSPtTi120,EP-PtTi30 and EP-PtTi120 were identified as PDFs#89–7382,70–2057,87–0640 and 87–0640,respectively,indicating that the Pt crystal structures were slightly different.The average diameters of Pt particles in HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120 anodes are 5.7 nm,8.4 nm,13.5 nm and 20.2 nm,respectively,calculated by Scherrer formula and half peak width of Pt(111)diffraction peak.These results are consistent with that of SEM.The size of Pt particles prepared by electroplating was larger than that by magnetron sputtering.Under a high current density,the cathodic polarization will be enhanced,so the sizes of Pt particle are reinforced[30].

    The X-ray photoelectron spectroscopies(XPS)of four Pt/Ti anodes are shown in Fig.1b.It is also inferred that Pt was uniformly loaded onto the surface of Ti matrix,forming a stable metal coating[31].The Pt on four anode surfaces was further critically scanned and fitted by deconvolution,as shown in Figs.1c-f.The Pt 4f binding energies corresponding to the two maximum absorption peaks of HiPIMS-PtTi30 anode are 71.8 eV and 75.0 eV,respectively.The binding energies of metallic Pt are mainly 71.7–71.9 eV(4f7/2)and 74.8–75.0 eV(4f5/2),while those of oxidized Pt are higher[32].Therefore,it can be concluded that the main existing form of Pt in HiPIMS-PtTi30 anode is the metallic state.Comparing the peak positions of Pt 4f prepared by two methods(Table S3 in Supporting information),the 4f7/2peaks in HiPIMS-PtTi30 and HiPIMS-PtTi120 are split into duet and triplet,and slightly redshift,which may be due to the Pt particles on the HiPIMS-PtTi surface prepared by magnetron sputtering had higher dispersion and were partially oxidized[32,33].

    The oxygen evolution potentials(OEP)of four anodes were tested by linear voltammetry.The linear sweep voltammetry(LSV)curves were obtained under the scanning voltage range of 0–2.0 V,as shown in Fig.1g.The OEPs of HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120 were 1.42 V,1.48 V,1.52 V,and 1.55 V(vs.Ag/AgCl),respectively.The higher OEP effectively expands potential windows for the degradation of organic pesticides in water[34–36].The similarly OEPs indicated that the ability of these four electrodes to occur oxygen evolution side reaction is equivalent.Meanwhile,Fig.1h shows that the impedance values of three electrodes are low,indicating that the conductivity of HiPIMS-PtTi30 and EP-PtTi30 are good.

    The degradation of DDVP and AZX on different Pt/Ti anodes was evaluated as shown in Fig.2.On HiPIMS-PtTi30 anode,removal efficiency of DDVP and AZX reached 88.2%and 91.7%respectively within 1 h.By applying pseudo-first-order kinetics model(Eq.S1 in Supporting information),the removal kinetics of AZX and DDVP by four anodes shows significant linear relationship(Figs.2b and d).As shown in Table S4(Supporting information),the degradation efficiency constant(kENR)on HiPIMS-PtTi30 for DDVP is 35.7 min?1,which is 2.04,1.59 and 2.46 times of HiPIMS-PtTi120,EPPtTi30 and EP-PtTi120,respectively.ThekENRon HiPIMS-PtTi30 for AZX is 41.3 min?1,which is 3.36,1.07 and 3.47 times of HiPIMS-PtTi120,EP-PtTi30 and EP-PtTi120,respectively.Furthermore,HiPIMS-PtTi30 possesses the highest quantum efficiency for the degradation of pesticides,which is consistent with the results of the above discussion(Table S5 in Supporting information).

    Fig.2.Electrocatalytic degradation of DDVP(a,b)and AZX(c,d)on HiPIMS-PtTi30,HiPIMS-PtTi120,EP-PtTi30,EP-PtTi120,and the effects of pH on degradation of DDVP(e,f)on HiPIMS-PtTi30.Current density 60 mA/cm2;[Na2SO4]=22.5 mmol/L,d=2 mm,[DDVP]0 and[AZX]0 10 mg/L;reaction volume:500 mL.

