• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations

    2023-01-30 06:49:18YuchengZhngXiotongSuNorTmXiolnLoMeilingZhongQihngWuHuifngLeiZihuiChenZhngLiJieFu
    Chinese Chemical Letters 2022年12期

    Yucheng Zhng ,Xiotong Su,Nor F.Y.Tm,Xioln Lo ,Meiling Zhong ,Qihng Wu,*,Huifng Lei ,Zihui Chen,Zhng Li ,Jie Fu,*

    a Key Laboratory for Water Quality and Conservation of the Pearl Stream Delta,Ministry of Education,School of Enviro nmental Science and Engineering,Guangzhou University,Guangzhou 510006,China

    b State Key Laboratory of Marine Pollution and Department of Chemistry,City University of Hong Kong,Hong Ko ng,China

    c School of Science and Technology,Open University of Hong Kong,Hong Kong,China

    d School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords:Polystyrene nanoplastics Lead cation Aggregation kinetics Critical coagulation concentration Size effect

    ABSTRACT Once inevitably released into the aquatic environment,polystyrene nanoplastics(PS-NPs)will present complicated environmental behaviors,of which the aggregation is a key process determining their environmental fate and impact.In this study,the aggregation kinetics of different sizes(30 nm and 100 nm)of PS-NPs with metal cations(Na+,K+,Ca2+,Mg2+and Pb2+)at different solution pH(3,6 and 8)were investigated.The results showed that the aggregation of PS-NPs increased with cation concentration.Taking Pb2+as an example,the adsorption behavior of cations onto PS-NPs was determined by transmission electron microscopy(TEM)and energy dispersive X-ray(EDX)spectroscopy,which demonstrated Pb2+could be adhered onto the surface of PS-NPs with the effect of charge neutralization.The critical coagulation concentrations(CCC)of smaller PS-NPs were higher than that of larger PS-NPs for monovalent cations,whereas a different pattern is observed for divalent cations.It was suggested that there were other factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.In addition,it should be noted that PS-NPs had the capacity of adsorbing large amounts of heavy metal cations and carried them transport to a long distance,and the corresponding ecological risks need to further elucidate.

    Plastics,known as revolutionary materials,have been widely used in various fields since their birth in 1905[1].The global consumption of plastics is growing at an annual rate of 4%,increasing from 1.3 million tons in 1950 to 322 million tons in 2015,and then reaching 369 million tons in 2018[2].Due to the failure of effective collection,disposal and control of plastic wastes,some plastic fragments or particles are discharged into the natural environment,affecting the normal operation of the ecosystem.Plastic particles with a size less than 100 nm,called nanoplastics,are supposed to be a new type of contaminant,which have ignited the research passion of scholars around the world over the last decade[3].On one hand,nanoplastics from cosmetics,personal hygiene products,and industrial products such as 3D printing and nanocapsules are constantly released into the environment during their use and production[4].On the other hand,polymer-based materials are easy to degrade into plastic fragments under the action of high salinity,light,heat and microorganisms[5].

    The biological effects of nanoparticles are closely related to particle size.Moore[6]found that the bioavailability of microplastics was largely affected by their particle size.There is a growing body of literature that recognizes the toxic effects of nanoplastics on hydrobiont,which were mainly evaluated through energy consumption,oxidative damage,enzyme activity,reproduction and growth rate[7–9].Some researchers believe that the aggregation behavior of nanoplastics in water environment is one of the main factors affecting their environmental migration and biological toxicity,and thus focus on the colloidal stability and aggregation dynamics of nanoplastics[10,11].Surface chemical properties of nanoplastics play an important role in colloid aggregation,and ultimately affect their behavior and fate in water environment[12].Yuet al.[13]have investigated the aggregation of a series of surfacemodified polystyrene nanoplastics,and found that the negatively charged and positively charged nanoplastics exhibited different aggregation behaviors.In addition,it has previously been observed that solution properties such as pH,ionic strength,and valence of ions influence the colloidal stability and aggregation behavior of nanoparticles[14].Metal cations have been demonstrated to significantly affect the stability of nanoplastics when they are adhered on nanoplatics[15–17].Conversely,nanoplastics can adsorb large amounts of metal cations in heavy metals polluted water,and carry them to migrate,posing a greater potential risk[17].

