• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations

    2023-01-30 06:49:18YuchengZhngXiotongSuNorTmXiolnLoMeilingZhongQihngWuHuifngLeiZihuiChenZhngLiJieFu
    Chinese Chemical Letters 2022年12期

    Yucheng Zhng ,Xiotong Su,Nor F.Y.Tm,Xioln Lo ,Meiling Zhong ,Qihng Wu,*,Huifng Lei ,Zihui Chen,Zhng Li ,Jie Fu,*

    a Key Laboratory for Water Quality and Conservation of the Pearl Stream Delta,Ministry of Education,School of Enviro nmental Science and Engineering,Guangzhou University,Guangzhou 510006,China

    b State Key Laboratory of Marine Pollution and Department of Chemistry,City University of Hong Kong,Hong Ko ng,China

    c School of Science and Technology,Open University of Hong Kong,Hong Kong,China

    d School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords:Polystyrene nanoplastics Lead cation Aggregation kinetics Critical coagulation concentration Size effect

    ABSTRACT Once inevitably released into the aquatic environment,polystyrene nanoplastics(PS-NPs)will present complicated environmental behaviors,of which the aggregation is a key process determining their environmental fate and impact.In this study,the aggregation kinetics of different sizes(30 nm and 100 nm)of PS-NPs with metal cations(Na+,K+,Ca2+,Mg2+and Pb2+)at different solution pH(3,6 and 8)were investigated.The results showed that the aggregation of PS-NPs increased with cation concentration.Taking Pb2+as an example,the adsorption behavior of cations onto PS-NPs was determined by transmission electron microscopy(TEM)and energy dispersive X-ray(EDX)spectroscopy,which demonstrated Pb2+could be adhered onto the surface of PS-NPs with the effect of charge neutralization.The critical coagulation concentrations(CCC)of smaller PS-NPs were higher than that of larger PS-NPs for monovalent cations,whereas a different pattern is observed for divalent cations.It was suggested that there were other factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.In addition,it should be noted that PS-NPs had the capacity of adsorbing large amounts of heavy metal cations and carried them transport to a long distance,and the corresponding ecological risks need to further elucidate.

    Plastics,known as revolutionary materials,have been widely used in various fields since their birth in 1905[1].The global consumption of plastics is growing at an annual rate of 4%,increasing from 1.3 million tons in 1950 to 322 million tons in 2015,and then reaching 369 million tons in 2018[2].Due to the failure of effective collection,disposal and control of plastic wastes,some plastic fragments or particles are discharged into the natural environment,affecting the normal operation of the ecosystem.Plastic particles with a size less than 100 nm,called nanoplastics,are supposed to be a new type of contaminant,which have ignited the research passion of scholars around the world over the last decade[3].On one hand,nanoplastics from cosmetics,personal hygiene products,and industrial products such as 3D printing and nanocapsules are constantly released into the environment during their use and production[4].On the other hand,polymer-based materials are easy to degrade into plastic fragments under the action of high salinity,light,heat and microorganisms[5].

    The biological effects of nanoparticles are closely related to particle size.Moore[6]found that the bioavailability of microplastics was largely affected by their particle size.There is a growing body of literature that recognizes the toxic effects of nanoplastics on hydrobiont,which were mainly evaluated through energy consumption,oxidative damage,enzyme activity,reproduction and growth rate[7–9].Some researchers believe that the aggregation behavior of nanoplastics in water environment is one of the main factors affecting their environmental migration and biological toxicity,and thus focus on the colloidal stability and aggregation dynamics of nanoplastics[10,11].Surface chemical properties of nanoplastics play an important role in colloid aggregation,and ultimately affect their behavior and fate in water environment[12].Yuet al.[13]have investigated the aggregation of a series of surfacemodified polystyrene nanoplastics,and found that the negatively charged and positively charged nanoplastics exhibited different aggregation behaviors.In addition,it has previously been observed that solution properties such as pH,ionic strength,and valence of ions influence the colloidal stability and aggregation behavior of nanoparticles[14].Metal cations have been demonstrated to significantly affect the stability of nanoplastics when they are adhered on nanoplatics[15–17].Conversely,nanoplastics can adsorb large amounts of metal cations in heavy metals polluted water,and carry them to migrate,posing a greater potential risk[17].

