• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations

    2023-01-30 06:49:18YuchengZhngXiotongSuNorTmXiolnLoMeilingZhongQihngWuHuifngLeiZihuiChenZhngLiJieFu
    Chinese Chemical Letters 2022年12期

    Yucheng Zhng ,Xiotong Su,Nor F.Y.Tm,Xioln Lo ,Meiling Zhong ,Qihng Wu,*,Huifng Lei ,Zihui Chen,Zhng Li ,Jie Fu,*

    a Key Laboratory for Water Quality and Conservation of the Pearl Stream Delta,Ministry of Education,School of Enviro nmental Science and Engineering,Guangzhou University,Guangzhou 510006,China

    b State Key Laboratory of Marine Pollution and Department of Chemistry,City University of Hong Kong,Hong Ko ng,China

    c School of Science and Technology,Open University of Hong Kong,Hong Kong,China

    d School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords:Polystyrene nanoplastics Lead cation Aggregation kinetics Critical coagulation concentration Size effect

    ABSTRACT Once inevitably released into the aquatic environment,polystyrene nanoplastics(PS-NPs)will present complicated environmental behaviors,of which the aggregation is a key process determining their environmental fate and impact.In this study,the aggregation kinetics of different sizes(30 nm and 100 nm)of PS-NPs with metal cations(Na+,K+,Ca2+,Mg2+and Pb2+)at different solution pH(3,6 and 8)were investigated.The results showed that the aggregation of PS-NPs increased with cation concentration.Taking Pb2+as an example,the adsorption behavior of cations onto PS-NPs was determined by transmission electron microscopy(TEM)and energy dispersive X-ray(EDX)spectroscopy,which demonstrated Pb2+could be adhered onto the surface of PS-NPs with the effect of charge neutralization.The critical coagulation concentrations(CCC)of smaller PS-NPs were higher than that of larger PS-NPs for monovalent cations,whereas a different pattern is observed for divalent cations.It was suggested that there were other factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.In addition,it should be noted that PS-NPs had the capacity of adsorbing large amounts of heavy metal cations and carried them transport to a long distance,and the corresponding ecological risks need to further elucidate.

    Plastics,known as revolutionary materials,have been widely used in various fields since their birth in 1905[1].The global consumption of plastics is growing at an annual rate of 4%,increasing from 1.3 million tons in 1950 to 322 million tons in 2015,and then reaching 369 million tons in 2018[2].Due to the failure of effective collection,disposal and control of plastic wastes,some plastic fragments or particles are discharged into the natural environment,affecting the normal operation of the ecosystem.Plastic particles with a size less than 100 nm,called nanoplastics,are supposed to be a new type of contaminant,which have ignited the research passion of scholars around the world over the last decade[3].On one hand,nanoplastics from cosmetics,personal hygiene products,and industrial products such as 3D printing and nanocapsules are constantly released into the environment during their use and production[4].On the other hand,polymer-based materials are easy to degrade into plastic fragments under the action of high salinity,light,heat and microorganisms[5].

    The biological effects of nanoparticles are closely related to particle size.Moore[6]found that the bioavailability of microplastics was largely affected by their particle size.There is a growing body of literature that recognizes the toxic effects of nanoplastics on hydrobiont,which were mainly evaluated through energy consumption,oxidative damage,enzyme activity,reproduction and growth rate[7–9].Some researchers believe that the aggregation behavior of nanoplastics in water environment is one of the main factors affecting their environmental migration and biological toxicity,and thus focus on the colloidal stability and aggregation dynamics of nanoplastics[10,11].Surface chemical properties of nanoplastics play an important role in colloid aggregation,and ultimately affect their behavior and fate in water environment[12].Yuet al.[13]have investigated the aggregation of a series of surfacemodified polystyrene nanoplastics,and found that the negatively charged and positively charged nanoplastics exhibited different aggregation behaviors.In addition,it has previously been observed that solution properties such as pH,ionic strength,and valence of ions influence the colloidal stability and aggregation behavior of nanoparticles[14].Metal cations have been demonstrated to significantly affect the stability of nanoplastics when they are adhered on nanoplatics[15–17].Conversely,nanoplastics can adsorb large amounts of metal cations in heavy metals polluted water,and carry them to migrate,posing a greater potential risk[17].