    In this study,two commercial polystyrene nanoplastics(PSNPs)with different sizes,30 nm representing small size(PS-S)and 100 nm representing large size(PS-L),were used as model nanoplastics to systematically explore their aggregation kinetics in water with monovalent(Na+and K+)and divalent(Ca2+,Mg2+and Pb2+)metal cations.Polystyrene is one of the most widely used plastic materials[18],and Pb2+is also a common ion in heavy metal polluted water[19].The attachment efficiencies and critical coagulation concentrations of PS-NPs under different conditions were calculated.The research purpose is to reveal the important roles of particle size and metal cations in the aggregation process of nanoplastics.The provided information could improve the understanding of the environmental behavior and ecological risks of nanoplastics.

    The PS-S-NPs suspension(1.0%w/v,15 mL,30 nm)was obtained from Thermo Fisher Scientific(Shanghai,China),and PS-L-NPs suspension(2.5%w/v,10 mL,100 nm)was purchased from Tianjin BaseLine ChromTech Research Center(Tianjin,China).The NaCl,KCl,MgCl2,CaCl2and Pb(NO3)2of analytical grade were used as the experimental electrolytes.The solution pH was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH(Titrisol,Merck,Austria).All the nanoplastics suspensions were diluted to about 10 mg/L with ultrapure water(18.2 MΩ,Milli-Q,Millipore).After adding different concentrations of electrolytes and adjusting to the desired pH,the experimental nanoplastics suspensions were prepared.The hydrodynamic diameter and zeta potential of each sample were measured by dynamic light scattering(DLS)with a 90°scattering angle(ZetaPALS/BI-90 Plus,Brookhaven Instruments Corp.,New York,USA).The suspension temperature was maintained at 25°C.The characteristic of PS-NPs before and after experiments were visualized using a TecnaiG2F20 S-Twin transmission electron microscope(TEM,FEI,USA).The distribution of elemental composition was analyzed by an energy-dispersive X-ray spectroscopy(EDX)system(X-MaxN 80T,Oxford Instruments NanoAnalysis,USA).Fourier transform-infrared(FT-IR)spectra were performed to identify the structural and functional groups of PS-NPs.

    The initial aggregation rate constant of PS-NPs(k)is proportional to the change of hydrodynamic diameter(Dh)from the timeresolved DLS measurements with respect to time(t),but inversely proportional to the primary particle concentration of PS-NPs(C)(Eq.1)[20]:

    In aggregation experiments,theCwas maintained at 10 mg/L.can be acquired by performing the linear least-squares regression for the initial increase inDh(t)witht.For most experiments,the regression analysis was performed over a time fromDh(0)to 1.3Dh(0),whereDh(0)represented the initialDh.Under some unfavorable conditions thatDh(t)fail to reach 1.3Dh(0),the aggregation of PS-NPs was negligible andwas determined with the achieved maximumDh(t).For some extremely fast aggregation thatDh(t)may go beyond 1.3Dh(0)when experiment has just begun,only the points that showed a linear relationship were chosen to calculate the aggregation rate.

    The attachment efficiency(α)was employed to calculate critical coagulation concentrations(CCC)to make a quantitative description of aggregation kinetics of PS-NPs.αwas calculated by normalizing the aggregation rate constantk(acquired in a certain suspension)to the rate constant at the fast aggregation conditionskfast(obtained in the diffusion limited aggregation regime,where the aggregation rate was independent on electrolyte concentrations)(Eq.2):

    Eventually,the experimental CCC values were determined from the intersect of extrapolated lines through the diffusion and reaction limited regimes.

    The Derjaguin-Landau-Verwey-Overbeek(DLVO)theory with particle-particle model was used to give further elucidation of the observed results.Under various chemical conditions,the interaction energy,including van der Waals attractionVA(h),and electrostatic double-layer(EDL)repulsionVR(h),were calculated[21–23].The total interaction energyVT(h)was calculated using the following equations(Eqs.3–8):

    where APWPwas the combined Hamaker constant for PS-NPs interacting through water for a PS-water-PS system,and the Hamaker constants of PS-L-NPs and PS-S-NPs were 3.5×10?21J and 2.3×10?21J respectively[23].b=5.32λwas the characteristic wavelength of the interaction with an often assumed value of 100 nm.Rwas the radius of PS-NPs.hwas separation distance between particles,which was much smaller than their radius(h<

    Fig.S1(Supporting information)presents the FT-IR spectra of PS-L-NPs and PS-S-NPs.Peaks at 700,750,and 3020 cm?1were designated to the benzene ring structure,and those peaks at 1490 and 1450 cm?1were ascribed to the aromatic C–H deformation[24,25].The broad and sharp bands at 1600 and 2920 cm?1were attributed to the stretching vibration of aromatic C=C group and deformation of aliphatic C–H group,respectively[26].Peak at 3450 cm?1was ascribed to hydroxyl stretching,originated from water adsorption[27].The peak at 1700 cm?1for PS-S-NPs probably contributed to C=O group related to the presence of carboxyl groups[28].

