• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tetracycline sensitizes TiO2 for visible light photocatalytic degradation via ligand-to-metal charge transfer

    2023-01-30 06:49:24CaidieQinJuanjuanTangRuxiaQiaoSijieLin
    Chinese Chemical Letters 2022年12期

    Caidie Qin,Juanjuan Tang ,Ruxia Qiao ,Sijie Lin,*

    a College of Environmental Science and Engineering,Biomedical Multidisciplinary Innovation Research Institute,Shanghai East Hospital,Tongji University,Shanghai 200092,China

    b Key Laboratory of Yangtze River Water Environment,Shanghai Institute of Pollution Control and Ecological Security,Tongji University,Shanghai 200092,China

    Keywords:Ligand-to-metal charge transfer sensitization Tetracycline TiO2 Photocatalytic degradation Antibiotic resistance gene

    ABSTRACT Treatment of antibiotics contaminated water remains a global environmental challenge.In this study,tetracycline(TC)was found to effectively sensitize pure TiO2 for visible light photocatalytic degradation via a ligand-to-metal charge transfer mechanism.The sensitization was attributed to the formation of TC-TiO2 complex and the overlap of the molecular orbitals of TC and the conduction band of TiO2.The intermediate degradation products of TC,however,did not sensitize TiO2,which was the reason for the low mineralization rate.Nevertheless,our results showed that the intermediate degradation products of TC had significantly reduced bactericidal effects and less induction of antibiotic-resistance genes(ARGs).This study showcases an effective treatment of antibiotics-containing wastewater using the most common photocatalyst TiO2 with reduced risk in the spread of ARGs.

    Tetracycline(TC)and TC antibiotics are heavily used to treat bacterial infections in humans and animals.Since TC are usually not fully absorbed and more than half of them are released into the environment,it remains an environmental challenge to address the risk of antibiotics owing to their retained biological activity[1].Studies have suggested that the accumulation of TC in wastewater treatment plant lowers the effectiveness of microbial treatment process and leads to the promotion of resistant strains[2].The continuous release of TC into aquatic environment further promotes the evolution of antibiotic resistance and exerts detrimental effects to the untargeted organisms[3,4].Therefore,it is essential to explore effective treatment technology meanwhile to evaluate their side effects,e.g.,promotion of antibiotic resistance.

    In recent years,photocatalytic technology based on visible light-responsive semiconductor has been widely recognized as one of the most promising strategies to solve the increasingly serious environmental problems[5].In order to improve the photocatalytic performance of semiconductors,different heterojunction structures have been widely studied in the fields of photocatalysis,photoelectrochemistry and so on[6–8].Titanium dioxide(TiO2),the mostly studied photocatalyst has limited practical application due to the inability to be activated by visible light[9].By contrast,sensitization has recently emerged as an effective strategy as it does not require additional equipment or material modification[10–12].Among various sensitization methods,ligand-metal charge transfer(LMCT)enhances the visible light reactivity of TiO2through the formation of ligand-TiO2complexes[12].Although there were some studies mentioned the sensitization effect of antibiotics[13–15],the underlining mechanism was not yet clear to allow us to take full advantages of such sensitization strategy.

    Not only the formation of TC-TiO2complex,but the overlap between the molecular orbitals of TC(i.e.,the highest occupied molecular orbital(HOMO)and lowest occupied molecular orbital(LUMO))and the conduction band(CB)of TiO2could play a critical role in facilitating the electron transfer between TC and TiO2.To validate this hypothesis,we set out to explore the sensitization effect of TC to TiO2,the resulted visible-light activated photocatalytic degradation,and the extent of mineralization.The bactericidal effects and the potential to induce antibiotic resistance genes of the degradation products were also evaluated.Other typical antibiotics,i.e.,norfloxacin(NOR)and sulfisoxazole(SSX)were selected for comparison purpose.

    Fig.1.(A)Photocatalytic degradation of TC by pure TiO2 under different wavelengths:λ>420 nm,λ>470 nm,andλ>510 nm.(B)TOC removal efficiency of TC under visible light irradiation with TiO2.Conditions:[TiO2]=0.5 g/L,[TC]0=10 mg/L,and pH 5.5,λ>420 nm.(C)UV–vis absorbance spectra of pure TiO2,TC-TiO2,TC-NaF-TiO2,and the TC degradation products(named as TC-D-P)-TiO2 complex powders.(D)Effect of fluorides on removal efficiency of TC with pure TiO2 under visible light irradiations.Conditions:[TiO2]=0.5 g/L,[TC]0=10 mg/L,[NaF]=0.1 mol/L,and pH 5.5,λ>420 nm.(E)Full UPS spectrum of TiO2.(F)Frontier electron densities of LUMO and HOMO of TC.