    In this study,two commercial polystyrene nanoplastics(PSNPs)with different sizes,30 nm representing small size(PS-S)and 100 nm representing large size(PS-L),were used as model nanoplastics to systematically explore their aggregation kinetics in water with monovalent(Na+and K+)and divalent(Ca2+,Mg2+and Pb2+)metal cations.Polystyrene is one of the most widely used plastic materials[18],and Pb2+is also a common ion in heavy metal polluted water[19].The attachment efficiencies and critical coagulation concentrations of PS-NPs under different conditions were calculated.The research purpose is to reveal the important roles of particle size and metal cations in the aggregation process of nanoplastics.The provided information could improve the understanding of the environmental behavior and ecological risks of nanoplastics.

    The PS-S-NPs suspension(1.0%w/v,15 mL,30 nm)was obtained from Thermo Fisher Scientific(Shanghai,China),and PS-L-NPs suspension(2.5%w/v,10 mL,100 nm)was purchased from Tianjin BaseLine ChromTech Research Center(Tianjin,China).The NaCl,KCl,MgCl2,CaCl2and Pb(NO3)2of analytical grade were used as the experimental electrolytes.The solution pH was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH(Titrisol,Merck,Austria).All the nanoplastics suspensions were diluted to about 10 mg/L with ultrapure water(18.2 MΩ,Milli-Q,Millipore).After adding different concentrations of electrolytes and adjusting to the desired pH,the experimental nanoplastics suspensions were prepared.The hydrodynamic diameter and zeta potential of each sample were measured by dynamic light scattering(DLS)with a 90°scattering angle(ZetaPALS/BI-90 Plus,Brookhaven Instruments Corp.,New York,USA).The suspension temperature was maintained at 25°C.The characteristic of PS-NPs before and after experiments were visualized using a TecnaiG2F20 S-Twin transmission electron microscope(TEM,FEI,USA).The distribution of elemental composition was analyzed by an energy-dispersive X-ray spectroscopy(EDX)system(X-MaxN 80T,Oxford Instruments NanoAnalysis,USA).Fourier transform-infrared(FT-IR)spectra were performed to identify the structural and functional groups of PS-NPs.

    The initial aggregation rate constant of PS-NPs(k)is proportional to the change of hydrodynamic diameter(Dh)from the timeresolved DLS measurements with respect to time(t),but inversely proportional to the primary particle concentration of PS-NPs(C)(Eq.1)[20]:

    In aggregation experiments,theCwas maintained at 10 mg/L.can be acquired by performing the linear least-squares regression for the initial increase inDh(t)witht.For most experiments,the regression analysis was performed over a time fromDh(0)to 1.3Dh(0),whereDh(0)represented the initialDh.Under some unfavorable conditions thatDh(t)fail to reach 1.3Dh(0),the aggregation of PS-NPs was negligible andwas determined with the achieved maximumDh(t).For some extremely fast aggregation thatDh(t)may go beyond 1.3Dh(0)when experiment has just begun,only the points that showed a linear relationship were chosen to calculate the aggregation rate.

    The attachment efficiency(α)was employed to calculate critical coagulation concentrations(CCC)to make a quantitative description of aggregation kinetics of PS-NPs.αwas calculated by normalizing the aggregation rate constantk(acquired in a certain suspension)to the rate constant at the fast aggregation conditionskfast(obtained in the diffusion limited aggregation regime,where the aggregation rate was independent on electrolyte concentrations)(Eq.2):

    Eventually,the experimental CCC values were determined from the intersect of extrapolated lines through the diffusion and reaction limited regimes.