    In this study,two commercial polystyrene nanoplastics(PSNPs)with different sizes,30 nm representing small size(PS-S)and 100 nm representing large size(PS-L),were used as model nanoplastics to systematically explore their aggregation kinetics in water with monovalent(Na+and K+)and divalent(Ca2+,Mg2+and Pb2+)metal cations.Polystyrene is one of the most widely used plastic materials[18],and Pb2+is also a common ion in heavy metal polluted water[19].The attachment efficiencies and critical coagulation concentrations of PS-NPs under different conditions were calculated.The research purpose is to reveal the important roles of particle size and metal cations in the aggregation process of nanoplastics.The provided information could improve the understanding of the environmental behavior and ecological risks of nanoplastics.

    The PS-S-NPs suspension(1.0%w/v,15 mL,30 nm)was obtained from Thermo Fisher Scientific(Shanghai,China),and PS-L-NPs suspension(2.5%w/v,10 mL,100 nm)was purchased from Tianjin BaseLine ChromTech Research Center(Tianjin,China).The NaCl,KCl,MgCl2,CaCl2and Pb(NO3)2of analytical grade were used as the experimental electrolytes.The solution pH was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH(Titrisol,Merck,Austria).All the nanoplastics suspensions were diluted to about 10 mg/L with ultrapure water(18.2 MΩ,Milli-Q,Millipore).After adding different concentrations of electrolytes and adjusting to the desired pH,the experimental nanoplastics suspensions were prepared.The hydrodynamic diameter and zeta potential of each sample were measured by dynamic light scattering(DLS)with a 90°scattering angle(ZetaPALS/BI-90 Plus,Brookhaven Instruments Corp.,New York,USA).The suspension temperature was maintained at 25°C.The characteristic of PS-NPs before and after experiments were visualized using a TecnaiG2F20 S-Twin transmission electron microscope(TEM,FEI,USA).The distribution of elemental composition was analyzed by an energy-dispersive X-ray spectroscopy(EDX)system(X-MaxN 80T,Oxford Instruments NanoAnalysis,USA).Fourier transform-infrared(FT-IR)spectra were performed to identify the structural and functional groups of PS-NPs.

    The initial aggregation rate constant of PS-NPs(k)is proportional to the change of hydrodynamic diameter(Dh)from the timeresolved DLS measurements with respect to time(t),but inversely proportional to the primary particle concentration of PS-NPs(C)(Eq.1)[20]:

    In aggregation experiments,theCwas maintained at 10 mg/L.can be acquired by performing the linear least-squares regression for the initial increase inDh(t)witht.For most experiments,the regression analysis was performed over a time fromDh(0)to 1.3Dh(0),whereDh(0)represented the initialDh.Under some unfavorable conditions thatDh(t)fail to reach 1.3Dh(0),the aggregation of PS-NPs was negligible andwas determined with the achieved maximumDh(t).For some extremely fast aggregation thatDh(t)may go beyond 1.3Dh(0)when experiment has just begun,only the points that showed a linear relationship were chosen to calculate the aggregation rate.

    The attachment efficiency(α)was employed to calculate critical coagulation concentrations(CCC)to make a quantitative description of aggregation kinetics of PS-NPs.αwas calculated by normalizing the aggregation rate constantk(acquired in a certain suspension)to the rate constant at the fast aggregation conditionskfast(obtained in the diffusion limited aggregation regime,where the aggregation rate was independent on electrolyte concentrations)(Eq.2):

    Eventually,the experimental CCC values were determined from the intersect of extrapolated lines through the diffusion and reaction limited regimes.

    The Derjaguin-Landau-Verwey-Overbeek(DLVO)theory with particle-particle model was used to give further elucidation of the observed results.Under various chemical conditions,the interaction energy,including van der Waals attractionVA(h),and electrostatic double-layer(EDL)repulsionVR(h),were calculated[21–23].The total interaction energyVT(h)was calculated using the following equations(Eqs.3–8):

    where APWPwas the combined Hamaker constant for PS-NPs interacting through water for a PS-water-PS system,and the Hamaker constants of PS-L-NPs and PS-S-NPs were 3.5×10?21J and 2.3×10?21J respectively[23].b=5.32λwas the characteristic wavelength of the interaction with an often assumed value of 100 nm.Rwas the radius of PS-NPs.hwas separation distance between particles,which was much smaller than their radius(h<

    Fig.S1(Supporting information)presents the FT-IR spectra of PS-L-NPs and PS-S-NPs.Peaks at 700,750,and 3020 cm?1were designated to the benzene ring structure,and those peaks at 1490 and 1450 cm?1were ascribed to the aromatic C–H deformation[24,25].The broad and sharp bands at 1600 and 2920 cm?1were attributed to the stretching vibration of aromatic C=C group and deformation of aliphatic C–H group,respectively[26].Peak at 3450 cm?1was ascribed to hydroxyl stretching,originated from water adsorption[27].The peak at 1700 cm?1for PS-S-NPs probably contributed to C=O group related to the presence of carboxyl groups[28].

