• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydroxyl radical induced from hydrogen peroxide by cobalt manganese oxides for ciprofloxacin degradation

    2023-01-30 06:49:18ShundiWngXiodongZhngGuozhuChenBoLiuHongmeiLiJunhuHuJunweiFuMinLiu
    Chinese Chemical Letters 2022年12期

    Shundi Wng ,Xiodong Zhng ,Guozhu Chen,Bo Liu,Hongmei Li ,Junhu Hu,Junwei Fu,*,Min Liu,*

    a Hunan Joint International Research Center for Carbon Dioxide Resource Utilization,School of Physics and Electronics,State Key Laboratory of Powder Metallurgy,Hunan Provincial Key Laboratory of Chemical Power Sources,Central South University,Changsha 410083,China

    b School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 450 002,China

    Keywords:Catalytic decomposition Hydrogen peroxide Advanced oxidation processes Ciprofloxacin Pollutant degradation

    ABSTRACT Advanced oxidation processes(AOPs)are promising technology to remove organic pollutant in water.However,the main problem in the AOPs is the low generation of hydroxyl radical(?OH)owing to the low decomposition efficiency of hydrogen peroxide(H2O2).Herein,the spinel type cobalt acid manganese(MnCo2O4)with flower morphology was fabricated through a co-precipitation method.In situ Fourier transform infrared spectroscopy confirms that the MnCo2O4 with the optimal molar ratio of Co and Mn precursors(CM3,Co:Mn=3)has more Lewis acid sites compared with single metal oxide catalysts(Co3O4 and Mn2O3),leading to the excellent performances for H2O2 decomposition rate constant on CM3,which is about 15.03 and 4.21 times higher than those of Co3O4 and Mn2O3,respectively.As a result,the obtained CM3 shows a higher ciprofloxacin degradation ratio than that of Co3O4 and Mn2O3.Furthermore,CM3 shows an excellent stability during several cycles.This work proposes effective catalysts for ciprofloxacin decomposition and provides feasible route for treating practical environmental problems.

    Ciprofloxacin(CIP),with a total use of 5340 tons in China,has been considered as one of the most commonly used fluoroquinolones[1,2].CIP has been detected in surface water,municipal wastewater,pharmaceutical wastewater and groundwater.These highest concentrations were 2500μg/L,14 mg/L,31 mg/L and 14μg/L,respectively[3–5].The fluoroquinolones may have adverse effect on aquatic ecology by inducing the proliferation of bacterial resistance[6–9].However,because high concentrations of organic pollutants are toxic to biochemical reactions,microorganisms and conventional physical and chemical treatments cannot effectively remove these pollutants[10,11].Advanced oxidation processes(AOPs)with hydrogen peroxide(H2O2)are considered as a promising environmentally friendly strategy for the removal of organic pollutants[12–14].AOPs can be effectively applied to organics degradation by improving the biodegradability or directly mineralizing of pollutants by oxidation,including Fenton/Fenton-like oxidation[15–18],ozonation[19–21],photocatalytic oxidation and peroxymonosulfate oxidation[22–25].Among these technologies,the Fenton-like catalytic system is a promising choice for AOPs on account of the easy separation and recovery of solid catalyst,the wide working pH range and the high organic removal efficiency[26,27].However,this system suffers from low content of free radicals and poor removal efficiency of organic pollutants,which is originated from slow decomposition of H2O2.This inspires us to design and develop efficient catalysts to produce more free radicals during AOPs.

    H2O2is a Lewis base that is readily absorbed by the Lewis acid sites and produces a large number of?OH[28].However,catalytic performance of single metal oxide is limited by the insufficient Lewis acid sites and the slow redox cycles of metal valence[29,30].In order to produce more oxygen-containing free radicals,previous studies reported that doping MnOxwith other metal to form mixed metal oxides tended to produce more oxygen-containing free radicals[26].For examples,the chemical states and properties of Mn can be substantially tuned in the perovskite-and spineltype oxides[31–34].Composite metal oxides possess the sufficient Lewis acid sites and fast redox cycles of metal valence due to the interactions between different metal atoms[35–37].Miet al.have investigated the electron communication between the different metal sites in composite metal oxides[38].The result indicated that the composite metal oxides have synergistic effect Co and Mn sites,which is beneficial for generating?OH abundantly.Therefore,we considered that composite metal oxides can greatly improve the catalytic oxidation efficiency.

    Fig.1.(a)XRD patterns of CM3,Mn2 O3,Co3O4 candidates.(b)SEM and(c)TEM images of CM3.(d)HRTEM and SAED pattern(inset)images of CM3 with submicronsized particles.(f-h)Elemental mapping of Mn,Co and O for CM3(e).