    Degussa P25 was used in this study to represent the most common TiO2,with typical transmission electron microscopic image and X-ray diffraction pattern shown in Fig.S1(Supporting information).Adsorption under dark after 60 min exhibited approximately 40%of TC(10 mg/L)being adsorbed by TiO2(0.5 g/L)(Fig.1A).The following photocatalytic degradation upon light irradiation at different wavelengths(i.e.,λ>420 nm,λ>470 nm,andλ>510 nm)showed an increasing trend of degradation efficacies with decreasing wavelengths.Interestingly,even with the irradiation wavelength well into the visible range,TiO2still displayed a significant degradation compared to the effect of visible light alone(Fig.S2A in Supporting information).These results suggested that the adsorption of TC on TiO2rendered the complex responsive to visible light,which could be attributed to the LMCT sensitization mechanism.However,with a clear degradation observed,the extent of total organic carbon(TOC)removal remained 35%?40%(Fig.1B),showing limited extent of mineralization.Similar phenomena were also observed in the case of SSX and NOR,where both antibiotics could sensitize TiO2but with little success in complete mineralization(Figs.S2B-D in Supporting information).

    To verify the formation of TC-TiO2complex played a key role in the resulted sensitization,the ultraviolet-visible(UV–vis)absorbance spectra of TC-TiO2complex was obtained.As Fig.1C and Fig.S3A(Supporting information)showed,TC-TiO2complex had clear light absorbance in the visible range(λ>420 nm)while the pure TiO2and antibiotics only absorbed in the UV region.Pretreatment of NaF that prevented the adsorption of TC on the surface of TiO2resulted no visible light absorbance,confirming that the visible light responsiveness was a result of TC-TiO2complex formation.This was consistent with previous studies that showed fluoride preferentially adsorbed on the surface of TiO2and inhibited the adsorption of other molecules[16].In addition,NaF also led to a significantly reduced degradation of TC,a consequence of the reduced visible light responsiveness(Fig.1D).Consistently,pretreatment of NaF to TiO2also significantly reduced the sensitization effects of SSX and NOR antibiotics(Figs.S3B-D in Supporting information).

    In order to demonstrate that the energy state overlap between the HOMO/LUMO of the antibiotics and the CB of TiO2determines the occurrence of sensitization,the CB and valence band(VB)levels of TiO2were measured using ultraviolet photoelectron spectroscopy(UPS).Based on the UPS spectrum of TiO2(Fig.1E),theEcutvalue was 16.7 eV and the estimated Fermi level(EF)value was?4.52 eV[17].The distance from EF to the VB level(EVB)was approximately 3.2 eV,and the band edge ofEVBwas?7.72 eV[18].As the calculated TiO2bandgap was 3.0 eV based on the UV–vis absorbance measurement(Fig.1C),the CB level(ECB)of the TiO2used in this study was?4.72 eV.Using discrete Fourier transform calculation,the HOMO and LUMO values of TC were?6.35 and?2.16 eV,respectively(Fig.1F).The details of the molecular orbital of SSX and NOR were summarized in Figs.S3E,F and Table S2(Supporting information).These results confirmed that the HOMO/LUMO of the antibiotics did overlap with the CB of TiO2,hence allowing the electron to flow from the antibiotics to the TiO2upon adsorption to facilitate the LMCT sensitization.

    Fig.2.ESR spectra of pure TiO2 and the TC-TiO2 complex under visible light irradiations,(A)?O2?,(B)h+,and(C)?OH.Conditions:[TiO2]=0.5 g/L,[DMPO]=50 mmol/L,[TEMPO]=50 mmol/L,andλ>420 nm.(D)Effects of TBA(1 mmol/L),N2(introducing time 10 min)or EDTA-2Na(1 mmol/L)on degradation of TC under visible light irradiations.Condition:[TiO2]=0.5 g/L,[TC]0=10 mg/L,pH 5.5,andλ>420 nm.