    Fig.3.(a)Electron spin resonance detection results of ROS.The law of?OH(b),?O2?(c)and 1 O2(d)production on four anodes.

    The effects of pH on the degradation of DDVP([DDVP]0=10 mg/L)by HiPIMS-PtTi30 were investigated at pH 2.0,4.0,7.0,8.0 and 10.0.The DDVP degradation efficiency was measured and fitted by first-order kinetics.The results are shown in Figs.2e and f.At pH 4.0,kENRis the highest(35.5 min?1),which is 7.8 times higher than that under neutral conditions(Table S6 in Supporting information).This may be due to the reinforced oxidizability of?OH under acidic conditions[37–39].However,when pH value is too low,the formation of?OH will be suppressed[40,41]and the high concentration of H+may result in side reaction of hydrogen evolution(HER)[42].At pH 8.0 and 10.0,kENRare 9.98 and 13.5 min?1,respectively,due to the slightly decrease of oxidizability of?OH under alkaline conditions[43].Meanwhile,studies have shown that DDVP becomes more active and prone to hydrolysis under alkaline conditions than under neutral conditions,depending on its pKavalue[39].The degradation of AZX on HiPIMS-PtTi30 anode was also carried out under different current densities.The variation of AZX removal efficiency against reaction time is shown in Fig.S4 in Supporting information,as well as the kinetic parameters(Table S6 in Supporting information).When the current density increases from 6 mA/cm2to 60 mA/cm2,the degradation efficiency of AZX raised from 3.89 min?1to 41.81 min?1in 1 h.The removal efficiency reaches 91%as well.Obviously,the yields of reactive oxygen species(ROS)are reinforced dramatically under higher exchange current density[23].The energy consumption of AZX increases with the increase of the current density within 6–48 mA/cm2(Fig.S4c in Supporting information).However,when the current density was 60 mA/cm2,the energy consumption dropped,due to the lower power applied to the degradation of AZX[39].AZX cyclic electrolysis experiment was carried out on the four anodes to test stability of Pt/Ti anode(Fig.S5 in Supporting information).Although the Pt coating of EP-PtTi spalled in different degrees after the strengthening life test,the catalytic effect did not fluctuate greatly.

    Fig.4.Potential reaction pathway of DDVP(a)and AZX(b)in electrocatalytic system.

    The electron spin-resonance spectroscopy(ESR)for ROS generated during the electrocatalysis reaction is shown in Fig.3a.There was not only 4-oxo-2,2,6,6-tetramethyl-1-peridinoxy(TEMPO)produced by1O2in the system but also the production of?OH.The peak strength ratio of?OH was 1:2:2:1,corresponding to the spin adduct DMPO-?OH[44].Also,?O2?was captured by DMPO in methanol solution,and six typical peaks of DMPO-?O2?signal appeared on ESR.Therefore,it can be assumed that ROS in the electrocatalysis system mainly included?OH,1O2and?O2?,acting together to degrade the typical pesticide in water.The production of?OH on the surface of four Pt/Ti anodes was measured.As shown in Fig.3b,the yield of?OH concentration prepared by magnetron sputtering(HiPIMS-PtTi30,HiPIMS-PtTi120)was higher than that by electroplating(EP-PtTi30,EP-PtTi120).When the current density was 60 mA/cm2,the cumulative concentration on each anode within 30 min conformed to the quasi-zero order reaction kinetics[44].

    In an electrocatalytic reaction,the formation process of?O2?is relatively complex,mainly concluding two reactions.One reaction is?OH and H2O molecules are anodically adsorbed and oxidized to form?OH(Eq.1),then the quenching reaction between?OH takes place to form?O2?(Eq.2)[45].The other is the reduction of O2adsorbed on cathode to generate?O2?(Eq.3)[44].Therefore,the production of?O2?does not conform to the pseudo-first-order kinetics.Fig.3c shows that?O2?was produced in all four electrocatalysis systems,and the yield efficiency fluctuated.Meanwhile,the1O2concentrations on the four anodes gradually decreased with reaction processing(Fig.3d)due to the furfural alcohol was destroyed by the stronger oxidants than1O2.