    Fig.1.TEM images and hydrodynamic size distributions of PS-L-NPs(a,b),and PSS-NPs(c,d).

    The size and shape of PS-L-NPs were detected by TEM,and it showed that PS-L-NPs had a spherical shape with an average diameter of 100 nm(Fig.1a).The hydrodynamic size distribution of PS-L-NPs measured by DLS was ranged from 80 nm to 150 nm with an average diameter of 110 nm(Fig.1b).The morphology of PS-SNPs was also confirmed by TEM(Fig.1c).The hydrodynamic size distribution of PS-S-NPs was ranged from 20 nm to 70 nm with an average diameter of 33 nm(Fig.1d).

    To assess the effect of pH on PS-NPs aggregation,the attachment efficiencies(α)of PS-L-NPs and PS-S-NPs with different concentrations of NaCl were calculated and displayed in Fig.2.Whenαapproaches to 1,the aggregation process is regarded as diffusionlimited[29].Different solution pH(3,6 and 8)led to differences in the aggregation profiles,and a higher pH value hindered the approaching ofαto 1.Correspondingly,the experimental CCC of NaCl for PS-L-NPs at pH of 3,6 and 8 were 193.86 mmol/L,349.06 mmol/L and 470.41 mmol/L,respectively,and for PS-S-NPs were 380.13 mmol/L,540.44 mmol/L and 755.26 mmol/L,respectively.There was a strong linear correlation between CCC and pH value(Fig.S2 in Supporting information).From this data,the aggregation of PS-NPs was suppressed with decreasing the solution pH,which is consistent with the phenomenon reported in previous study[30].The DLVO theoretical calculations were accorded with the experimental CCC values under different pH conditions.As shown in Fig.S3(Supporting information),the energy barrier decreased with increasing the concentration of NaCl,which is also reported by other studies[31].

    Previous studies have indicated the protonation and deprotonation on the surface of PS-NPs play an important role in the aggregation behavior[32].Therefore,the zeta potential of PS-NPs was measured and it was found that the zeta potential became more negative with increasing the pH values(Fig.S4 in Supporting information).For example,the zeta potential of PS-L-NPs in NaCl solution of 400 mmol/L decreased from?6.69 mV to?14.97 mV with increasing the pH from 6 to 8(Fig.S4a),indicating that electrostatic repulsion between PS-NPs could be increased under alkaline conditions,which may reduce the aggregation between nanoplastics particles.It is suggested that the surface of PS-NPs could be easily deprotonated with increasing the pH,leading to improved stability of PS-NPs[33].

    For convenience,the subsequent aggregation experiments were carried out at pH 6.Fig.3 presents the increases of hydrodynamic diameter of PS-NPs along time with different types and concentrations of cations.In the presence of low concentration of cations,like 100 mmol/L NaCl,PS-NPs kept a relative stability due to the dominance of electrostatic repulsive forces[14].With the increase of cation concentration,hydrodynamic diameter of PS-NPs increased quickly.According to the DLVO theory,the addition of cations led to characteristic adsorption and charge neutralization,where van der Waals forces dominated and the repulsion barrier was compressed.Thus,it was shown in Fig.S3 that the energy barriers of PS-NPs had been weakened as the cation concentration increased.When the cation concentration reached the CCC value,the PS-NPs were extremely unstable due to diffusion limitation,which eventually led to agglomeration between particles(Fig.S5 in Supporting information).

    Compared the effects of mono-and divalent cations on PS-NPs aggregation,it is found that divalent cations were easier to induce the aggregation of PS-NPs relative to monovalent cations.For instance,the CCC values of NaCl and KCl for PS-L-NPs were ranged from 232.60 mmol/L to 349.06 mmol/L,while those of MgCl2,CaCl2and Pb(NO3)2were reduced to 16.25–40.31 mmol/L(Fig.S5).The ratio between the CCC values of Ca2+and Na+was proportional toz?3.37(wherez=2 was the counterion valence for calcium)(Table S1 in Supporting information),consisting with the Schulze-Hardy Rule[34].For the differences in CCC values of cations with the same valence state,a possible explanation was ascribed to the hydration layer forming between metal cations and water molecules.In other words,cations with larger radii tend to interact with more water molecules[30,35],thus producing a higher promotion effect on the aggregation of PS-NPs.Correspondingly,the promotion effects of divalent cations were in the same order with their radii:Pb2+>Ca2+>Mg2+(Table S1).