    In this study,the spinel MnCo2O4(CM3)has been synthesized through a facile co-precipitation method.X-ray diffraction spectroscopy(XRD),scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were carried out to verify its crystal structure and morphology.The performance test results show that the spinel CM3 possesses excellent performance in the decomposition of H2O2due to the synergistic effect of Co and Mn.The rate constant of H2O2degradation rate constant for CM3 was about 15.03 and 4.21 times higher than those of Co3O4and Mn2O3,respectively.Meanwhile,as the typical organic quinolones,CIP was selected for the target organic pollutant to evaluate the efficiency of AOPs among catalysts.Compared with single metal oxides,spinel CM3 can remarkably reduce the energy barrier of producing?OH.Therefore,CM3/H2O2system shows great degradation ratio of CIP(10 mg/L),which reach up to 81%in 100 min,and it is higher than that of Co3O4and Mn2O3.The experimental results and density functional theory(DFT)calculations reveal the synergistic effect of Co and Mn in CM3 for outstanding catalytic performance.Thus,the CM3 shows outstanding catalytic performance and provides feasible way for treating practical environmental problems.

    The crystal structure of the synthesized samples was analyzed by XRD(Fig.1a)[39–41].The crystal structure of control samples is consistent with the standard sample,which can be correspond to the cubic Mn2O3(PDF#41–1442)and cubic spinel Co3O4(PDF#74–1657),respectively.Among the binary transition metal oxide,the obtained CM3 agrees well with the standard spinel MnCo2O4(PDF#23–1237),indicating the successful synthesis of single-phase cubic spinel.

    Fig.2.XPS spectra of CM3,Co3O4 and Mn2 O3:(a)Co 2p,(b)Mn 2p.

    To characterize the morphology and structure of catalysts,SEM and TEM were carried out(Figs.1b-h).Clearly,the CM3 has a diameter of about 150 nm with well nanoflower-like structures and assembled by nanosheets(Fig.1b).The CM3 shows high specific surface area of 111.4 m2/g(Table S1 and Fig.S1 in Supporting information),favoring for the heterogeneous catalytic reaction.On the contrary,the prepared Mn2O3and Co3O4show a morphology of nanoparticle(Fig.S2 in Supporting information).

    TEM image confirms the nanoflower-like structure which is assembled by nanosheets(Fig.1c).The high-resolution transmission electron microscopy(HRTEM)image and the selected area electron diffraction(SAED)of CM3 are shown in Fig.1d.The inter-planar distance measured in HRTEM image was measured to be 2.9?A,which matches well to the(220)planes of the spinel MnCo2O4(Fig.1d).The SAED pattern exhibits concentric rings composed of bright discrete diffraction spots of CM3,indicating that the polycrystalline nature for CM3.The diffraction rings are indexed to(111),(220),(311),(400),(511),and(440)planes of XRD patterns in MnCo2O4structure[42].The investigation based on energy dispersive X-ray spectroscopy(Figs.1e-h)reveals a uniform distribution of Mn,Co and O in the CM3 nanoflower-like structure.

    In order to identify the oxidation state of Co and Mn in the CM3,Co3O4and Mn2O3,the X-ray photoelectron spectroscopy(XPS)of the Co and Mn 2p were recorded and fitted as Fig.2[43].For the Co3O4(Fig.2a),two main peaks of Co 2p3/2and Co 2p1/2are located at 781.05 and 796.40 eV,respectively[44].For the CM3(Fig.2a),these two main peaks are located at 781.12 and 796.26 eV,which indicates co-exist of Co2+and Co3+species in the Co3O4and CM3[45].For the Mn2O3(Fig.2b),two main peaks are located at 643.1 and 654.9 eV,respectively[46].For the CM3(Fig.2b),these two main peaks shift to 642.9 and 654.5 eV,demonstrating that introducing Co can well adjust the valence state of Mn[47].

    The catalytic degradation experiments were conducted to evaluate the catalytic performances of different catalysts.The concentration of H2O2was determined by titanium potassium oxalate method(Fig.S3 in Supporting information)[48,49].As shown in Fig.3a,within 15 min,the H2O2degradation efficiencies for Mn2O3and Co3O4are about 40%and 20%,respectively.Notably,the H2O2degradation efficiency for CM3 is up to 99%.The rate constant(k)was then evaluated based on linear fitting between?ln(C/C0)and timet[50,51].As shown in Fig.3b,the H2O2degradation rate constant in the CM3(0.284 min?1)was about 15.03 and 4.21 times higher than those of Co3O4(0.0189 min?1)and Mn2O3(0.0675 min?1),confirming the high performance of CM3.Furthermore,the catalytic activity did not decrease obviously,indicating its good stability and long lifetime(Fig.S4 in Supporting information).