    To further investigate the degradation process of TC upon LMCT sensitization,the generation of reactive oxygen species,including superoxide(?O2?)radicals,hydroxyl(?OH)radicals,and photogenerated hole(h+)under visible light(λ>420 nm)irradiation was identified using electron spin resonance(ESR)spectroscopy.5,5-Dimethy-1-pyrrolineN-oxide(DMPO)and 2,2,6,6-tetramethylpiperidine 1-oxyl(TEMPO)were used as trapping agents.The results revealed that?O2?was generated in all three types of antibiotic-TiO2complexes(Fig.2A and Fig.S4A in Supporting information).As Fig.2B and Fig.S4B(Supporting information)showed,the signal from the antibiotic-TiO2complexes upon visible light irradiation decreased,indicating that h+was generated in the system,resulting in TEMPO being oxidized toN-oxoammonium salt[19,20].However,the sensitization process did not produce?OH(Fig.2C and Fig.S4C in Supporting information).To clarify the main radicals involved in the degradation of the antibiotics,EDTA disodium salt(EDTA-2Na),isopropanol(IPA),and N2were used to quench h+,?OH,and?O2?,respectively.It is worth mentioning that a LMCT complex could be formed between EDTA-2Na and TiO2[11].But due to the adsorption of antibiotics on TiO2surface,the impact of EDTA-2Na on the sensitization was limited.The results showed that N2had the most significant effect on the degradation rate,indicating that?O2?played a vital role in the degradation reaction of the three antibiotics(Fig.2D and Fig.S5 in Supporting information).In addition,the degradation efficiency of the antibiotics decreased after the addition of EDTA-2Na,indicating that h+also played a minor role in this process.However,the addition of IPA had no significant effect on the degradation of the antibiotics,confirming that?OH was not involved in the degradation mechanism,consistent with the ESR results.This was in contrast to the UV-activated scenario,where?OH was the main radicals produced by TiO2(Fig.S6 in Supporting information)[21].

    Despite the clear evidence on the LMCT between antibiotics and TiO2,the question that remained to be answered was the low TOC removal rate.To assess whether the sensitization effect still existed after TC degradation occurred,solution containing the degradation product(TC-D-P)after visible light irradiation for 120 min was filtered and mixed with uncoated TiO2for 1 h in the dark.The resulted mixture was subjected to UV–vis and ESR characterizations.The light absorbance spectrum of the mixture showed no absorbance in the visible light range,similar to that of pure TiO2(Fig.1C,red line).Similar phenomena were also observed in the case of SSX and NOR antibiotics(Figs.S3B and C).The ESR spectra revealed that the key radical O2?that facilitated the photocatalytic degradation was no longer generated in the mixture of TC degraded products with TiO2(Fig.S7 in Supporting information).

    To further understand the photocatalytic degradation process,the degradation products of TC were identified using highperformance liquid chromatography with tandem mass spectrometry(HPLC-MS).The possible TC degradation pathways were summarized in Fig.S8(Supporting information)[11].Upon visible light irradiation,TC lost its hydroxyl and methyl groups at first[23,24].Subsequently,the loss of N dimethyl groups and the ring cleavage reactions occurred.Lastly,continued ring cleavage and hydroxylation resulted in products with a smallerm/z[23].The detailed spectral information of multiple degradation products with different mass to charge(m/z)was shown in Fig.S9(Supporting information).Previous studies proposed a more comprehensive degradation pathway analysis based on the radicals attacking mechanism of pollutantsviaDFT calculation with Fukui index and mass spectrometry data,which is helpful to determine the structure of the intermediates[25,26].

    Fig.3.Concentration-response curves of Bacillus subtilis treated with TC(A),SSX(B),and NOR(C)and their degradation products(20 h exposure).Conditions:[NOR]0=10 mg/L,[TC]0=10 mg/L,[SSX]0=10 mg/L,pH 7.0 and degradation time=120 min.(D)SYBR Green I/propidium iodide(PI)staining of the resistant and sensitive strains of Bacillus subtilis treated with various antibiotics and their degradation products to show the live/dead cell ratios.*indicates P<0.05 compared with antibiotic and its degradation product.Conditions:[NOR]0=0.25 mg/L(EC50),[TC]0=3 mg/L(EC50),[SSX]0=10 mg/L,and pH 7.0.Representative fluorescence microscopic images of Bacillus subtilis stained with SYBR Green I/PI exposed to(E)ethanol(positive control),(F)sodium chloride(negative control),(G)TC,(H)TC-D-P,(I)SSX,(J)SSX-D-P,(K)NOR,and(L)NOR-D-P.Dead bacteria in red and live bacteria in green.(M)The abundance of ARGs after the treatment of three antibiotics and their degradation products,respectively.Conditions:[NOR]0=10 mg/L,[TC]0=10 mg/L,[SSX]0=10 mg/L,and pH 7.0.