    Fig.1.TEM images and hydrodynamic size distributions of PS-L-NPs(a,b),and PSS-NPs(c,d).

    The size and shape of PS-L-NPs were detected by TEM,and it showed that PS-L-NPs had a spherical shape with an average diameter of 100 nm(Fig.1a).The hydrodynamic size distribution of PS-L-NPs measured by DLS was ranged from 80 nm to 150 nm with an average diameter of 110 nm(Fig.1b).The morphology of PS-SNPs was also confirmed by TEM(Fig.1c).The hydrodynamic size distribution of PS-S-NPs was ranged from 20 nm to 70 nm with an average diameter of 33 nm(Fig.1d).

    To assess the effect of pH on PS-NPs aggregation,the attachment efficiencies(α)of PS-L-NPs and PS-S-NPs with different concentrations of NaCl were calculated and displayed in Fig.2.Whenαapproaches to 1,the aggregation process is regarded as diffusionlimited[29].Different solution pH(3,6 and 8)led to differences in the aggregation profiles,and a higher pH value hindered the approaching ofαto 1.Correspondingly,the experimental CCC of NaCl for PS-L-NPs at pH of 3,6 and 8 were 193.86 mmol/L,349.06 mmol/L and 470.41 mmol/L,respectively,and for PS-S-NPs were 380.13 mmol/L,540.44 mmol/L and 755.26 mmol/L,respectively.There was a strong linear correlation between CCC and pH value(Fig.S2 in Supporting information).From this data,the aggregation of PS-NPs was suppressed with decreasing the solution pH,which is consistent with the phenomenon reported in previous study[30].The DLVO theoretical calculations were accorded with the experimental CCC values under different pH conditions.As shown in Fig.S3(Supporting information),the energy barrier decreased with increasing the concentration of NaCl,which is also reported by other studies[31].

    Previous studies have indicated the protonation and deprotonation on the surface of PS-NPs play an important role in the aggregation behavior[32].Therefore,the zeta potential of PS-NPs was measured and it was found that the zeta potential became more negative with increasing the pH values(Fig.S4 in Supporting information).For example,the zeta potential of PS-L-NPs in NaCl solution of 400 mmol/L decreased from?6.69 mV to?14.97 mV with increasing the pH from 6 to 8(Fig.S4a),indicating that electrostatic repulsion between PS-NPs could be increased under alkaline conditions,which may reduce the aggregation between nanoplastics particles.It is suggested that the surface of PS-NPs could be easily deprotonated with increasing the pH,leading to improved stability of PS-NPs[33].

    For convenience,the subsequent aggregation experiments were carried out at pH 6.Fig.3 presents the increases of hydrodynamic diameter of PS-NPs along time with different types and concentrations of cations.In the presence of low concentration of cations,like 100 mmol/L NaCl,PS-NPs kept a relative stability due to the dominance of electrostatic repulsive forces[14].With the increase of cation concentration,hydrodynamic diameter of PS-NPs increased quickly.According to the DLVO theory,the addition of cations led to characteristic adsorption and charge neutralization,where van der Waals forces dominated and the repulsion barrier was compressed.Thus,it was shown in Fig.S3 that the energy barriers of PS-NPs had been weakened as the cation concentration increased.When the cation concentration reached the CCC value,the PS-NPs were extremely unstable due to diffusion limitation,which eventually led to agglomeration between particles(Fig.S5 in Supporting information).

    Compared the effects of mono-and divalent cations on PS-NPs aggregation,it is found that divalent cations were easier to induce the aggregation of PS-NPs relative to monovalent cations.For instance,the CCC values of NaCl and KCl for PS-L-NPs were ranged from 232.60 mmol/L to 349.06 mmol/L,while those of MgCl2,CaCl2and Pb(NO3)2were reduced to 16.25–40.31 mmol/L(Fig.S5).The ratio between the CCC values of Ca2+and Na+was proportional toz?3.37(wherez=2 was the counterion valence for calcium)(Table S1 in Supporting information),consisting with the Schulze-Hardy Rule[34].For the differences in CCC values of cations with the same valence state,a possible explanation was ascribed to the hydration layer forming between metal cations and water molecules.In other words,cations with larger radii tend to interact with more water molecules[30,35],thus producing a higher promotion effect on the aggregation of PS-NPs.Correspondingly,the promotion effects of divalent cations were in the same order with their radii:Pb2+>Ca2+>Mg2+(Table S1).