    Fig.3.(a)H2O2 degradation in the different catalyst systems.Conditions:[H2O2]ini=30 mmol/L,catalyst=0.05 g/L in 100 mL reaction solution.(b)The fitted plots of?ln(C/C0)with the reaction time in H2O2 degradation.(c)Effects of H2O2 dosage on CIP degradation in CM3 catalyst system.Conditions:catalyst=0.2 g/L,[CIP]ini=10 mg/L in 100 mL reaction solution.(d)CIP degradation in the different catalyst systems.Conditions:[CIP]ini=10 mg/L,[H2O2]ini=68 mg/L and catalyst=0.2 g/L in 100 mL reaction solution.

    The catalytic performances of the as-prepared oxides for wastewater treatment were further compared.CIP,as a typical industrial pollutant,is chosen as a model to examine the degradation efficiency of organic pollutants by the as-prepared oxides.The effects of catalyst dosage and temperature on CIP degradation were studied(Figs.S5 and S6 in Supporting information).The influence of H2O2dosage on the performance of CM3 is shown in Fig.3c.The results showed that degradation efficiency of CIP increased to 81%with the dosage of H2O2increasing from 0 mg/L to 68 mg/L.While a further increase of H2O2dosage(from 68 mg/L to 136 mg/L)hindered the degradation of ciprofloxacin(decreased from 81%to 64%).The reason can be attributed to that the residual H2O2can act as a sacrificial agent for free radicals(?OH)[52].These results showed that the optimal H2O2concentration was 68 mg/L.Under the optimal H2O2dosage,the binary transition metal oxides CM3(81%)have excellent CIP degradation performance compared with single metal oxides Co3O4(22%)and Mn2O3(34%)in Fig.3d.The initial rate constants of CM3,Mn2O3and Co3O4catalyst systems are 0.11 min?1,0.023 min?1and 0.01 min?1,respectively(Fig.S7 and Table S2 in Supporting information)[53,54].And the CM3 Fenton-like system can improve the TOC removal rate of CIP from 10.23%and 22.6%to 50.33%comparing to the Co3O4and Mn2O3,respectively(Figs.S8 and S9 in Supporting information)[55].

    In order to explore which free radicals involved the CIP degradation,p-benzoquinone(BQ)andt-butanol(TBA)were added to the reaction solution to detect the reactive radicals[16,56].Fig.4a shows that the degradation of CIP was greatly inhibited by adding 50 mmol/L BQ or 50 mmol/L TBA,indicating that both O2??and?OH promoted the degradation of CIP.Apparently,significant inhibiting effect was observed in the presence of 50 mmol/L TBA,implying that?OH radicals play the most important role in CIP degradation.In order to reveal the reaction mechanism of the CIP degradation,we detect free radical species by oxidation current,free radical quenching,5,5-dimethylpyrroline-1-oxide(DMPO)trapped electron paramagnetic resonance(EPR)technique and photoluminescence spectra of benzoic acid mixed[57,58].In the chronoamperometry curves,it can be observed that the oxidation current in H2O2solution increases after adding CM3.While the change before and after adding CM3 in blank solution is negligible(Fig.4b).This indicates that some species are produced in the interaction between CM3 and H2O2.Due to its high reducibility,the most likely increase in oxidation current is?OOH,which is more reducible than H2O2.In addition,we detected the?OH in different catalyst systems with DMPO trapped EPR technique[59].As shown in Fig.4c,there are more?OH in CM3-H2O2system.We detected?OH in different systems by photoluminescence[16].The CM3 has a high fluorescence intensity from the photoluminescence spectra(Fig.4d).The H2O2decomposition efficiency can be obviously increased in the CM3 Fenton-like reaction.Usually,benzoic acid(BA)was used as a probe molecule to detect concentration of?OH[60].In subsequent experiments,2 mmol/L BA was selected as the initial probe concentration.The generation of radicals in the different systems is shown in Fig.4e.Compared with single metal oxides Co3O4and Mn2O3,the addition of the CM3 greatly increased?OH generation.These results demonstrated that CM3 could facilitate the production of more?OH due to the improved decomposition efficiency of H2O2,which leads to the efficient degradation of CIP in CM3-H2O2system.