    Moreover,three degradation products proposed in Fig.S8 were selected to calculate their HOMO/LUMO orbitals(Table S3 and Fig.S10 in Supporting information).The results showed that the HOMO of the three degradation products was lower than that of TC,which made the photogenerated electrons easily recombined and could not be transferred to the CB of TiO2.This was also likely the reason why h+could be detected on the mixture of degradation products and TiO2(Fig.S7C).These results suggested that the LMCT sensitization no longer existed after the initial degradation of TC or other types of antibiotics,likely due to the incompatible energy state overlap or no adsorption/complex formation between the degradation products and TiO2.This result offered an explanation on why the photocatalytic degradation under visible light irradiation failed to proceed to further the mineralization.

    To depict a clearer picture,Scheme 1 summarized the mechanism of LMCT sensitization.The major steps involved in this LMCT sensitization was shown in Scheme 1A,including(1)the formation of a coordination complex between the antibiotics and TiO2,(2)the generation of electrons and h+viathe photoexcitation of the antibiotic molecules,(3)the transfer of the excited electrons to the CB of TiO2and the subsequent formation of?O2?radicals[22].The disappearance of LMCT sensitization effect was attributed to two reasons.One,there was a change in the antibiotic-TiO2interface as degradation proceeded,including the disappearance of the adsorption layer between the degraded products and TiO2,consequently,the mixture containing degraded products and TiO2exhibited no response to visible light(Scheme 1B).Second,the degradation products sensitized TiO2and produce photogenerated electron under the excitation of visible light;however,owing to the change in the molecular structure,the HOMO/LUMO of the degradation products was no longer matched with the CB of TiO2.As a result,the electrons failed to transfer but recombined with the h+(Scheme 1C).Due to the limited amount and the diversity of the intermediate products generated during photocatalytic degradation,the molecular structure of the main byproducts could not be accurately analyzed in this study.Further analysis on the intermediate products and calculation of their HOMO/LUMO orbitals would certainly help further understand the sensitization mechanism.

    Scheme 1.Proposed mechanism of TC degradation by TiO2 through LMCT sensitization.

    As previous studies reported,the antibiotic activity of TC depended on the linear arrangement of the four rings and the two chromophoric keto-enol systems[27].Based on the analysis of the degradation products,it was reasonable to expect that despite the low mineralization of TC,the degradation would result in reduced bactericidal effects.To verify,the degradation products of TC and the other two antibiotics were exposed toBacillus subtilisafter which fluorescence signals were recorded to determine the live/death ratio of the bacteria.Significant decrease in the inhibition rate of the degradation products of all three antibiotics was observed(Figs.3A-C).The live/dead ratios ofBacillus subtilisexposed to the degradation products were all significantly higher than the ones exposed to the antibiotics(Fig.3D).The representative fluorescence images of the bacteria were shown in Figs.3E-L.

    Another important aspect related to the environmental risk of antibiotics was its ability to induce antibiotic-resistance genes(ARGs).To this end,biomass collected from an anoxic tank in the Quyang wastewater treatment plant(Shanghai,China)was subjected to the exposure of antibiotic solution(10 mg/L)before and after photocatalytic degradation.Specific experimental method was summarized in Supporting information.The results revealed that the abundance of the ARGs of the biomass treated with the degradation products of TC and SSX decreased significantly(Fig.3M).However,the degradation products of NOR showed a higher induction of ARGs compared to the NOR.Similar trend was reported in other studies[28].It is speculated that although the molecular structure had changed,the NOR degradation products could still bind to the active site of DNA gyrase,and even with a greater binding affinity,resulting in an enhanced stimulation of resistance mutations.This was another important point for future investigations.

    In summary,our study demonstrated the visible light degradation performance of TC by TiO2viaa LMCT sensitization mechanism.The degree of sensitization was determined by the formation of a visible light responsive TC-TiO2complexviasurface adsorption and the overlap of HOMO/LOMO of TC and the CB of TiO2.Interestingly,only TC but not the degradation products had the sensitization effect.Although the photocatalytic degradation did not achieve high mineralization,the degradation products showed significantly reduced bactericidal effects and less induction of ARGs,except for NOR.This study provided a case study on the formation of LMCT complexes that initiated photocatalytic conversion or self-degradation.It also paved the way for an effective treatment of antibiotics-containing wastewater using the most common photocatalyst TiO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work received the financial support from the National Natural Science Foundation of China(No.21777116)and the Fundamental Research Funds for the Central Universities.We would like to express our gratitude to Professor Xia Siqing’s research group and Dr.Si Pang of the College of Environmental Science and Engineering of Tongji University for their assistance in the detection of antibiotic-resistance genes.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.067.