    At present,a large number of studies have reported the size effect on the agglomeration and stability of nanoparticles,however,the size effect on the aggregation of PS-NPs has not been investigated explicitly in the existing literature[36–40].The DLVO theory predicts a marked decrease in rates of coagulation of colloidal particles with an increase in particle size[41].In this study,the CCC values of divalent ions(Ca2+,Mg2+and Pb2+)for PS-S-NPs were lower than for PS-L-NPs(Fig.S5),which agreed with DLVO prediction.This revealed that the PS-L-NPs needed a higher concentration of divalent cations to break the stable state.The more negative zeta potential of PS-L-NPs relative to PS-S-NPs also confirmed the recalcitrance of PS-L-NPs to aggregation(Fig.S4).Besides,a common view was that higher adsorption rate of divalent cations occurred on the smaller particle,owing to the higher Gibbs free energy associated with the smaller particles.Figs.4 and 5 present the TEM and EDX spectra of PS-NPs after the aggregation experiments with Pb2+.From Fig.4a,we can see that PS-L-NPs strikingly aggregated each other.At the same time,the EDX spectra showed the enrichment of Pb on the surface of PS-L-NPs,indicating that Pb2+cations were adsorbed on PS-L-NPs(Figs.4b-d).This characterization demonstrated the important role of Pb2+in the induction of PS-NPs aggregation by the charge neutralization.Relatively,after the aggregation experiment with Pb2+,the PS-S-NPs agglomerated closely into larger particles(>1μm)and the surfaces were studded with Pb(Fig.5).This result demonstrated a stronger adsorption capacity of PS-S-NPs for Pb2+,which might be the key reason to explain the higher aggregation potential of smaller PS-NPs relative to larger PS-NPs with divalent cations.

    Fig.2.Attachment efficiencies(α)of PS-L-NPs(a)and PS-S-NPs(b)with different concentrations of NaCl at different solution pH.

    Fig.3.Aggregation kinetics of PS-L-NPs(left)and PS-S-NPs(right)with different concentrations of NaCl(a,b),KCl(c,d),CaCl2(e,f),MgCl2(g,h)and Pb(NO3)2(i,j)at pH 6.

    Fig.4.The characterization of PS-L-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    Fig.5.The characterization of PS-S-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    However,for the monovalent cation system,the larger PS-NPs showed a higher tendency to aggregate,which is different with the situation in divalent cation system.The CCC values of Na+and K+for PS-L-NPs were 349.06 mmol/L and 232.60 mmol/L,which were smaller than that for PS-S-NPs(540.44 mmol/L and 412.66 mmol/L)(Fig.S5).By comparison on the zeta potential of PS-NPs(Fig.S4),PS-S-NPs had more negative charges in the same concentration of NaCl solution,indicating the smaller size of PS-NPs were indeed more stable.In fact,there are differences between studies exploring size effect on the stability of nanoparticles,even finding that the stability of colloid is insensitive to particle size[40].For instance,Afshinnia,Sikder,Cai and Baalousha[39]observed a negatively strong association between the CCC and particle size of nano-silver for monovalent cations,but no clear trend was observed for divalent cations.Deposition in secondary minimum and the narrow range of surface potential were used to explain the observed anomalous particle size effect.In DLVO theory,the surface charge of particles is assumed to be distribution uniformly,that all particles have a constant surface potential[41].In other words,it is most likely that the discrepancies with respect to particle size effects are related to the failure of the DLVO theory to consider hydrodynamic interaction and dynamics of interaction.

    In conclusion,this study set out to systematically explore the aggregation kinetics of different sizes of PS-NPs with monovalent(Na+,K+)and divalent(Ca2+,Mg2+and Pb2+)cations at different solution pH.The primary results of this investigation are summarized as follows:(1)Due to deprotonation,PS-NPs were more stable in alkaline conditions.(2)Compared with monovalent cations,divalent cations have a greater effect on the stability of PS-NPs;the hydration ability of cations with the same valence state led to the difference in the stability of PS-NPs.(3)The smaller size of PSNPs in monovalent cation system was more stable but easier to agglomerate in divalent cation system,and there were other unknown factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by Scientific Research Project of Guangzhou University(No.YK2020017),the Program Foundation of Institute for Scientific Research of Karst Area of NSFC-GZGOV(No.U1612442),Research Grants Council of the Hong Kong Special Administrative Region,China(No.UGC/IDS(R)16/19),Industry-University Cooperation and Collaborative Education Project of the Ministry of Education of the People’s Republic of China(No.202101134012)and Innovative training program for College Students of Guangzhou University(No.S202111078039).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.056.