    To explore the surface acid sites on CM3,the distribution of Br?nsted(B)and Lewis(L)acidity were measured byin-situdiffuse-reflectance infrared Fourier-transform(DRIFT)spectra with pyridine using pyridine as a probe(Fig.4f).Because H2O2is a Lewis base that is readily absorbed by the Lewis acid sites and produces a large number of?OH[28].The band at 1550–1640 cm?1and 1450 cm?1are assigned to found for pyridine absorbed at L acid sites while the 1540 cm?1band is absorption intensity at B acid sites[61].The experimental results show that CM3 exhibited much stronger signal intensity,which indicates that the L acid sites in CM3 are far more than other comparison samples.Note that H2O2was a L base,the enhanced adsorption of H2O2onto these CM3 should contribute to the activation of H2O2for CIP oxidation.Compared with Co3O4and Mn2O3,the formation of L acid sites indicating the presence of synergistic effect between the Co and Mn sites.In addition,the voltammetric integral area of the cyclic voltammetry(CV)was another parameter to reflect the redox-active sites of the catalysts(Fig.S10 in Supporting information)[45,62].CM3 has a large voltammetric integral areas.Indicating the bimetallic oxides has more redox-active sites,which is beneficial for catalytic reactions.This is consistent with the results ofin-situDRIFT spectra.

    From the above analyses,it can be concluded that the freely diffusible?OH formed by the catalyst is the main active substance in the oxidation reaction of the pollutant.In order to understand the synergy between Mn and Co,DFT calculations were performed to compare catalytic activity of Co3O4,Mn2O3and CM3 systems[63].Fig.5 illustrated the free energy change of H2O2decomposition into?OH by the cleavage of O–O bonds on CM3,Co3O4and Mn2O3surface,respectively.The free energy differences of?OH generation on Co3O4,Mn2O3and CM3 were 2.35,2.55 and 3.95 eV,respectively.Compared with Co3O4and Mn2O3,CM3 is more conducive to activation of H2O2to produce?OH.The adsorption of H2O2and the desorption of?OH were calculated(Fig.S11,Tables S3 and S4 in Supporting information).From the adsorption energy of H2O2,the adsorption energy of MnCo2O4(CM3)is more negative,and the O–O bond almost breaks during the adsorption.This indicates that MnCo2O4(CM3)has excellent ability to activate H2O2.From the perspective of?OH desorption energy,Mn2O3has a lower desorption energy,but a higher dissociation energy,which affects its catalytic performance.Moreover,the surface?OH of MnCo2O4(CM3)has moderate desorption energy.In general,MnCo2O4(CM3)is more capable of activating H2O2and generating?OH to degrade CIP.

    Fig.4.(a)Inhibiting effects of different radical scavengers on degradation of CIP by CM3.Conditions:[CIP]ini=10 mg/L,[BQ]=50 mmol/L,[TBA]=50 mmol/L,catalyst=0.2 g/L and[H2O2]ini=68 mg/L in 100 mL reaction solution.(b)Chronoamperometry curves in blank solution,blank solution with CM3,H2O2 solution,and H2 O2 solution with CM3.Tests were made in 50 mmol/L Na2SO4 electrolyte at a scanning rate of 20 mV/s.(c)DMPO spin trapping EPR spectra of?OH.(d)Photoluminescence spectra of benzoic acid mixed with different solutions for the Fenton-like reaction within 100 min.Conditions:[CIP]ini=10 mg/L,[BA]=2 mmol/L,catalyst=0.2 g/L and[H2O2]ini=68 mg/L in 100 mL reaction solution.(e)The generation of radicals in different systems.Conditions:[CIP]ini=10 mg/L,[BA]=2 mmol/L,catalyst=0.2 g/L and[H2 O2]ini=68 mg/L in 100 mL reaction solution.(f)In-situ DRIFTS spectra of catalysts with pyridine as probe at 25°C.

    Fig.5.Free energy diagrams for the H2 O2 decomposition into?OH on surface of CM3(a),Co3 O4(b)and Mn2O3(c),respectively.