    In a Pt/Ti electrocatalysis reaction,?OH has the strongest oxidation capacity,which plays a dominating role in the electrocatalytic degradation of pesticide pollutants[46].Based on the identification of intermediates,DDVP can be transformed into trimethyl phosphate,formic acid and acetic acid,and then these intermediates will be further decomposed into small molecular inorganic substances[47].There are four main reaction pathways(Fig.4a),where pathways 2 and 4 are direct oxidation.The anodic adsorption of DDVP occurs redox reaction through electrons gain and loss.Pathways 1 and 3 are indirect electrocatalytic oxidation processes dominated by?OH.DDVP is eventually degraded into inorganic small molecules such as CO2,H2O,PO43–.

    AZX is structurally stable and requires a high positive potential to launch the redox reaction[47].The degradation of AZX is mainly through the oxidation of aromatics and alkylaromatics,that is,the solvent in the system promotes the nucleophilic attack of electron-deficient carbon atoms,which leads to the formation of substitution products.Fig.4b shows two main possible mechanisms.Firstly,AZX loses electrons to form radicals(pathways 1 and 2 take place at different reaction sites).By reacting with proton(H+),radicals are formed and the formation of carbocation is promoted[48].In the presence of polar solvents,the carbocation is vulnerable to nucleophilic attack,generating four intermediate products.Some intermediates may exist stably in the system,and others may be further oxidized to small molecules[47,49].

    In summary,the catalytic degradation activity of Pt/Ti anodes prepared by magnetron sputtering method for DDVP and AZX is significantly better than those prepared by electroplating.Evidentially,thekENRof HiPIMS-PtTi30 anode for DDVP and AZX was 35.7 min?1and 41.3 min?1,higher than that on EP-Pt/Ti by 2.46 and 3.47 times,respectively.Ti substrate is also firmly bonded with Pt coating,which results in more adsorption sites for?OH under polarization conditions,and higher production of hydroxyl radical(?OH).Based on the analyses of the degradation mechanism of DDVP and AZX,two reaction pathways involving direct oxidization,indirect oxidization,electron transfer,and hydrolysis are proposed.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.21777009),Beijing Natural Science Foundation(No.8182031).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.031.