    精品久久久久久久久av| 91精品伊人久久大香线蕉| 一二三四中文在线观看免费高清| 最近中文字幕高清免费大全6| 国产av国产精品国产| 王馨瑶露胸无遮挡在线观看| 最近手机中文字幕大全| 18禁在线无遮挡免费观看视频| 性色avwww在线观看| 欧美xxxx性猛交bbbb| 干丝袜人妻中文字幕| 欧美高清性xxxxhd video| 亚洲久久久国产精品| 亚洲激情五月婷婷啪啪| 少妇人妻一区二区三区视频| 1000部很黄的大片| 午夜福利视频精品| 久久韩国三级中文字幕| 我要看黄色一级片免费的| 久久久色成人| 日本一二三区视频观看| 精品久久久精品久久久| 久久久色成人| a级一级毛片免费在线观看| 九九在线视频观看精品| 亚洲自偷自拍三级| 丝袜脚勾引网站| 夜夜爽夜夜爽视频| 99精国产麻豆久久婷婷| 亚洲av福利一区| 亚洲综合精品二区| 中文字幕免费在线视频6| 麻豆成人av视频| 国产极品天堂在线| 国产综合精华液| 少妇熟女欧美另类| 国产探花极品一区二区| 男女下面进入的视频免费午夜| 日本av手机在线免费观看| 日本黄色片子视频| 亚洲国产日韩一区二区| www.色视频.com| av卡一久久| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 国产亚洲av片在线观看秒播厂| 亚洲成色77777| 成人国产麻豆网| 91精品伊人久久大香线蕉| 久久久久久人妻| 精品少妇黑人巨大在线播放| 蜜臀久久99精品久久宅男| 成人特级av手机在线观看| 国产美女午夜福利| 99re6热这里在线精品视频| 国产精品无大码| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 免费大片黄手机在线观看| 欧美日韩在线观看h| 色视频在线一区二区三区| 国产亚洲一区二区精品| 伦理电影大哥的女人| 日韩伦理黄色片| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频 | 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 亚洲欧洲国产日韩| 六月丁香七月| 乱码一卡2卡4卡精品| 久久国产精品大桥未久av | 色视频在线一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 你懂的网址亚洲精品在线观看| 国产精品一区二区在线观看99| 性色av一级| 91精品伊人久久大香线蕉| 国产淫片久久久久久久久| 热re99久久精品国产66热6| 国产精品麻豆人妻色哟哟久久| 高清在线视频一区二区三区| 成人高潮视频无遮挡免费网站| 身体一侧抽搐| 亚洲精品日韩在线中文字幕| 看非洲黑人一级黄片| 一级a做视频免费观看| 一本久久精品| 秋霞在线观看毛片| 国产亚洲av片在线观看秒播厂| 国产精品不卡视频一区二区| 亚洲久久久国产精品| 大话2 男鬼变身卡| 婷婷色综合大香蕉| 久久人人爽人人爽人人片va| 久久精品久久精品一区二区三区| 人妻少妇偷人精品九色| 中文字幕免费在线视频6| av在线app专区| a级一级毛片免费在线观看| 亚洲成色77777| 久久99蜜桃精品久久| 久久精品久久久久久噜噜老黄| 久久久久人妻精品一区果冻| 久久久久久久久久久丰满| 亚洲电影在线观看av| 自拍欧美九色日韩亚洲蝌蚪91 | 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 亚洲精品乱久久久久久| 三级国产精品片| 亚洲性久久影院| 男女下面进入的视频免费午夜| 欧美日韩国产mv在线观看视频 | 美女xxoo啪啪120秒动态图| 国产无遮挡羞羞视频在线观看| 看免费成人av毛片| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 少妇高潮的动态图| 在线观看三级黄色| 极品教师在线视频| 亚洲第一区二区三区不卡| 2018国产大陆天天弄谢| 欧美 日韩 精品 国产| 国产黄片美女视频| 欧美国产精品一级二级三级 | 亚洲最大成人中文| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99| 亚洲自偷自拍三级| 香蕉精品网在线| 波野结衣二区三区在线| 免费av中文字幕在线| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 色吧在线观看| 麻豆精品久久久久久蜜桃| 亚洲久久久国产精品| 日韩制服骚丝袜av| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 欧美一区二区亚洲| 亚洲美女搞黄在线观看| 亚洲精品视频女| 校园人妻丝袜中文字幕| 精品亚洲成国产av| 国产黄频视频在线观看| 