    欧美成人性av电影在线观看| 免费在线观看日本一区| 免费看十八禁软件| 18禁美女被吸乳视频| 久久精品国产亚洲av高清一级| 制服丝袜大香蕉在线| av在线天堂中文字幕| 国产成人精品在线电影| 久久久久久大精品| 国产三级黄色录像| 国产亚洲欧美在线一区二区| 日韩视频一区二区在线观看| 日日干狠狠操夜夜爽| 午夜免费激情av| 欧美成人免费av一区二区三区| 亚洲午夜理论影院| 日韩欧美国产一区二区入口| 99国产综合亚洲精品| 在线观看日韩欧美| 怎么达到女性高潮| 免费一级毛片在线播放高清视频 | 最近最新中文字幕大全免费视频| 国产精品亚洲av一区麻豆| 中文字幕高清在线视频| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 成人手机av| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 精品一品国产午夜福利视频| 一个人观看的视频www高清免费观看 | 日韩大尺度精品在线看网址 | 99香蕉大伊视频| 国产人伦9x9x在线观看| 亚洲 欧美 日韩 在线 免费| 国产91精品成人一区二区三区| 亚洲七黄色美女视频| 女人被狂操c到高潮| 国产亚洲精品av在线| 亚洲专区中文字幕在线| 久久久久久国产a免费观看| 成年人黄色毛片网站| 级片在线观看| 成人国产综合亚洲| 国产主播在线观看一区二区| 久久久久九九精品影院| 中文字幕久久专区| 成人国产一区最新在线观看| 国产av精品麻豆| 精品一区二区三区四区五区乱码| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 99国产精品免费福利视频| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 身体一侧抽搐| 国产亚洲欧美在线一区二区| 免费在线观看亚洲国产| 久久精品国产综合久久久| www.自偷自拍.com| 99国产综合亚洲精品| 国产成人一区二区三区免费视频网站| 91在线观看av| 99re在线观看精品视频| a在线观看视频网站| xxx96com| 亚洲中文字幕一区二区三区有码在线看 | 精品一区二区三区四区五区乱码| 国产亚洲精品av在线| av天堂在线播放| 亚洲人成77777在线视频| 狂野欧美激情性xxxx| 看免费av毛片| 国产精品影院久久| 搡老妇女老女人老熟妇| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 日韩欧美一区二区三区在线观看| 久久精品91无色码中文字幕| 色尼玛亚洲综合影院| 精品福利观看| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频 | 欧美成人午夜精品| 欧美午夜高清在线| 在线观看日韩欧美| 免费在线观看视频国产中文字幕亚洲| 国产一卡二卡三卡精品| 久久人妻av系列| 一边摸一边抽搐一进一出视频| 国产又色又爽无遮挡免费看| a级毛片在线看网站| 黄色丝袜av网址大全| 日韩中文字幕欧美一区二区| 欧美日本中文国产一区发布| 亚洲免费av在线视频| 欧美乱码精品一区二区三区| 免费少妇av软件| 大型av网站在线播放| 日本在线视频免费播放| 悠悠久久av| av有码第一页| www国产在线视频色| 亚洲av五月六月丁香网| 深夜精品福利| 三级毛片av免费| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆 | 男人的好看免费观看在线视频 | 黄色丝袜av网址大全| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 黄片小视频在线播放| 国产av又大| 一级毛片高清免费大全| 亚洲欧美日韩无卡精品| 在线免费观看的www视频| 国产精品久久久人人做人人爽| 99精品欧美一区二区三区四区| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色 | 欧美成人一区二区免费高清观看 | 91成年电影在线观看| 成人免费观看视频高清| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 成熟少妇高潮喷水视频| 久久人妻av系列| 亚洲午夜精品一区,二区,三区| 精品国产超薄肉色丝袜足j| 久久国产乱子伦精品免费另类| 宅男免费午夜| 亚洲人成77777在线视频| 久久九九热精品免费| 大码成人一级视频| 国产亚洲精品第一综合不卡| 俄罗斯特黄特色一大片| 亚洲男人的天堂狠狠| 国产亚洲av高清不卡| 久久久水蜜桃国产精品网| 久久这里只有精品19| 女性被躁到高潮视频| 两个人免费观看高清视频| 如日韩欧美国产精品一区二区三区| 一级毛片女人18水好多| 美女大奶头视频| 色精品久久人妻99蜜桃| 一级毛片高清免费大全| 国产精品香港三级国产av潘金莲| 欧美乱妇无乱码| 成人精品一区二区免费| avwww免费| 在线观看免费日韩欧美大片| 久久精品亚洲精品国产色婷小说| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| 非洲黑人性xxxx精品又粗又长| 中文字幕精品免费在线观看视频| 少妇被粗大的猛进出69影院| 性少妇av在线| 亚洲 欧美 日韩 在线 免费| 黄频高清免费视频| 精品国产乱子伦一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久精品成人免费网站| 亚洲国产日韩欧美精品在线观看 | 老鸭窝网址在线观看| 啦啦啦观看免费观看视频高清 | www.