    亚洲av不卡在线观看| 99热这里只有精品一区| 久久久久九九精品影院| 97在线视频观看| 91av网一区二区| ponron亚洲| 精品不卡国产一区二区三区| 色5月婷婷丁香| 欧美一级a爱片免费观看看| 欧美日韩亚洲高清精品| 色视频www国产| 日韩 亚洲 欧美在线| 2021少妇久久久久久久久久久| 一夜夜www| 亚洲av电影在线观看一区二区三区 | 色播亚洲综合网| 久久久精品欧美日韩精品| 国产 亚洲一区二区三区 | 国产午夜精品久久久久久一区二区三区| 大话2 男鬼变身卡| 亚洲电影在线观看av| 成年版毛片免费区| 内射极品少妇av片p| 国产又色又爽无遮挡免| 成人欧美大片| 亚洲精品一区蜜桃| 亚洲精品乱码久久久v下载方式| 99热全是精品| 97精品久久久久久久久久精品| 18禁裸乳无遮挡免费网站照片| 91精品伊人久久大香线蕉| 青青草视频在线视频观看| or卡值多少钱| 国产黄a三级三级三级人| 丰满人妻一区二区三区视频av| 日韩中字成人| 午夜福利高清视频| 色尼玛亚洲综合影院| 久久6这里有精品| 久久99蜜桃精品久久| 啦啦啦韩国在线观看视频| 久久久久九九精品影院| 国产 亚洲一区二区三区 | 熟妇人妻久久中文字幕3abv| 久久人人爽人人片av| 国产精品三级大全| 国产午夜福利久久久久久| 老师上课跳d突然被开到最大视频| 91在线精品国自产拍蜜月| 亚洲av中文av极速乱| 成人综合一区亚洲| 亚洲va在线va天堂va国产| 在线观看一区二区三区| 免费大片黄手机在线观看| 建设人人有责人人尽责人人享有的 | 精品国内亚洲2022精品成人| 最近最新中文字幕大全电影3| av黄色大香蕉| 蜜桃久久精品国产亚洲av| 晚上一个人看的免费电影| 国产黄色视频一区二区在线观看| 亚洲综合精品二区| 亚洲国产最新在线播放| 男女视频在线观看网站免费| 日韩av在线大香蕉| 色播亚洲综合网| 少妇猛男粗大的猛烈进出视频 | 偷拍熟女少妇极品色| 亚洲精品国产成人久久av| 夫妻午夜视频| 一级a做视频免费观看| 亚洲精品色激情综合| 免费电影在线观看免费观看| 亚洲国产av新网站| 免费播放大片免费观看视频在线观看| www.色视频.com| 精品一区二区免费观看| 男人舔女人下体高潮全视频| 日本午夜av视频| 久久精品久久久久久噜噜老黄| 婷婷六月久久综合丁香| 亚洲国产精品sss在线观看| 街头女战士在线观看网站| freevideosex欧美| 男人舔奶头视频| 婷婷色麻豆天堂久久| 国产黄频视频在线观看| 免费看a级黄色片| 国产极品天堂在线| 亚洲精品乱码久久久久久按摩| 男女边摸边吃奶| 神马国产精品三级电影在线观看| 日韩av在线免费看完整版不卡| 日韩精品青青久久久久久| 亚洲精品自拍成人| 亚洲精品aⅴ在线观看| 成人毛片a级毛片在线播放| 国产永久视频网站| 91午夜精品亚洲一区二区三区| 只有这里有精品99| av国产免费在线观看| 精品久久久久久久久亚洲| 国产 一区精品| 日韩中字成人| 日韩制服骚丝袜av| 美女黄网站色视频| 2018国产大陆天天弄谢| 欧美一区二区亚洲| 亚洲av一区综合| 免费大片18禁| 91在线精品国自产拍蜜月| 国产免费视频播放在线视频 | 久久久久久久亚洲中文字幕| 99热这里只有是精品50| 成年女人在线观看亚洲视频 | 亚洲在线自拍视频| 欧美97在线视频| 天堂av国产一区二区熟女人妻| 波多野结衣巨乳人妻| 亚洲无线观看免费| 91狼人影院| 久久久久国产网址| 三级经典国产精品| 日本-黄色视频高清免费观看| 成人毛片a级毛片在线播放| 国产黄色免费在线视频| 亚洲熟女精品中文字幕| 久久久成人免费电影| 色吧在线观看| 国产亚洲91精品色在线| 有码 亚洲区| 久久久精品欧美日韩精品| 国产综合精华液| 国产av国产精品国产| av卡一久久| 好男人在线观看高清免费视频| 亚洲精品成人av观看孕妇| 免费看日本二区| av黄色大香蕉| a级一级毛片免费在线观看| 中文资源天堂在线| 国产精品一区二区三区四区免费观看| 国产男女超爽视频在线观看| 永久免费av网站大全| 日韩精品青青久久久久久| eeuss影院久久| 在线免费观看的www视频| 少妇的逼好多水| 国产精品爽爽va在线观看网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲高清免费不卡视频| 春色校园在线视频观看| 中文乱码字字幕精品一区二区三区 | 丰满少妇做爰视频| 国产精品一区www在线观看| a级毛色黄片| 99久国产av精品| 乱码一卡2卡4卡精品| 亚洲三级黄色毛片| 亚洲性久久影院| 欧美最新免费一区二区三区| 久久久久久久久久久免费av| 在线天堂最新版资源| 日韩av在线免费看完整版不卡| 