    At present,a large number of studies have reported the size effect on the agglomeration and stability of nanoparticles,however,the size effect on the aggregation of PS-NPs has not been investigated explicitly in the existing literature[36–40].The DLVO theory predicts a marked decrease in rates of coagulation of colloidal particles with an increase in particle size[41].In this study,the CCC values of divalent ions(Ca2+,Mg2+and Pb2+)for PS-S-NPs were lower than for PS-L-NPs(Fig.S5),which agreed with DLVO prediction.This revealed that the PS-L-NPs needed a higher concentration of divalent cations to break the stable state.The more negative zeta potential of PS-L-NPs relative to PS-S-NPs also confirmed the recalcitrance of PS-L-NPs to aggregation(Fig.S4).Besides,a common view was that higher adsorption rate of divalent cations occurred on the smaller particle,owing to the higher Gibbs free energy associated with the smaller particles.Figs.4 and 5 present the TEM and EDX spectra of PS-NPs after the aggregation experiments with Pb2+.From Fig.4a,we can see that PS-L-NPs strikingly aggregated each other.At the same time,the EDX spectra showed the enrichment of Pb on the surface of PS-L-NPs,indicating that Pb2+cations were adsorbed on PS-L-NPs(Figs.4b-d).This characterization demonstrated the important role of Pb2+in the induction of PS-NPs aggregation by the charge neutralization.Relatively,after the aggregation experiment with Pb2+,the PS-S-NPs agglomerated closely into larger particles(>1μm)and the surfaces were studded with Pb(Fig.5).This result demonstrated a stronger adsorption capacity of PS-S-NPs for Pb2+,which might be the key reason to explain the higher aggregation potential of smaller PS-NPs relative to larger PS-NPs with divalent cations.

    Fig.2.Attachment efficiencies(α)of PS-L-NPs(a)and PS-S-NPs(b)with different concentrations of NaCl at different solution pH.

    Fig.3.Aggregation kinetics of PS-L-NPs(left)and PS-S-NPs(right)with different concentrations of NaCl(a,b),KCl(c,d),CaCl2(e,f),MgCl2(g,h)and Pb(NO3)2(i,j)at pH 6.

    Fig.4.The characterization of PS-L-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    Fig.5.The characterization of PS-S-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    However,for the monovalent cation system,the larger PS-NPs showed a higher tendency to aggregate,which is different with the situation in divalent cation system.The CCC values of Na+and K+for PS-L-NPs were 349.06 mmol/L and 232.60 mmol/L,which were smaller than that for PS-S-NPs(540.44 mmol/L and 412.66 mmol/L)(Fig.S5).By comparison on the zeta potential of PS-NPs(Fig.S4),PS-S-NPs had more negative charges in the same concentration of NaCl solution,indicating the smaller size of PS-NPs were indeed more stable.In fact,there are differences between studies exploring size effect on the stability of nanoparticles,even finding that the stability of colloid is insensitive to particle size[40].For instance,Afshinnia,Sikder,Cai and Baalousha[39]observed a negatively strong association between the CCC and particle size of nano-silver for monovalent cations,but no clear trend was observed for divalent cations.Deposition in secondary minimum and the narrow range of surface potential were used to explain the observed anomalous particle size effect.In DLVO theory,the surface charge of particles is assumed to be distribution uniformly,that all particles have a constant surface potential[41].In other words,it is most likely that the discrepancies with respect to particle size effects are related to the failure of the DLVO theory to consider hydrodynamic interaction and dynamics of interaction.

    In conclusion,this study set out to systematically explore the aggregation kinetics of different sizes of PS-NPs with monovalent(Na+,K+)and divalent(Ca2+,Mg2+and Pb2+)cations at different solution pH.The primary results of this investigation are summarized as follows:(1)Due to deprotonation,PS-NPs were more stable in alkaline conditions.(2)Compared with monovalent cations,divalent cations have a greater effect on the stability of PS-NPs;the hydration ability of cations with the same valence state led to the difference in the stability of PS-NPs.(3)The smaller size of PSNPs in monovalent cation system was more stable but easier to agglomerate in divalent cation system,and there were other unknown factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by Scientific Research Project of Guangzhou University(No.YK2020017),the Program Foundation of Institute for Scientific Research of Karst Area of NSFC-GZGOV(No.U1612442),Research Grants Council of the Hong Kong Special Administrative Region,China(No.UGC/IDS(R)16/19),Industry-University Cooperation and Collaborative Education Project of the Ministry of Education of the People’s Republic of China(No.202101134012)and Innovative training program for College Students of Guangzhou University(No.S202111078039).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.056.