熟女人妻精品国产| 老汉色∧v一级毛片| 嫩草影院精品99| 多毛熟女@视频| 亚洲精品中文字幕在线视频| 午夜亚洲福利在线播放| 午夜免费鲁丝| 国产在线观看jvid| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| 亚洲av美国av| 欧美中文日本在线观看视频| 亚洲熟女毛片儿| 视频区欧美日本亚洲| 性欧美人与动物交配| 久久香蕉精品热| 久久精品人人爽人人爽视色| 亚洲av电影不卡..在线观看| 999久久久国产精品视频| 一夜夜www| 午夜久久久久精精品| 999精品在线视频| 欧美激情极品国产一区二区三区| 国产精华一区二区三区| e午夜精品久久久久久久| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 757午夜福利合集在线观看| 午夜福利高清视频| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 宅男免费午夜| e午夜精品久久久久久久| 国产亚洲av高清不卡| 黑丝袜美女国产一区| 亚洲欧美精品综合久久99| 欧美成人午夜精品| 国产亚洲精品久久久久5区| 国产精品一区二区在线不卡| 97人妻精品一区二区三区麻豆 | 国产麻豆69| 国语自产精品视频在线第100页| 亚洲精品国产精品久久久不卡| 中文字幕色久视频| 天天躁夜夜躁狠狠躁躁| 桃红色精品国产亚洲av| 女性被躁到高潮视频| 19禁男女啪啪无遮挡网站| 99久久综合精品五月天人人| www.自偷自拍.com| 男人的好看免费观看在线视频 | 高潮久久久久久久久久久不卡| 久久人人精品亚洲av| 这个男人来自地球电影免费观看| 女人爽到高潮嗷嗷叫在线视频| 免费少妇av软件| 波多野结衣一区麻豆| 成人永久免费在线观看视频| 国产精品二区激情视频| 精品日产1卡2卡| 午夜福利高清视频| 午夜福利视频1000在线观看 | 这个男人来自地球电影免费观看| 女性被躁到高潮视频| av有码第一页| 日韩大尺度精品在线看网址 | 精品久久久久久久久久免费视频| 午夜福利欧美成人| 性少妇av在线| 男人舔女人的私密视频| 91国产中文字幕| 又黄又爽又免费观看的视频| 国产精品日韩av在线免费观看 | 国产一区二区激情短视频| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 免费观看人在逋| 亚洲在线自拍视频| 国产蜜桃级精品一区二区三区| 国产精品秋霞免费鲁丝片| 在线观看66精品国产| 亚洲性夜色夜夜综合| xxx96com| 亚洲激情在线av| 亚洲免费av在线视频| 免费在线观看影片大全网站| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 国产亚洲精品av在线| 久久精品国产清高在天天线| 大码成人一级视频| 日本免费一区二区三区高清不卡 | 亚洲一区二区三区色噜噜| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 18禁国产床啪视频网站| 免费久久久久久久精品成人欧美视频| 国产99白浆流出| 精品免费久久久久久久清纯| 美国免费a级毛片| 亚洲精品粉嫩美女一区| 人妻丰满熟妇av一区二区三区| 男人舔女人下体高潮全视频| 国产精品亚洲av一区麻豆| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点 | 又黄又爽又免费观看的视频| 免费女性裸体啪啪无遮挡网站| 啦啦啦韩国在线观看视频| 日韩欧美一区视频在线观看| 国产成人欧美在线观看| www.自偷自拍.com| 欧美日韩一级在线毛片| 不卡一级毛片| av免费在线观看网站| 亚洲无线在线观看| 九色国产91popny在线| 中文字幕人成人乱码亚洲影| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇熟女aⅴ在线视频| 国产亚洲欧美在线一区二区| 久久热在线av| 欧美午夜高清在线| 日韩欧美国产在线观看| 精品国产一区二区三区四区第35| 精品欧美一区二区三区在线| 亚洲成人精品中文字幕电影| 欧美黄色淫秽网站| 纯流量卡能插随身wifi吗| 又大又爽又粗| 欧美日韩瑟瑟在线播放| 欧美成人性av电影在线观看| 色婷婷久久久亚洲欧美| 香蕉丝袜av| 在线国产一区二区在线| 亚洲中文av在线| 