美女大奶头视频| 精品一区二区免费观看| 精品久久久久久久久av| 欧美性感艳星| 69av精品久久久久久| 一本一本综合久久| 亚洲欧美一区二区三区国产| 国产v大片淫在线免费观看| 亚洲久久久久久中文字幕| av女优亚洲男人天堂| 视频中文字幕在线观看| 美女黄网站色视频| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区在线观看99 | 九九爱精品视频在线观看| 午夜精品在线福利| 久久99热这里只频精品6学生| 美女国产视频在线观看| 国产精品福利在线免费观看| 亚洲欧美精品自产自拍| 日韩国内少妇激情av| 久久精品熟女亚洲av麻豆精品 | 成人综合一区亚洲| 一个人看视频在线观看www免费| 九九在线视频观看精品| 国产极品天堂在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人人妻人人看人人澡| 高清午夜精品一区二区三区| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久末码| 99热全是精品| av在线老鸭窝| 亚洲在久久综合| 精品国产露脸久久av麻豆 | 有码 亚洲区| 欧美成人a在线观看| 最近的中文字幕免费完整| 欧美成人午夜免费资源| 美女被艹到高潮喷水动态| 日本熟妇午夜| 中文天堂在线官网| 草草在线视频免费看| 中国国产av一级| 99久久精品国产国产毛片| 婷婷色av中文字幕| 日韩视频在线欧美| 白带黄色成豆腐渣| 2022亚洲国产成人精品| 国产成人91sexporn| 日本av手机在线免费观看| 五月天丁香电影| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 国产不卡一卡二| 嫩草影院精品99| 在现免费观看毛片| 成年av动漫网址| 91狼人影院| 国产高潮美女av| 亚洲综合色惰| 亚洲av一区综合| 精品人妻熟女av久视频| 又爽又黄a免费视频| 日日摸夜夜添夜夜添av毛片| 高清午夜精品一区二区三区| 美女主播在线视频| 久久久精品94久久精品| 日本一二三区视频观看| 女人被狂操c到高潮| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99 | 久久精品综合一区二区三区| 一个人观看的视频www高清免费观看| 少妇熟女欧美另类| 天堂网av新在线| 夜夜爽夜夜爽视频| 国产精品不卡视频一区二区| 日本免费在线观看一区| 国产三级在线视频| 国产女主播在线喷水免费视频网站 | 国产精品综合久久久久久久免费| 看非洲黑人一级黄片| 丰满乱子伦码专区| 2021少妇久久久久久久久久久| 中文字幕免费在线视频6| 亚洲av中文字字幕乱码综合| 在线天堂最新版资源| 26uuu在线亚洲综合色| 激情五月婷婷亚洲| 一本一本综合久久| 日日啪夜夜爽| 国产亚洲精品av在线| 三级国产精品欧美在线观看| av免费在线看不卡| 91在线精品国自产拍蜜月| 亚洲精品第二区| 秋霞伦理黄片| 精品国产露脸久久av麻豆 | 亚洲av一区综合| 精品人妻熟女av久视频| 观看免费一级毛片| 国产精品1区2区在线观看.| 久久99蜜桃精品久久| 亚洲最大成人av| 一本一本综合久久| 极品少妇高潮喷水抽搐| 亚洲成色77777| 日韩精品有码人妻一区| 一级毛片电影观看| 在线免费十八禁| 日本一本二区三区精品| 三级经典国产精品| 久久精品久久久久久噜噜老黄| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在| 国内揄拍国产精品人妻在线| 国产黄色小视频在线观看| 最近的中文字幕免费完整| 国产日韩欧美在线精品| 欧美三级亚洲精品| av免费在线看不卡| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 久久久欧美国产精品| 91久久精品电影网| 777米奇影视久久| 18禁裸乳无遮挡免费网站照片| 成人亚洲精品av一区二区| 少妇熟女aⅴ在线视频| 日产精品乱码卡一卡2卡三| 国产成人福利小说| av女优亚洲男人天堂| 国产淫语在线视频| 永久网站在线| 高清av免费在线| 成人av在线播放网站| 国产色婷婷99| 日本-黄色视频高清免费观看| 亚洲av.av天堂| 国产精品久久视频播放| 亚洲av电影不卡..