    In this study,the spinel type CM3 with significant H2O2decomposition efficiency was fabricated through a co-precipitation method.CM3 has more L acid sites due to the synergistic effect of Co and Mn.Compared with Co3O4and Mn2O3,CM3 plays a significant role on the decomposition of H2O2in a Fenton-like system.The rate constant of H2O2degradation rate constant by CM3 was about 15.03 and 4.21 times higher than that by pure Co3O4and Mn2O3,respectively.Accordingly,the CM3/H2O2system shows great degradation ratio of CIP(10 mg/L),and reaches up to 81%in 100 min,which is higher than that of Co3O4and Mn2O3.Meanwhile,the CM3 shows favorable stability for several cycles.DFT calculations further elucidate the dissociation of H2O2.This work provides a new way to design efficient,stable and harmless Fentonlike catalysts and achieve excellent environmental remediation effect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    The authors gratefully thank the International Science and Technology Cooperation Program (Nos.2017YFE0127800 and 2018YFE0203400),National Natural Science Foundation of China(Nos.21872174,22002189 and U1932148),Hunan Provincial Science and Technology Program(Nos.2017XK2026 and 2017TP1001),Hunan Provincial Natural Science Foundation(Nos.2020JJ2041,2020JJ5691 and 2021JJ30864),Key R&D Program of Hunan Province(No.2020WK2002),Shenzhen Science and Technology Innovation Project(No.JCYJ20180307151313532).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.055.