级片在线观看| 99re在线观看精品视频| 两人在一起打扑克的视频| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 亚洲精品一卡2卡三卡4卡5卡| 极品教师在线免费播放| 亚洲国产欧美网| 免费高清视频大片| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 极品人妻少妇av视频| 女人被躁到高潮嗷嗷叫费观| 亚洲成av人片免费观看| 亚洲 欧美 日韩 在线 免费| 免费看十八禁软件| 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 亚洲一区中文字幕在线| av视频在线观看入口| 咕卡用的链子| 亚洲性夜色夜夜综合| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女| 国产成人精品久久二区二区免费| 午夜福利,免费看| 亚洲第一电影网av| 午夜影院日韩av| 国产国语露脸激情在线看| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 超碰成人久久| 最近最新中文字幕大全免费视频| 在线观看舔阴道视频| 亚洲精品美女久久av网站| 9色porny在线观看| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 精品国产美女av久久久久小说| 午夜福利成人在线免费观看| 日韩欧美一区视频在线观看| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| 女人精品久久久久毛片| 午夜影院日韩av| 国产区一区二久久| 久久国产乱子伦精品免费另类| 免费在线观看亚洲国产| 女人高潮潮喷娇喘18禁视频| 久久精品国产99精品国产亚洲性色 | 日韩欧美三级三区| 国产aⅴ精品一区二区三区波| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| 一进一出好大好爽视频| 久久久久久久久免费视频了| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看 | 色综合婷婷激情| 国产免费av片在线观看野外av| 日本a在线网址| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 欧美黑人欧美精品刺激| e午夜精品久久久久久久| 久久精品91蜜桃| av视频在线观看入口| 丁香六月欧美| 一区二区日韩欧美中文字幕| 国产麻豆69| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清 | 精品国产美女av久久久久小说| 欧美色欧美亚洲另类二区 | 国产色视频综合| 无限看片的www在线观看| 亚洲熟妇熟女久久| www.精华液| 神马国产精品三级电影在线观看 | 久久婷婷人人爽人人干人人爱 | 日本精品一区二区三区蜜桃| 国产精品野战在线观看| 精品久久久久久久毛片微露脸| 欧美乱码精品一区二区三区| 最近最新中文字幕大全免费视频| 一级a爱视频在线免费观看| 国产精品 国内视频| 亚洲专区国产一区二区| tocl精华| 自线自在国产av| 黄色片一级片一级黄色片| 精品电影一区二区在线| 亚洲欧美激情综合另类| 啦啦啦免费观看视频1| 国产精品久久电影中文字幕| 精品乱码久久久久久99久播| 看免费av毛片| 露出奶头的视频| 黑人操中国人逼视频| av在线天堂中文字幕| 欧美 亚洲 国产 日韩一| 亚洲七黄色美女视频| 免费无遮挡裸体视频| 欧美成人一区二区免费高清观看 | 国产区一区二久久| 国产精品香港三级国产av潘金莲| 最新美女视频免费是黄的| 亚洲精品美女久久久久99蜜臀| 一级毛片女人18水好多| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 十八禁人妻一区二区| 日本黄色视频三级网站网址| 久久香蕉激情| 午夜福利18| 亚洲精品国产一区二区精华液| 免费av毛片视频| 久久热在线av| 亚洲无线在线观看| 757午夜福利合集在线观看| av超薄肉色丝袜交足视频| 中文亚洲av片在线观看爽| 69精品国产乱码久久久| 婷婷精品国产亚洲av在线| 欧美黄色淫秽网站| 国产免费av片在线观看野外av| 亚洲精品久久成人aⅴ小说| 午夜久久久在线观看| 亚洲第一青青草原| 男男h啪啪无遮挡| 少妇裸体淫交视频免费看高清 | 国内久久婷婷六月综合欲色啪| 久久精品国产清高在天天线| 国产精品野战在线观看| 18禁美女被吸乳视频| 久热爱精品视频在线9| 国产精华一区二区三区| 日韩欧美国产一区二区入口| 国产亚洲欧美精品永久| 99精品欧美一区二区三区四区| 成人精品一区二区免费| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 日韩大尺度精品在线看网址 | 国产精品1区2区在线观看.