在线观看| 久久久久国产网址| 亚洲欧美日韩无卡精品| 69av精品久久久久久| 丝瓜视频免费看黄片| 免费无遮挡裸体视频| 少妇丰满av| 精品久久久久久久末码| 别揉我奶头 嗯啊视频| 网址你懂的国产日韩在线| 哪个播放器可以免费观看大片| 免费大片18禁| 干丝袜人妻中文字幕| 99re6热这里在线精品视频| 亚洲欧美精品专区久久| 在线观看美女被高潮喷水网站| 18禁动态无遮挡网站| 欧美不卡视频在线免费观看| 男人舔女人下体高潮全视频| 亚洲婷婷狠狠爱综合网| videos熟女内射| 国产熟女欧美一区二区| 色综合亚洲欧美另类图片| 成人无遮挡网站| 国产在视频线在精品| 你懂的网址亚洲精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 天堂俺去俺来也www色官网 | av在线蜜桃| 国产亚洲91精品色在线| 亚洲国产色片| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 又粗又硬又长又爽又黄的视频| 亚洲国产色片| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 欧美性感艳星| 亚洲精品中文字幕在线视频 | 秋霞在线观看毛片| 亚洲无线观看免费| av免费观看日本| 男女视频在线观看网站免费| 亚洲国产精品国产精品| 欧美日韩一区二区视频在线观看视频在线 | 超碰97精品在线观看| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 少妇猛男粗大的猛烈进出视频 | 国产精品蜜桃在线观看| 人妻制服诱惑在线中文字幕| 亚洲怡红院男人天堂| 亚洲最大成人手机在线| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 99九九线精品视频在线观看视频| 嘟嘟电影网在线观看| 少妇高潮的动态图| 免费电影在线观看免费观看| 精品欧美国产一区二区三| 国产激情偷乱视频一区二区| 婷婷色麻豆天堂久久| 日韩成人av中文字幕在线观看| 欧美日韩亚洲高清精品| 夫妻性生交免费视频一级片| 色吧在线观看| av女优亚洲男人天堂| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品久久午夜乱码| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品福利在线免费观看| 在线观看免费高清a一片| 老师上课跳d突然被开到最大视频| 我的老师免费观看完整版| 狂野欧美激情性xxxx在线观看| 干丝袜人妻中文字幕| 女人久久www免费人成看片| 人妻夜夜爽99麻豆av| 国产高清不卡午夜福利| 免费看a级黄色片| 2018国产大陆天天弄谢| 精品欧美国产一区二区三| 亚洲精品一二三| 亚洲av成人精品一二三区| 国内精品宾馆在线| 亚洲精华国产精华液的使用体验| 亚洲欧美日韩无卡精品| 久久韩国三级中文字幕| 国产综合懂色| ponron亚洲| 久久6这里有精品| 精品久久久噜噜| 国产av在哪里看| av卡一久久| 日韩电影二区| 97人妻精品一区二区三区麻豆| 亚洲高清免费不卡视频| 成人欧美大片| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 18+在线观看网站| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 亚洲精品中文字幕在线视频 | 2021少妇久久久久久久久久久| 亚洲国产日韩欧美精品在线观看| 最新中文字幕久久久久| 大香蕉97超碰在线| 免费av观看视频| 精品一区二区免费观看| 久久精品夜色国产| 伊人久久精品亚洲午夜| 日韩大片免费观看网站| 韩国av在线不卡| 国产高清不卡午夜福利| 搡老乐熟女国产| 久久久久久久大尺度免费视频| 全区人妻精品视频| 精品一区在线观看国产| 别揉我奶头 嗯啊视频| 中文天堂在线官网| 色播亚洲综合网| 可以在线观看毛片的网站| 深夜a级毛片| 男人爽女人下面视频在线观看| 国产精品99久久久久久久久| 在线免费观看的www视频| 99热这里只有是精品在线观看| 国产老妇女一区| 超碰av人人做人人爽久久| 久久这里有精品视频免费| 久久亚洲国产成人精品v| 国产永久视频网站| 国产国拍精品亚洲av在线观看| 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 九草在线视频观看| eeuss影院久久| 国产高清有码在线观看视频| 99热6这里只有精品| 少妇的逼水好多| 日韩av不卡免费在线播放| 日韩欧美三级三区| 国产亚洲av嫩草精品影院| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| 国产av在哪里看| 狂野欧美激情性xxxx在线观看| 国产精品美女特级片免费视频播放器| 日韩视频在线欧美| 精品熟女少妇av免费看| 国产成人免费观看mmmm| 97热精品久久久久久| 国产91av在线免费观看| 熟妇人妻久久中文字幕3abv| 