    在线观看一区二区三区激情| 国产成人精品婷婷| 久久午夜福利片| 亚洲国产欧美日韩在线播放| 久久av网站| 男女下面插进去视频免费观看 | 热re99久久精品国产66热6| 国产色婷婷99| 精品熟女少妇av免费看| 又粗又硬又长又爽又黄的视频| 在线观看国产h片| 免费看光身美女| 岛国毛片在线播放| 亚洲成av片中文字幕在线观看 | 少妇猛男粗大的猛烈进出视频| 久久午夜福利片| 亚洲欧美中文字幕日韩二区| 性色av一级| 韩国精品一区二区三区 | 99久久中文字幕三级久久日本| 免费av中文字幕在线| 久久99热这里只频精品6学生| 精品少妇内射三级| 亚洲国产色片| 一级爰片在线观看| 伊人亚洲综合成人网| 777米奇影视久久| 亚洲国产最新在线播放| 免费黄频网站在线观看国产| 午夜福利网站1000一区二区三区| 丰满乱子伦码专区| 久久精品久久久久久久性| 精品视频人人做人人爽| 韩国精品一区二区三区 | 国产片内射在线| 两个人看的免费小视频| 国产在视频线精品| 国产深夜福利视频在线观看| 亚洲成av片中文字幕在线观看 | kizo精华| 成人毛片60女人毛片免费| 男女边摸边吃奶| 精品国产乱码久久久久久小说| 高清av免费在线| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区免费观看| 免费在线观看黄色视频的| 一级片免费观看大全| 黄色配什么色好看| 日韩av不卡免费在线播放| 亚洲色图 男人天堂 中文字幕 | 国产精品熟女久久久久浪| 99热这里只有是精品在线观看| 欧美精品高潮呻吟av久久| 免费看光身美女| 亚洲av欧美aⅴ国产| 免费播放大片免费观看视频在线观看| 伦理电影免费视频| 在线 av 中文字幕| videos熟女内射| 日韩,欧美,国产一区二区三区| 亚洲第一区二区三区不卡| 欧美日韩精品成人综合77777| 青春草亚洲视频在线观看| 国产老妇伦熟女老妇高清| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 另类精品久久| 老女人水多毛片| 精品人妻在线不人妻| 久久久久久久久久人人人人人人| 精品人妻偷拍中文字幕| 国产精品秋霞免费鲁丝片| 久久久久人妻精品一区果冻| 高清欧美精品videossex| 国产亚洲一区二区精品| 精品一区二区三卡| 熟女av电影| 色网站视频免费| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 成人手机av| 各种免费的搞黄视频| 国产男人的电影天堂91| 欧美精品av麻豆av| 在线观看免费高清a一片| 黄网站色视频无遮挡免费观看| 久久精品国产a三级三级三级| 涩涩av久久男人的天堂| 久久精品熟女亚洲av麻豆精品| 捣出白浆h1v1| 欧美精品一区二区大全| 最黄视频免费看| 男女高潮啪啪啪动态图| 18禁在线无遮挡免费观看视频| 一二三四在线观看免费中文在 | 亚洲,欧美,日韩| 欧美xxⅹ黑人| 欧美日韩精品成人综合77777| 成人影院久久| 在现免费观看毛片| 极品少妇高潮喷水抽搐| 色94色欧美一区二区| 国产精品偷伦视频观看了| 亚洲国产看品久久| av在线观看视频网站免费| 人人妻人人添人人爽欧美一区卜| 乱码一卡2卡4卡精品| 精品熟女少妇av免费看| 黑人欧美特级aaaaaa片| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 有码 亚洲区| 午夜福利影视在线免费观看| 又黄又粗又硬又大视频| 免费av不卡在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女欧美一区二区| 国产精品一国产av| 男女边吃奶边做爰视频| 性色avwww在线观看| 久热久热在线精品观看| 另类亚洲欧美激情| 亚洲第一区二区三区不卡| 国产极品粉嫩免费观看在线| 久久影院123| 欧美精品亚洲一区二区| 国产高清三级在线| 亚洲成色77777| 日韩伦理黄色片| 欧美性感艳星| 男女午夜视频在线观看 | 一级爰片在线观看| 欧美人与性动交α欧美精品济南到 | 男男h啪啪无遮挡| 免费黄色在线免费观看| 亚洲国产看品久久| 插逼视频在线观看| 精品国产乱码久久久久久小说| 97在线视频观看| 婷婷色综合www| 高清毛片免费看| 亚洲性久久影院| 日韩一本色道免费dvd| 91午夜精品亚洲一区二区三区| 免费在线观看黄色视频的| 亚洲成人手机| 热99久久久久精品小说推荐| 国产成人91sexporn| 曰老女人黄片| 国产在线免费精品| 男女国产视频网站| 欧美人与性动交α欧美精品济南到 | 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 国产免费现黄频在线看| 中国国产av一级| 黄色 视频免费看| 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 自线自在国产av| 男女下面插进去视频免费观看 | 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美在线精品| 国产极品粉嫩免费观看在线| 少妇熟女欧美另类| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 蜜桃国产av成人99| 天天操日日干夜夜撸| 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 中文欧美无线码| 国产免费一区二区三区四区乱码| 考比视频在线观看| 99热网站在线观看| 国产精品久久久久久久久免| 一级片免费观看大全| 久久久久久久精品精品| 免费人成在线观看视频色| 制服诱惑二区| 欧美日韩av久久| 欧美日本中文国产一区发布| 日本猛色少妇xxxxx猛交久久| 如何舔出高潮| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 国产免费又黄又爽又色| 国产极品粉嫩免费观看在线| 三级国产精品片| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看 | 色视频在线一区二区三区| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 韩国av在线不卡| 国产在线免费精品| 青春草亚洲视频在线观看| 97在线人人人人妻| 观看av在线不卡| av女优亚洲男人天堂| 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 美女中出高潮动态图| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| 国产精品国产av在线观看| 少妇人妻 视频| 最近的中文字幕免费完整| 国产免费现黄频在线看| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| av网站免费在线观看视频| 国产成人免费无遮挡视频| h视频一区二区三区| 少妇人妻 视频| 亚洲五月色婷婷综合| 国产精品.