    成年人黄色毛片网站| 十分钟在线观看高清视频www| 欧美丝袜亚洲另类 | 国产精品一区二区三区四区久久 | 久久九九热精品免费| 人妻久久中文字幕网| 在线观看舔阴道视频| 999久久久国产精品视频| 国产欧美日韩一区二区三| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 麻豆一二三区av精品| 亚洲欧美一区二区三区黑人| 淫秽高清视频在线观看| 久久久久国内视频| 性少妇av在线| 国产aⅴ精品一区二区三区波| 欧美乱色亚洲激情| 999久久久国产精品视频| 少妇被粗大的猛进出69影院| 亚洲无线在线观看| 国产精品 国内视频| 桃红色精品国产亚洲av| x7x7x7水蜜桃| 天堂影院成人在线观看| 欧美最黄视频在线播放免费| 免费在线观看日本一区| 最新美女视频免费是黄的| 脱女人内裤的视频| 在线观看舔阴道视频| 久热爱精品视频在线9| 精品电影一区二区在线| 亚洲精品美女久久久久99蜜臀| 99riav亚洲国产免费| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 色哟哟哟哟哟哟| 黄色女人牲交| 亚洲人成电影观看| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 他把我摸到了高潮在线观看| 一边摸一边抽搐一进一小说| 亚洲欧美日韩高清在线视频| 精品国产超薄肉色丝袜足j| 免费在线观看完整版高清| 中国美女看黄片| 多毛熟女@视频| 激情在线观看视频在线高清| 丰满的人妻完整版| 制服诱惑二区| 久久国产亚洲av麻豆专区| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 亚洲伊人色综图| 午夜福利免费观看在线| aaaaa片日本免费| 91九色精品人成在线观看| 免费看a级黄色片| 极品教师在线免费播放| 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一出视频| 日本欧美视频一区| 在线观看午夜福利视频| 亚洲色图综合在线观看| 最好的美女福利视频网| 日韩av在线大香蕉| 欧美大码av| 亚洲电影在线观看av| 99热只有精品国产| 男人操女人黄网站| 精品卡一卡二卡四卡免费| 国产精品综合久久久久久久免费 | 91成人精品电影| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜添小说| 成人永久免费在线观看视频| 一边摸一边抽搐一进一出视频| 午夜两性在线视频| 亚洲中文字幕日韩| 亚洲avbb在线观看| 人人澡人人妻人| 亚洲专区国产一区二区| 国产在线观看jvid| 99精品欧美一区二区三区四区| 久久精品影院6| av超薄肉色丝袜交足视频| 久久久精品国产亚洲av高清涩受| 亚洲国产精品久久男人天堂| 看片在线看免费视频| 国产乱人伦免费视频| 午夜影院日韩av| 国产不卡一卡二| 美女高潮喷水抽搐中文字幕| 亚洲av电影在线进入| 久久中文字幕一级| 亚洲av熟女| 免费在线观看黄色视频的| 亚洲av电影不卡..在线观看| 中文字幕久久专区| 变态另类成人亚洲欧美熟女 | 国产麻豆成人av免费视频| 色综合婷婷激情| 涩涩av久久男人的天堂| 1024视频免费在线观看| 丁香六月欧美| 日本五十路高清| 免费女性裸体啪啪无遮挡网站| 亚洲欧美精品综合久久99| 9热在线视频观看99| 丰满的人妻完整版| aaaaa片日本免费| 欧美日韩瑟瑟在线播放| 欧美午夜高清在线| 国产精品秋霞免费鲁丝片| 欧美乱码精品一区二区三区| 少妇被粗大的猛进出69影院| 免费在线观看亚洲国产| 欧美激情久久久久久爽电影 | 久久 成人 亚洲| 日本五十路高清| 国产高清有码在线观看视频 | 国产精品久久视频播放| 国产成人免费无遮挡视频| 亚洲伊人色综图| 久久精品国产亚洲av高清一级| 校园春色视频在线观看| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 国产99白浆流出| 国产三级黄色录像| 性欧美人与动物交配| 亚洲av五月六月丁香网| 黄色视频不卡| 最新在线观看一区二区三区| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 国产精品永久免费网站| 亚洲全国av大片| 一二三四社区在线视频社区8| 97碰自拍视频| 色婷婷久久久亚洲欧美| 色哟哟哟哟哟哟| 国产xxxxx性猛交| 美女高潮到喷水免费观看| 母亲3免费完整高清在线观看| 97超级碰碰碰精品色视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本视频| 精品电影一区二区在线| 他把我摸到了高潮在线观看| 叶爱在线成人免费视频播放| 欧美日韩福利视频一区二区| 高清在线国产一区| 