春色校园在线视频观看| 国产成人一区二区在线| 国产伦精品一区二区三区视频9| 日本一二三区视频观看| 中国美白少妇内射xxxbb| 又大又黄又爽视频免费| 51国产日韩欧美| 亚洲久久久国产精品| 日本vs欧美在线观看视频 | 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 精品人妻熟女av久视频| 最近中文字幕2019免费版| 精品久久久久久久久av| 国产爽快片一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 国国产精品蜜臀av免费| 高清毛片免费看| 国产成人精品久久久久久| 激情 狠狠 欧美| 亚洲精品国产av蜜桃| 最近中文字幕2019免费版| 成人特级av手机在线观看| 亚洲av不卡在线观看| 国产有黄有色有爽视频| 色视频在线一区二区三区| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 亚洲精品久久午夜乱码| 国产欧美日韩精品一区二区| 亚洲国产av新网站| 国产 精品1| 国产成人精品福利久久| 狂野欧美激情性xxxx在线观看| 在线亚洲精品国产二区图片欧美 | 色网站视频免费| 色哟哟·www| 特大巨黑吊av在线直播| 午夜福利高清视频| 91久久精品国产一区二区成人| 美女中出高潮动态图| 婷婷色麻豆天堂久久| 噜噜噜噜噜久久久久久91| 久久6这里有精品| 国产精品av视频在线免费观看| 青青草视频在线视频观看| 国产精品久久久久久精品电影小说 | 国产久久久一区二区三区| 国产淫语在线视频| 日韩,欧美,国产一区二区三区| 日本与韩国留学比较| 成人影院久久| 亚洲欧美日韩另类电影网站 | 22中文网久久字幕| 国产成人精品婷婷| 老司机影院成人| 日韩视频在线欧美| 大话2 男鬼变身卡| 亚洲国产欧美在线一区| 国产精品嫩草影院av在线观看| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 国产成人免费观看mmmm| 秋霞在线观看毛片| 成人毛片60女人毛片免费| 亚洲色图综合在线观看| 亚洲三级黄色毛片| 草草在线视频免费看| 精品人妻熟女av久视频| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频| 国产精品国产av在线观看| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| 深爱激情五月婷婷| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 热re99久久精品国产66热6| 亚洲第一区二区三区不卡| 日本爱情动作片www.在线观看| 男人添女人高潮全过程视频| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| 日韩欧美 国产精品| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 国产成人精品婷婷| 99热国产这里只有精品6| 国产老妇伦熟女老妇高清| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 日本欧美视频一区| 亚洲av.av天堂| 亚洲av综合色区一区| 男女免费视频国产| 欧美成人一区二区免费高清观看| 精品酒店卫生间| 精品久久国产蜜桃| 国产一区有黄有色的免费视频| 国产真实伦视频高清在线观看| 久久久色成人| 老司机影院毛片| 超碰av人人做人人爽久久| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 国产中年淑女户外野战色| 国产av精品麻豆| 嫩草影院新地址| 秋霞伦理黄片| 日日撸夜夜添| 直男gayav资源| 久久99精品国语久久久| 国产 精品1| 国产av码专区亚洲av| 国产黄片视频在线免费观看| 伦精品一区二区三区| 九色成人免费人妻av| 九九爱精品视频在线观看| 国产黄频视频在线观看| 免费在线观看成人毛片| 永久免费av网站大全| 国产成人a∨麻豆精品| 日韩成人伦理影院| 成人特级av手机在线观看| 亚洲国产毛片av蜜桃av| 最近最新中文字幕免费大全7| 国产v大片淫在线免费观看| 91久久精品电影网| 精品一区二区三区视频在线| 亚洲欧美一区二区三区黑人 | 老师上课跳d突然被开到最大视频| 一区在线观看完整版| 亚洲欧美一区二区三区国产| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av涩爱| 少妇的逼好多水| 在线观看人妻少妇| av免费在线看不卡| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 