| 日韩高清综合在线| 午夜福利高清视频| 99久久综合精品五月天人人| 免费在线观看完整版高清| 91精品国产国语对白视频| 免费看美女性在线毛片视频| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区精品| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色 | 母亲3免费完整高清在线观看| 久久精品91蜜桃| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 亚洲av成人一区二区三| 69av精品久久久久久| 久久精品91蜜桃| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩高清在线视频| 国内毛片毛片毛片毛片毛片| 九色亚洲精品在线播放| 日本一区二区免费在线视频| 国产又色又爽无遮挡免费看| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 97人妻天天添夜夜摸| 91国产中文字幕| 国产av在哪里看| 久久伊人香网站| 亚洲精品国产精品久久久不卡| 老司机深夜福利视频在线观看| 99riav亚洲国产免费| 好男人电影高清在线观看| www国产在线视频色| 午夜免费观看网址| 国产亚洲精品综合一区在线观看 | 男女之事视频高清在线观看| 动漫黄色视频在线观看| 免费不卡黄色视频| 黄色女人牲交| 午夜日韩欧美国产| 亚洲黑人精品在线| 免费在线观看影片大全网站| 91麻豆av在线| 长腿黑丝高跟| 亚洲自偷自拍图片 自拍| 嫁个100分男人电影在线观看| 亚洲av成人不卡在线观看播放网| 久久伊人香网站| 国产三级黄色录像| 亚洲色图av天堂| 国产欧美日韩一区二区精品| 欧美在线黄色| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 999精品在线视频| 少妇的丰满在线观看| 1024香蕉在线观看| 好看av亚洲va欧美ⅴa在| 又大又爽又粗| 涩涩av久久男人的天堂| 久久人妻av系列| 国产成人精品在线电影| 变态另类成人亚洲欧美熟女 | 国产不卡一卡二| 淫妇啪啪啪对白视频| 日本免费a在线| 日韩中文字幕欧美一区二区| 成人国语在线视频| 国产精品二区激情视频| 在线十欧美十亚洲十日本专区| 如日韩欧美国产精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 伦理电影免费视频| av在线天堂中文字幕| 日韩中文字幕欧美一区二区| 国产单亲对白刺激| 一二三四社区在线视频社区8| 久久精品亚洲熟妇少妇任你| 男人操女人黄网站| 久久狼人影院| 丁香六月欧美| 麻豆av在线久日| 亚洲少妇的诱惑av| 亚洲天堂国产精品一区在线| 免费高清在线观看日韩| 亚洲三区欧美一区| 最新在线观看一区二区三区| 亚洲久久久国产精品| 中文字幕精品免费在线观看视频| tocl精华| av欧美777| 窝窝影院91人妻| a级毛片在线看网站| 日韩欧美国产一区二区入口| 制服人妻中文乱码| 极品教师在线免费播放| 国产99白浆流出| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 岛国在线观看网站| av福利片在线| 国产免费av片在线观看野外av| 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 国产xxxxx性猛交| 啦啦啦韩国在线观看视频| 免费搜索国产男女视频| 久久久久亚洲av毛片大全| 亚洲精品国产色婷婷电影| 天天添夜夜摸| 不卡一级毛片| 国产激情久久老熟女| 女性生殖器流出的白浆| 九色亚洲精品在线播放| 两人在一起打扑克的视频| 99国产精品免费福利视频| 美女国产高潮福利片在线看| 非洲黑人性xxxx精品又粗又长| 国产一卡二卡三卡精品| 99国产精品一区二区三区| 日韩有码中文字幕| 1024香蕉在线观看| 少妇熟女aⅴ在线视频| 国产麻豆成人av免费视频| 男女做爰动态图高潮gif福利片 | 国产三级黄色录像| 国产视频一区二区在线看| 狂野欧美激情性xxxx| 美女高潮到喷水免费观看| 变态另类成人亚洲欧美熟女 | 97人妻精品一区二区三区麻豆 | 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 国产精品永久免费网站| 亚洲视频免费观看视频| 国产高清videossex| 在线永久观看黄色视频| 黄片播放在线免费| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 老鸭窝网址在线观看| 国产一级毛片七仙女欲春2 | 亚洲第一欧美日韩一区二区三区| av欧美777| 50天的宝宝边吃奶边哭怎么回事| 亚洲av电影在线进入| 天天一区二区日本电影三级 | 久久国产精品影院| 99精品久久久久人妻精品| 精品久久久久久,| 法律面前人人平等表现在哪些方面| 1024香蕉在线观看| 一级毛片高清免费大全|