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 久久久国产精品麻豆| 国产单亲对白刺激| 老汉色∧v一级毛片| 老司机深夜福利视频在线观看| 国产一级毛片七仙女欲春2 | 免费少妇av软件| 国产又爽黄色视频| 国产精品九九99| 欧美色视频一区免费| 国产av一区在线观看免费| 国产成+人综合+亚洲专区| 一边摸一边做爽爽视频免费| 国产精品香港三级国产av潘金莲| 99香蕉大伊视频| 一本综合久久免费| 亚洲视频免费观看视频| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 日韩三级视频一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 久久久久亚洲av毛片大全| 狠狠狠狠99中文字幕| 久久热在线av| 国产真人三级小视频在线观看| 亚洲成av人片免费观看| 色婷婷久久久亚洲欧美| 国产精品日韩av在线免费观看 | 欧美黄色片欧美黄色片| 可以免费在线观看a视频的电影网站| 欧美成人午夜精品| 免费女性裸体啪啪无遮挡网站| 国产日韩一区二区三区精品不卡| 免费看a级黄色片| 又大又爽又粗| 国产亚洲精品av在线| 一区二区日韩欧美中文字幕| 亚洲成a人片在线一区二区| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 精品久久久久久成人av| 午夜影院日韩av| 嫁个100分男人电影在线观看| 色综合婷婷激情| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片 | 欧美最黄视频在线播放免费| 9热在线视频观看99| 男女午夜视频在线观看| 亚洲人成77777在线视频| bbb黄色大片| 成人欧美大片| 99久久久亚洲精品蜜臀av| 宅男免费午夜| 电影成人av| 精品久久蜜臀av无| 亚洲最大成人中文| 欧美在线黄色| 两个人视频免费观看高清| 亚洲男人的天堂狠狠| 日本免费一区二区三区高清不卡 | 日本黄色视频三级网站网址| 日韩av在线大香蕉| 女人爽到高潮嗷嗷叫在线视频| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 国产亚洲av嫩草精品影院| 日韩国内少妇激情av| 国产精品二区激情视频| 国内久久婷婷六月综合欲色啪| 亚洲av成人不卡在线观看播放网| 久久性视频一级片| av免费在线观看网站| videosex国产| 啦啦啦观看免费观看视频高清 | 精品国产乱子伦一区二区三区| 亚洲国产毛片av蜜桃av| 人人妻人人澡人人看| 少妇 在线观看| 极品教师在线免费播放| 精品久久久久久久人妻蜜臀av | 欧美中文日本在线观看视频| 天天躁夜夜躁狠狠躁躁| 久久九九热精品免费| 女性被躁到高潮视频| 在线天堂中文资源库| 亚洲精品国产一区二区精华液| 此物有八面人人有两片| 午夜免费激情av| 日韩国内少妇激情av| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 最好的美女福利视频网| 美女 人体艺术 gogo| 麻豆成人av在线观看| 日本免费a在线| 午夜免费鲁丝| 欧美黄色片欧美黄色片| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 亚洲色图av天堂| 免费高清在线观看日韩| 一级毛片精品| 十八禁网站免费在线| 精品久久久久久成人av| 国产真人三级小视频在线观看| 午夜老司机福利片| 国产高清视频在线播放一区| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 欧美成人免费av一区二区三区| 亚洲伊人色综图| 欧美色视频一区免费| 97人妻天天添夜夜摸| 亚洲性夜色夜夜综合| 精品国内亚洲2022精品成人| 欧美黄色片欧美黄色片| 久久影院123| 一a级毛片在线观看| 免费不卡黄色视频| 999久久久国产精品视频| 男人的好看免费观看在线视频 | 久久精品亚洲精品国产色婷小说| 嫩草影院精品99| 窝窝影院91人妻| 欧美午夜高清在线| 久久久久精品国产欧美久久久| 韩国精品一区二区三区| 国产精品av久久久久免费| 亚洲成人精品中文字幕电影| 国产精品av久久久久免费| 久久这里只有精品19| 亚洲最大成人中文| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 久久天堂一区二区三区四区| 99riav亚洲国产免费| 校园春色视频在线观看| 国产午夜福利久久久久久| 一进一出好大好爽视频| 在线观看免费午夜福利视频| 欧美日本视频| 男女做爰动态图高潮gif福利片 | 狂野欧美激情性xxxx| 国产成人精品久久二区二区91| 中文字幕高清在线视频| 亚洲中文av在线| 国内精品久久久久精免费| 亚洲成人国产一区在线观看| 