国产美女午夜福利| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 1000部很黄的大片| 中文乱码字字幕精品一区二区三区| 波野结衣二区三区在线| 国产精品久久久久久av不卡| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱| 成人特级av手机在线观看| 久久国产精品男人的天堂亚洲 | a级一级毛片免费在线观看| 黑人高潮一二区| 国产久久久一区二区三区| 日本午夜av视频| a级毛色黄片| 成人毛片a级毛片在线播放| 高清欧美精品videossex| 夫妻性生交免费视频一级片| 一区二区三区免费毛片| 色网站视频免费| 在线观看免费高清a一片| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 亚洲欧美日韩东京热| 久久ye,这里只有精品| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 高清毛片免费看| 日韩中字成人| 中文字幕制服av| 成人黄色视频免费在线看| 午夜激情福利司机影院| 午夜福利在线在线| 韩国高清视频一区二区三区| 国产精品成人在线| 性色av一级| 一区二区三区精品91| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 色网站视频免费| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 嫩草影院入口| 波野结衣二区三区在线| 一级毛片我不卡| 久久久久久久久久人人人人人人| 六月丁香七月| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 色综合色国产| 毛片一级片免费看久久久久| 国产精品.久久久| av在线播放精品| 精品少妇黑人巨大在线播放| 久久6这里有精品| 国产欧美亚洲国产| 免费观看无遮挡的男女| 精品酒店卫生间| 久久6这里有精品| 免费大片黄手机在线观看| 久久青草综合色| 国产成人freesex在线| 在线观看美女被高潮喷水网站| 亚洲无线观看免费| 久久精品久久精品一区二区三区| 女人久久www免费人成看片| 欧美zozozo另类| 亚洲中文av在线| av国产精品久久久久影院| 国产一区二区三区综合在线观看 | 日本免费在线观看一区| 最近手机中文字幕大全| 三级国产精品欧美在线观看| 欧美精品亚洲一区二区| 日日啪夜夜撸| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 最黄视频免费看| 香蕉精品网在线| 精品久久久久久久久亚洲| 18禁动态无遮挡网站| 国产一区二区在线观看日韩| 高清毛片免费看| 亚洲伊人久久精品综合| 国产日韩欧美在线精品| 麻豆国产97在线/欧美| 亚洲丝袜综合中文字幕| 男女国产视频网站| 99国产精品免费福利视频| 久久青草综合色| 精品酒店卫生间| 男男h啪啪无遮挡| 亚洲色图av天堂| 欧美成人a在线观看| h日本视频在线播放| 六月丁香七月| 成年美女黄网站色视频大全免费 | 午夜老司机福利剧场| 国产精品久久久久久久电影| 简卡轻食公司| 日本与韩国留学比较| 嘟嘟电影网在线观看| 日韩伦理黄色片| 直男gayav资源| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 一级a做视频免费观看| 人人妻人人看人人澡| 美女xxoo啪啪120秒动态图| 十八禁网站网址无遮挡 | 国产91av在线免费观看| 精品一区二区免费观看| 亚洲三级黄色毛片| 日韩强制内射视频| 在线精品无人区一区二区三 | 我的老师免费观看完整版| 国产淫片久久久久久久久| 男女边摸边吃奶| 久久精品久久久久久久性| 日韩中字成人| 国产精品国产av在线观看| 国产精品精品国产色婷婷| 国产在线视频一区二区| 成人无遮挡网站| 在线天堂最新版资源| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| 久久久久久久国产电影| 18禁裸乳无遮挡动漫免费视频| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 黄色配什么色好看| 我要看黄色一级片免费的| 欧美精品人与动牲交sv欧美| 久久精品久久久久久久性| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 日韩中文字幕视频在线看片 | 亚洲精品久久午夜乱码| 99精国产麻豆久久婷婷| 国产人妻一区二区三区在| 日日啪夜夜撸| 成年av动漫网址| 99热网站在线观看| 午夜免费观看性视频| 成人漫画全彩无遮挡| 国产成人精品福利久久| av不卡在线播放| 