久久久| 九色成人免费人妻av| 18禁观看日本| 久久久亚洲精品成人影院| 王馨瑶露胸无遮挡在线观看| 国产伦理片在线播放av一区| xxx大片免费视频| 美女视频免费永久观看网站| 丝袜人妻中文字幕| 丰满少妇做爰视频| 免费看光身美女| 免费久久久久久久精品成人欧美视频 | 高清视频免费观看一区二区| 黑人猛操日本美女一级片| av线在线观看网站| 五月伊人婷婷丁香| 久久人人爽人人片av| 国产精品久久久久久久电影| 美女内射精品一级片tv| 熟女av电影| 黑人高潮一二区| 如何舔出高潮| 欧美精品一区二区免费开放| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| 美女xxoo啪啪120秒动态图| 日本欧美视频一区| 成人国产av品久久久| 亚洲经典国产精华液单| 又大又黄又爽视频免费| 久久午夜福利片| 亚洲高清免费不卡视频| 亚洲综合色网址| 欧美性感艳星| 国产精品99久久99久久久不卡 | 日本91视频免费播放| 香蕉国产在线看| 国产精品久久久久久精品电影小说| 国产成人精品在线电影| 亚洲欧美日韩卡通动漫| 亚洲久久久国产精品| 免费久久久久久久精品成人欧美视频 | 欧美日本中文国产一区发布| 国产精品女同一区二区软件| 免费少妇av软件| 人人妻人人澡人人看| 青春草国产在线视频| 成人毛片60女人毛片免费| 嫩草影院入口| 国产一区二区激情短视频 | 久热久热在线精品观看| 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 国产成人a∨麻豆精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 伦理电影免费视频| 国产日韩欧美在线精品| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 日韩伦理黄色片| 国产亚洲一区二区精品| 大香蕉久久成人网| 99热这里只有是精品在线观看| 天天操日日干夜夜撸| 人妻人人澡人人爽人人| 大陆偷拍与自拍| 高清不卡的av网站| 亚洲国产日韩一区二区| 观看美女的网站| 另类亚洲欧美激情| 91久久精品国产一区二区三区| 亚洲第一av免费看| 亚洲国产欧美在线一区| 亚洲欧美色中文字幕在线| 草草在线视频免费看| 美女视频免费永久观看网站| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 亚洲精品视频女| 青春草视频在线免费观看| 在线天堂最新版资源| 午夜福利乱码中文字幕| 日本-黄色视频高清免费观看| 亚洲成国产人片在线观看| 欧美日韩国产mv在线观看视频| 久久久久久久亚洲中文字幕| 一级,二级,三级黄色视频| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 伊人亚洲综合成人网| 最近中文字幕高清免费大全6| 国产高清三级在线| freevideosex欧美| 美女福利国产在线| 夜夜爽夜夜爽视频| 91国产中文字幕| 一级毛片我不卡| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 在线天堂中文资源库| 国产男人的电影天堂91| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 美女视频免费永久观看网站| 美女主播在线视频| 熟妇人妻不卡中文字幕| 国产一区二区在线观看av| 中文字幕免费在线视频6| 国产精品无大码| 久久99热6这里只有精品| 日韩av在线免费看完整版不卡| 欧美日韩av久久| 国产免费一级a男人的天堂| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 成人无遮挡网站| 免费av不卡在线播放| av卡一久久| 岛国毛片在线播放| 美女内射精品一级片tv| 国产av码专区亚洲av| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 国产在视频线精品| 久久99一区二区三区| 日本欧美国产在线视频| 伊人亚洲综合成人网| 欧美日韩av久久| 男的添女的下面高潮视频| 美女国产高潮福利片在线看| 亚洲激情五月婷婷啪啪| 性色av一级| 亚洲精品,欧美精品| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 日本wwww免费看| 欧美日韩亚洲高清精品| 亚洲国产av新网站| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 午夜免费观看性视频| 一级a做视频免费观看| 午夜福利乱码中文字幕| 狂野欧美激情性xxxx在线观看| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 亚洲三级黄色毛片| 最新中文字幕久久久久| 国产亚洲精品久久久com| 亚洲精品一二三| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 成年女人在线观看亚洲视频| 亚洲av中文av极速乱| 免费av中文字幕在线| 亚洲国产欧美日韩在线播放| 人成视频在线观看免费观看| 18禁在线无遮挡免费观看视频| 国产精品久久久av美女十八| 国产女主播在线喷水免费视频网站| 制服人妻中文乱码| 国产69精品久久久久777片| 寂寞人妻少妇视频99o| 两个人看的免费小视频| 国产亚洲av片在线观看秒播厂| 亚洲av中文av极速乱| 国产成人av激情在线播放| 韩国高清视频一区二区三区| 另类亚洲欧美激情| 看非洲黑人一级黄片| 色婷婷久久久亚洲欧美| 欧美+日韩+精品| 