正在播放国产对白刺激| 他把我摸到了高潮在线观看| 日韩欧美国产在线观看| 18禁国产床啪视频网站| 日韩欧美国产在线观看| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| 天天躁狠狠躁夜夜躁狠狠躁| 欧美丝袜亚洲另类 | 久久伊人香网站| 国产精品久久久av美女十八| 久久久久国产一级毛片高清牌| 91成人精品电影| 三级毛片av免费| 国产欧美日韩一区二区三区在线| bbb黄色大片| 99久久久亚洲精品蜜臀av| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| av网站免费在线观看视频| 老司机深夜福利视频在线观看| av在线天堂中文字幕| 丝袜美足系列| or卡值多少钱| 国产熟女xx| 天天添夜夜摸| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 国产免费男女视频| 日日干狠狠操夜夜爽| 又黄又粗又硬又大视频| 两个人视频免费观看高清| 超碰成人久久| 欧美在线一区亚洲| 国产乱人伦免费视频| 69av精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美免费精品| www日本在线高清视频| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 亚洲狠狠婷婷综合久久图片| 美国免费a级毛片| 嫩草影院精品99| 黑人操中国人逼视频| 久久久精品欧美日韩精品| 一级毛片高清免费大全| 亚洲性夜色夜夜综合| 欧美日本视频| 91成年电影在线观看| 91国产中文字幕| 搡老妇女老女人老熟妇| 国产片内射在线| 纯流量卡能插随身wifi吗| 黄色视频,在线免费观看| 亚洲精品国产一区二区精华液| 每晚都被弄得嗷嗷叫到高潮| 狠狠狠狠99中文字幕| 啦啦啦韩国在线观看视频| 国产在线观看jvid| 99香蕉大伊视频| 一二三四在线观看免费中文在| 久久亚洲真实| 麻豆成人av在线观看| 日韩大码丰满熟妇| 国产成人欧美| 99久久国产精品久久久| 国产野战对白在线观看| 91麻豆av在线| 黄色女人牲交| 夜夜躁狠狠躁天天躁| 亚洲熟妇熟女久久| 9191精品国产免费久久| 亚洲精品中文字幕一二三四区| 超碰成人久久| 一级,二级,三级黄色视频| 国产精品亚洲一级av第二区| 波多野结衣一区麻豆| 国产精品综合久久久久久久免费 | 女人爽到高潮嗷嗷叫在线视频| 香蕉丝袜av| 中文字幕精品免费在线观看视频| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 免费看十八禁软件| 国产成人欧美| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 亚洲成国产人片在线观看| 日韩 欧美 亚洲 中文字幕| www.精华液| 少妇被粗大的猛进出69影院| 亚洲欧美日韩高清在线视频| 国产精品爽爽va在线观看网站 | 欧美成人午夜精品| 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 久久精品国产99精品国产亚洲性色 | 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 女生性感内裤真人,穿戴方法视频| 亚洲中文日韩欧美视频| 免费观看人在逋| 亚洲国产精品合色在线| 一本久久中文字幕| 老汉色∧v一级毛片| 一进一出抽搐动态| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 欧美黄色片欧美黄色片| 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 亚洲九九香蕉| 免费在线观看黄色视频的| 国产成人欧美| 一级作爱视频免费观看| 身体一侧抽搐| 高清毛片免费观看视频网站| 午夜激情av网站| 大型av网站在线播放| 成人永久免费在线观看视频| 国产精品av久久久久免费| 免费一级毛片在线播放高清视频 | 亚洲一区高清亚洲精品| 日韩免费av在线播放| 黄片大片在线免费观看| 99国产精品一区二区三区| 国产成人精品在线电影| 脱女人内裤的视频| 国产私拍福利视频在线观看| 亚洲成人精品中文字幕电影| 一个人免费在线观看的高清视频| 国内久久婷婷六月综合欲色啪| 国产精品影院久久| 国产色视频综合| 国产精品98久久久久久宅男小说| 制服丝袜大香蕉在线| 99精品在免费线老司机午夜| 亚洲片人在线观看| 午夜老司机福利片| 黄色成人免费大全| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 此物有八面人人有两片| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| 