国产爱豆传媒在线观看| 美女视频免费永久观看网站| 国产精品一及| 少妇的逼水好多| 人人妻人人添人人爽欧美一区卜 | 深爱激情五月婷婷| 免费av不卡在线播放| 久久久色成人| 国产精品福利在线免费观看| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| 国产精品人妻久久久久久| av在线播放精品| 国产熟女欧美一区二区| 亚洲精品第二区| 少妇人妻一区二区三区视频| 涩涩av久久男人的天堂| 欧美另类一区| 黄色配什么色好看| 热99国产精品久久久久久7| 日韩av在线免费看完整版不卡| 久久热精品热| av女优亚洲男人天堂| 亚洲精品,欧美精品| 免费黄网站久久成人精品| 久久久久视频综合| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 国产永久视频网站| 久久久久久久大尺度免费视频| 丰满人妻一区二区三区视频av| 99久久精品一区二区三区| 校园人妻丝袜中文字幕| 伦理电影大哥的女人| 久久韩国三级中文字幕| 中文资源天堂在线| 我要看日韩黄色一级片| 日韩成人伦理影院| 欧美xxxx黑人xx丫x性爽| 欧美精品一区二区大全| 香蕉精品网在线| 各种免费的搞黄视频| 欧美高清成人免费视频www| 一区二区三区四区激情视频| 身体一侧抽搐| 亚洲精品456在线播放app| 色吧在线观看| 日韩成人伦理影院| 最后的刺客免费高清国语| 精品人妻偷拍中文字幕| 狠狠精品人妻久久久久久综合| 亚洲国产欧美在线一区| 内射极品少妇av片p| 一本久久精品| 只有这里有精品99| 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 岛国毛片在线播放| 亚洲国产色片| 日本色播在线视频| 黄色欧美视频在线观看| 国产黄片视频在线免费观看| 亚洲欧美一区二区三区黑人 | 日韩国内少妇激情av| 中文字幕精品免费在线观看视频 | 久久国产亚洲av麻豆专区| 夜夜看夜夜爽夜夜摸| 人妻系列 视频| 亚洲欧洲国产日韩| av视频免费观看在线观看| 高清不卡的av网站| 久久久久久九九精品二区国产| 女的被弄到高潮叫床怎么办| 高清av免费在线| 亚洲最大成人中文| 国产淫片久久久久久久久| 五月伊人婷婷丁香| 男女无遮挡免费网站观看| 啦啦啦中文免费视频观看日本| 日本黄大片高清| 婷婷色av中文字幕| 国产亚洲91精品色在线| 欧美激情极品国产一区二区三区 | 亚洲熟女精品中文字幕| 成人美女网站在线观看视频| 综合色丁香网| 亚洲av日韩在线播放| 91精品国产九色| 又粗又硬又长又爽又黄的视频| 在线精品无人区一区二区三 | 亚洲欧美精品专区久久| 亚洲人成网站高清观看| 亚洲精品久久午夜乱码| 午夜福利网站1000一区二区三区| 中文字幕制服av| 亚洲欧洲日产国产| .国产精品久久| 少妇熟女欧美另类| 色吧在线观看| 精品少妇黑人巨大在线播放| 国产老妇伦熟女老妇高清| 国产一区二区在线观看日韩| 日韩一区二区视频免费看| av在线播放精品| av网站免费在线观看视频| 欧美成人午夜免费资源| 狂野欧美激情性xxxx在线观看| 国产av精品麻豆| 色视频www国产| 五月玫瑰六月丁香| 黄色一级大片看看| 国产精品99久久99久久久不卡 | av国产免费在线观看| 免费人成在线观看视频色| 在线观看免费高清a一片| 日韩av在线免费看完整版不卡| 99久久人妻综合| 在线观看国产h片| 亚洲电影在线观看av| 91精品国产九色| 日本猛色少妇xxxxx猛交久久| 三级经典国产精品| 麻豆乱淫一区二区| 各种免费的搞黄视频| 亚洲最大成人中文| 国产黄色视频一区二区在线观看| 国产精品秋霞免费鲁丝片| 在线播放无遮挡| 国产在视频线精品| 国产 一区精品| 亚洲人成网站高清观看| 一区二区三区四区激情视频| 日韩av不卡免费在线播放| 极品少妇高潮喷水抽搐| 综合色丁香网| 欧美精品一区二区大全| 亚洲精品一区蜜桃| 少妇裸体淫交视频免费看高清| 纵有疾风起免费观看全集完整版| 亚洲不卡免费看| 狂野欧美激情性xxxx在线观看| 你懂的网址亚洲精品在线观看| 极品教师在线视频| 丰满乱子伦码专区| 亚洲电影在线观看av| 中文字幕制服av| 狂野欧美激情性xxxx在线观看| 欧美三级亚洲精品| 中文字幕免费在线视频6| 激情 狠狠 欧美| 男女免费视频国产| 老熟女久久久| 久久综合国产亚洲精品| 两个人的视频大全免费| 直男gayav资源| 观看美女的网站| 日韩人妻高清精品专区| 伊人久久国产一区二区| 天堂8中文在线网| 国产爱豆传媒在线观看| 乱码一卡2卡4卡精品| 一区二区三区四区激情视频| 国产黄色免费在线视频| 又黄又爽又刺激的免费视频.| 久久国产亚洲av麻豆专区| av在线观看视频网站免费| 国产成人精品一,二区| 天天躁日日操中文字幕| 只有这里有精品99|