    The Derjaguin-Landau-Verwey-Overbeek(DLVO)theory with particle-particle model was used to give further elucidation of the observed results.Under various chemical conditions,the interaction energy,including van der Waals attractionVA(h),and electrostatic double-layer(EDL)repulsionVR(h),were calculated[21–23].The total interaction energyVT(h)was calculated using the following equations(Eqs.3–8):

    where APWPwas the combined Hamaker constant for PS-NPs interacting through water for a PS-water-PS system,and the Hamaker constants of PS-L-NPs and PS-S-NPs were 3.5×10?21J and 2.3×10?21J respectively[23].b=5.32λwas the characteristic wavelength of the interaction with an often assumed value of 100 nm.Rwas the radius of PS-NPs.hwas separation distance between particles,which was much smaller than their radius(h<

    Fig.S1(Supporting information)presents the FT-IR spectra of PS-L-NPs and PS-S-NPs.Peaks at 700,750,and 3020 cm?1were designated to the benzene ring structure,and those peaks at 1490 and 1450 cm?1were ascribed to the aromatic C–H deformation[24,25].The broad and sharp bands at 1600 and 2920 cm?1were attributed to the stretching vibration of aromatic C=C group and deformation of aliphatic C–H group,respectively[26].Peak at 3450 cm?1was ascribed to hydroxyl stretching,originated from water adsorption[27].The peak at 1700 cm?1for PS-S-NPs probably contributed to C=O group related to the presence of carboxyl groups[28].

    Fig.1.TEM images and hydrodynamic size distributions of PS-L-NPs(a,b),and PSS-NPs(c,d).

    The size and shape of PS-L-NPs were detected by TEM,and it showed that PS-L-NPs had a spherical shape with an average diameter of 100 nm(Fig.1a).The hydrodynamic size distribution of PS-L-NPs measured by DLS was ranged from 80 nm to 150 nm with an average diameter of 110 nm(Fig.1b).The morphology of PS-SNPs was also confirmed by TEM(Fig.1c).The hydrodynamic size distribution of PS-S-NPs was ranged from 20 nm to 70 nm with an average diameter of 33 nm(Fig.1d).

    To assess the effect of pH on PS-NPs aggregation,the attachment efficiencies(α)of PS-L-NPs and PS-S-NPs with different concentrations of NaCl were calculated and displayed in Fig.2.Whenαapproaches to 1,the aggregation process is regarded as diffusionlimited[29].Different solution pH(3,6 and 8)led to differences in the aggregation profiles,and a higher pH value hindered the approaching ofαto 1.Correspondingly,the experimental CCC of NaCl for PS-L-NPs at pH of 3,6 and 8 were 193.86 mmol/L,349.06 mmol/L and 470.41 mmol/L,respectively,and for PS-S-NPs were 380.13 mmol/L,540.44 mmol/L and 755.26 mmol/L,respectively.There was a strong linear correlation between CCC and pH value(Fig.S2 in Supporting information).From this data,the aggregation of PS-NPs was suppressed with decreasing the solution pH,which is consistent with the phenomenon reported in previous study[30].The DLVO theoretical calculations were accorded with the experimental CCC values under different pH conditions.As shown in Fig.S3(Supporting information),the energy barrier decreased with increasing the concentration of NaCl,which is also reported by other studies[31].

    Previous studies have indicated the protonation and deprotonation on the surface of PS-NPs play an important role in the aggregation behavior[32].Therefore,the zeta potential of PS-NPs was measured and it was found that the zeta potential became more negative with increasing the pH values(Fig.S4 in Supporting information).For example,the zeta potential of PS-L-NPs in NaCl solution of 400 mmol/L decreased from?6.69 mV to?14.97 mV with increasing the pH from 6 to 8(Fig.S4a),indicating that electrostatic repulsion between PS-NPs could be increased under alkaline conditions,which may reduce the aggregation between nanoplastics particles.It is suggested that the surface of PS-NPs could be easily deprotonated with increasing the pH,leading to improved stability of PS-NPs[33].