一进一出抽搐动态| 精品国产一区二区三区四区第35| 亚洲情色 制服丝袜| 久久久久久大精品| 岛国在线观看网站| 男人的好看免费观看在线视频 | 香蕉国产在线看| 成人手机av| 欧美不卡视频在线免费观看 | 午夜免费鲁丝| 一区福利在线观看| 欧美黑人精品巨大| av片东京热男人的天堂| 亚洲精品国产区一区二| 久久久久久大精品| 91老司机精品| 国产高清激情床上av| 欧美色欧美亚洲另类二区 | 免费高清在线观看日韩| 亚洲在线自拍视频| 国产成人系列免费观看| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 免费在线观看亚洲国产| 两个人免费观看高清视频| 我的亚洲天堂| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 欧美日韩中文字幕国产精品一区二区三区 | 好男人电影高清在线观看| av欧美777| 国产麻豆成人av免费视频| 亚洲成人久久性| 日本 欧美在线| 无限看片的www在线观看| 国产精品二区激情视频| 脱女人内裤的视频| 99精品欧美一区二区三区四区| 免费观看精品视频网站| 欧美激情 高清一区二区三区| 高清在线国产一区| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 操出白浆在线播放| 色哟哟哟哟哟哟| 十八禁人妻一区二区| 一本大道久久a久久精品| 免费高清在线观看日韩| 精品久久久久久久人妻蜜臀av | 精品久久蜜臀av无| 岛国视频午夜一区免费看| 9191精品国产免费久久| 这个男人来自地球电影免费观看| 99国产极品粉嫩在线观看| 国产精品永久免费网站| or卡值多少钱| 女同久久另类99精品国产91| 极品人妻少妇av视频| 国产精品久久久人人做人人爽| 亚洲情色 制服丝袜| 亚洲久久久国产精品| 男人的好看免费观看在线视频 | av中文乱码字幕在线| 成人亚洲精品av一区二区| 国产欧美日韩精品亚洲av| 久久精品亚洲熟妇少妇任你| 99在线视频只有这里精品首页| 亚洲国产精品999在线| 淫妇啪啪啪对白视频| 黄频高清免费视频| 激情视频va一区二区三区| 免费不卡黄色视频| 黄片小视频在线播放| 国产成+人综合+亚洲专区| 国产亚洲av嫩草精品影院| 天天躁狠狠躁夜夜躁狠狠躁| 高潮久久久久久久久久久不卡| 精品免费久久久久久久清纯| 亚洲国产欧美日韩在线播放| 成人三级做爰电影| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| av福利片在线| 欧美黑人精品巨大| 国产亚洲精品综合一区在线观看 | 亚洲av第一区精品v没综合| 不卡一级毛片| 亚洲av电影不卡..在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成伊人成综合网2020| 国产精品免费一区二区三区在线| 中文字幕精品免费在线观看视频| 波多野结衣一区麻豆| 一a级毛片在线观看| 看片在线看免费视频| 欧美成人一区二区免费高清观看 | √禁漫天堂资源中文www| 国产成人精品在线电影| 黄网站色视频无遮挡免费观看| 女人被狂操c到高潮| 长腿黑丝高跟| 国产精品99久久99久久久不卡| aaaaa片日本免费| 亚洲男人天堂网一区| www日本在线高清视频| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| netflix在线观看网站| 丝袜人妻中文字幕| 亚洲国产精品999在线| 国产激情欧美一区二区| 久久精品91无色码中文字幕| 国产亚洲精品第一综合不卡| 我的亚洲天堂| 老鸭窝网址在线观看| 女人高潮潮喷娇喘18禁视频| 中文字幕最新亚洲高清| 变态另类丝袜制服| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 最近最新免费中文字幕在线| 女同久久另类99精品国产91| 69精品国产乱码久久久| 男女午夜视频在线观看| 多毛熟女@视频| 午夜免费观看网址| 国产精品一区二区免费欧美| 精品久久久久久久毛片微露脸| 国产精品乱码一区二三区的特点 | 欧美大码av| www.999成人在线观看| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 又黄又爽又免费观看的视频| 久久久久国内视频| 日本免费一区二区三区高清不卡 | 日韩成人在线观看一区二区三区| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 精品久久久精品久久久| 夜夜爽天天搞| 亚洲电影在线观看av| 大码成人一级视频| 午夜福利免费观看在线| 999久久久精品免费观看国产| 法律面前人人平等表现在哪些方面| 亚洲性夜色夜夜综合| 12—13女人毛片做爰片一| 天堂影院成人在线观看| av视频在线观看入口|