欧美日韩在线观看h| 成人无遮挡网站| 内射极品少妇av片p| 中文精品一卡2卡3卡4更新| 99热全是精品| 日韩欧美一区视频在线观看 | 看非洲黑人一级黄片| 亚洲精品日本国产第一区| 成年版毛片免费区| 搡老乐熟女国产| 国产成人精品一,二区| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区| 搡老妇女老女人老熟妇| 国产欧美日韩精品一区二区| 久久久久精品久久久久真实原创| 久久人人爽人人片av| 国产熟女欧美一区二区| 欧美激情在线99| a级一级毛片免费在线观看| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 日本黄大片高清| 97热精品久久久久久| 国产探花极品一区二区| 色哟哟·www| 观看免费一级毛片| 亚洲欧美成人综合另类久久久| 国产中年淑女户外野战色| 精品国产露脸久久av麻豆 | 成年免费大片在线观看| 亚洲av日韩在线播放| 卡戴珊不雅视频在线播放| 日韩成人伦理影院| av又黄又爽大尺度在线免费看| 99久久人妻综合| 亚洲国产精品sss在线观看| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| 国内少妇人妻偷人精品xxx网站| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 日韩强制内射视频| 一级爰片在线观看| 国产精品久久久久久精品电影| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 2021少妇久久久久久久久久久| 亚洲色图av天堂| 超碰av人人做人人爽久久| 免费av观看视频| 国产av不卡久久| 中文在线观看免费www的网站| 久久精品夜夜夜夜夜久久蜜豆| 韩国高清视频一区二区三区| 亚洲精品aⅴ在线观看| 日本欧美国产在线视频| 国产精品1区2区在线观看.| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 久久久久久久午夜电影| 久久久久久久亚洲中文字幕| 日本wwww免费看| 中文字幕亚洲精品专区| 亚洲精品,欧美精品| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站 | 久久久久精品性色| 国产精品久久久久久久电影| 国产免费视频播放在线视频 | 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 九色成人免费人妻av| 欧美97在线视频| 亚洲国产欧美在线一区| 在线观看人妻少妇| 精品一区二区免费观看| 高清毛片免费看| 精品国产三级普通话版| 极品教师在线视频| 纵有疾风起免费观看全集完整版 | 欧美日韩亚洲高清精品| 亚洲国产精品sss在线观看| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 午夜精品在线福利| 日韩国内少妇激情av| 中文精品一卡2卡3卡4更新| 成人鲁丝片一二三区免费| 三级经典国产精品| 色哟哟·www| 欧美高清性xxxxhd video| 一区二区三区高清视频在线| av在线播放精品| av专区在线播放| 搡女人真爽免费视频火全软件| 久久久久网色| 伦精品一区二区三区| 国产精品人妻久久久影院| 久久草成人影院| 午夜福利网站1000一区二区三区| 美女xxoo啪啪120秒动态图| 九九爱精品视频在线观看| 日韩av不卡免费在线播放| 国产精品久久久久久av不卡| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆| 秋霞在线观看毛片| 国产有黄有色有爽视频| 日本av手机在线免费观看| 特级一级黄色大片| 日日干狠狠操夜夜爽| 国产黄片美女视频| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 男人和女人高潮做爰伦理| 亚洲欧美精品专区久久| 国产淫片久久久久久久久| 国产高潮美女av| 51国产日韩欧美| 日韩一本色道免费dvd| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 亚洲av成人精品一二三区| 天堂影院成人在线观看| 美女黄网站色视频| 联通29元200g的流量卡| 夫妻午夜视频| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 成人高潮视频无遮挡免费网站| 国产免费视频播放在线视频 | 久久97久久精品| 国产白丝娇喘喷水9色精品| 欧美xxxx黑人xx丫x性爽| 日本免费在线观看一区|