黑人高潮一二区| 如何舔出高潮| 寂寞人妻少妇视频99o| 卡戴珊不雅视频在线播放| 一区二区日韩欧美中文字幕 | 日本猛色少妇xxxxx猛交久久| 久久人人97超碰香蕉20202| 国产极品天堂在线| 欧美 亚洲 国产 日韩一| 国产白丝娇喘喷水9色精品| 搡老乐熟女国产| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 妹子高潮喷水视频| 男女下面插进去视频免费观看 | 全区人妻精品视频| 美女福利国产在线| 久久久久久久久久成人| 国产精品三级大全| 国产亚洲av片在线观看秒播厂| 中文字幕人妻熟女乱码| 好男人视频免费观看在线| 久久久精品免费免费高清| av福利片在线| 2021少妇久久久久久久久久久| 国产成人精品一,二区| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 国产高清不卡午夜福利| 观看美女的网站| 久久久欧美国产精品| 亚洲精品色激情综合| 老熟女久久久| 中文字幕人妻熟女乱码| a级毛色黄片| 久久久久久久久久久久大奶| 午夜老司机福利剧场| 精品酒店卫生间| 综合色丁香网| 免费看不卡的av| 精品久久国产蜜桃| 亚洲国产毛片av蜜桃av| 又大又黄又爽视频免费| 如何舔出高潮| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在 | 国产精品免费大片| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜制服| 99热全是精品| 少妇人妻 视频| 免费少妇av软件| 久久ye,这里只有精品| 在线天堂中文资源库| 咕卡用的链子| 视频在线观看一区二区三区| 人成视频在线观看免费观看| av国产精品久久久久影院| h视频一区二区三区| xxx大片免费视频| 国产亚洲av片在线观看秒播厂| 国产麻豆69| 国产欧美日韩一区二区三区在线| 国产 一区精品| 一级黄片播放器| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 久久午夜福利片| 久久人妻熟女aⅴ| 99热全是精品| 久久这里只有精品19| 男人添女人高潮全过程视频| 综合色丁香网| 狠狠婷婷综合久久久久久88av| 一二三四在线观看免费中文在 | 丝袜脚勾引网站| 午夜av观看不卡| 伊人久久国产一区二区| 一级毛片电影观看| 性高湖久久久久久久久免费观看| a级毛片黄视频| 如日韩欧美国产精品一区二区三区| 国产乱人偷精品视频| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区 | 免费人妻精品一区二区三区视频| 亚洲伊人色综图| 国产亚洲午夜精品一区二区久久| 黄色一级大片看看| www日本在线高清视频| 日本与韩国留学比较| 乱人伦中国视频| √禁漫天堂资源中文www| 久久鲁丝午夜福利片| 国产亚洲精品久久久com| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| www.熟女人妻精品国产 | 精品一区二区三区视频在线| 国产 一区精品| 国产色爽女视频免费观看| 成人影院久久| 亚洲成人av在线免费| 少妇 在线观看| 免费播放大片免费观看视频在线观看| 免费人成在线观看视频色| 免费观看性生交大片5| 精品熟女少妇av免费看| 超碰97精品在线观看| 18禁裸乳无遮挡动漫免费视频| 尾随美女入室| av电影中文网址| 国产极品天堂在线| 新久久久久国产一级毛片| 狂野欧美激情性xxxx在线观看| 亚洲成色77777| 51国产日韩欧美| 日韩精品有码人妻一区| h视频一区二区三区| 免费观看无遮挡的男女| 伊人亚洲综合成人网| 国产爽快片一区二区三区| 亚洲国产欧美在线一区| 成年人免费黄色播放视频| 99久国产av精品国产电影| 国产一区二区三区av在线| 又黄又爽又刺激的免费视频.| 人人澡人人妻人| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 中国三级夫妇交换| 尾随美女入室| 国产亚洲精品久久久com| 午夜av观看不卡| 夜夜爽夜夜爽视频| 亚洲精品av麻豆狂野| 男的添女的下面高潮视频| 成年av动漫网址| 欧美另类一区| 国产av精品麻豆| 久久99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片| 国产伦理片在线播放av一区| 欧美人与性动交α欧美软件 | 在线观看人妻少妇| 在线观看美女被高潮喷水网站| 制服丝袜香蕉在线| 亚洲国产欧美日韩在线播放| 国产激情久久老熟女| 90打野战视频偷拍视频| 人妻系列 视频| 亚洲成国产人片在线观看| 91精品三级在线观看| 欧美国产精品va在线观看不卡| 亚洲熟女精品中文字幕| 成年女人在线观看亚洲视频| 亚洲高清免费不卡视频| 免费人妻精品一区二区三区视频| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 男女啪啪激烈高潮av片| 国产日韩欧美亚洲二区| 欧美日韩视频高清一区二区三区二| 亚洲av日韩在线播放| 国产爽快片一区二区三区| 丰满乱子伦码专区| 在线天堂最新版资源| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 久久国产精品大桥未久av| 欧美丝袜亚洲另类| 777米奇影视久久| 成人免费观看视频高清| 三级国产精品片| 五月玫瑰六月丁香| 看十八女毛片水多多多| 日韩一区二区三区影片| 亚洲国产欧美在线一区| 久久精品人人爽人人爽视色| 国产精品一二三区在线看| 亚洲综合色网址| 国产成人精品在线电影| 欧美3d第一页| 精品久久国产蜜桃| 色网站视频免费| 丝袜在线中文字幕| 夫妻午夜视频| 在线天堂最新版资源| 国产精品蜜桃在线观看| 国产亚洲最大av| 国产免费福利视频在线观看| 内地一区二区视频在线| 两个人看的免费小视频| 欧美精品一区二区大全| 新久久久久国产一级毛片| 免费观看性生交大片5| 视频在线观看一区二区三区| 午夜影院在线不卡| 国产精品久久久久久av不卡| 两性夫妻黄色片 | 日韩三级伦理在线观看| 国产在线免费精品| 国产乱来视频区| 一边亲一边摸免费视频| 90打野战视频偷拍视频| 婷婷色av中文字幕| 丰满乱子伦码专区| 永久网站在线| 国产在线一区二区三区精|