    For convenience,the subsequent aggregation experiments were carried out at pH 6.Fig.3 presents the increases of hydrodynamic diameter of PS-NPs along time with different types and concentrations of cations.In the presence of low concentration of cations,like 100 mmol/L NaCl,PS-NPs kept a relative stability due to the dominance of electrostatic repulsive forces[14].With the increase of cation concentration,hydrodynamic diameter of PS-NPs increased quickly.According to the DLVO theory,the addition of cations led to characteristic adsorption and charge neutralization,where van der Waals forces dominated and the repulsion barrier was compressed.Thus,it was shown in Fig.S3 that the energy barriers of PS-NPs had been weakened as the cation concentration increased.When the cation concentration reached the CCC value,the PS-NPs were extremely unstable due to diffusion limitation,which eventually led to agglomeration between particles(Fig.S5 in Supporting information).

    Compared the effects of mono-and divalent cations on PS-NPs aggregation,it is found that divalent cations were easier to induce the aggregation of PS-NPs relative to monovalent cations.For instance,the CCC values of NaCl and KCl for PS-L-NPs were ranged from 232.60 mmol/L to 349.06 mmol/L,while those of MgCl2,CaCl2and Pb(NO3)2were reduced to 16.25–40.31 mmol/L(Fig.S5).The ratio between the CCC values of Ca2+and Na+was proportional toz?3.37(wherez=2 was the counterion valence for calcium)(Table S1 in Supporting information),consisting with the Schulze-Hardy Rule[34].For the differences in CCC values of cations with the same valence state,a possible explanation was ascribed to the hydration layer forming between metal cations and water molecules.In other words,cations with larger radii tend to interact with more water molecules[30,35],thus producing a higher promotion effect on the aggregation of PS-NPs.Correspondingly,the promotion effects of divalent cations were in the same order with their radii:Pb2+>Ca2+>Mg2+(Table S1).

    At present,a large number of studies have reported the size effect on the agglomeration and stability of nanoparticles,however,the size effect on the aggregation of PS-NPs has not been investigated explicitly in the existing literature[36–40].The DLVO theory predicts a marked decrease in rates of coagulation of colloidal particles with an increase in particle size[41].In this study,the CCC values of divalent ions(Ca2+,Mg2+and Pb2+)for PS-S-NPs were lower than for PS-L-NPs(Fig.S5),which agreed with DLVO prediction.This revealed that the PS-L-NPs needed a higher concentration of divalent cations to break the stable state.The more negative zeta potential of PS-L-NPs relative to PS-S-NPs also confirmed the recalcitrance of PS-L-NPs to aggregation(Fig.S4).Besides,a common view was that higher adsorption rate of divalent cations occurred on the smaller particle,owing to the higher Gibbs free energy associated with the smaller particles.Figs.4 and 5 present the TEM and EDX spectra of PS-NPs after the aggregation experiments with Pb2+.From Fig.4a,we can see that PS-L-NPs strikingly aggregated each other.At the same time,the EDX spectra showed the enrichment of Pb on the surface of PS-L-NPs,indicating that Pb2+cations were adsorbed on PS-L-NPs(Figs.4b-d).This characterization demonstrated the important role of Pb2+in the induction of PS-NPs aggregation by the charge neutralization.Relatively,after the aggregation experiment with Pb2+,the PS-S-NPs agglomerated closely into larger particles(>1μm)and the surfaces were studded with Pb(Fig.5).This result demonstrated a stronger adsorption capacity of PS-S-NPs for Pb2+,which might be the key reason to explain the higher aggregation potential of smaller PS-NPs relative to larger PS-NPs with divalent cations.

    Fig.2.Attachment efficiencies(α)of PS-L-NPs(a)and PS-S-NPs(b)with different concentrations of NaCl at different solution pH.

    Fig.3.Aggregation kinetics of PS-L-NPs(left)and PS-S-NPs(right)with different concentrations of NaCl(a,b),KCl(c,d),CaCl2(e,f),MgCl2(g,h)and Pb(NO3)2(i,j)at pH 6.

    Fig.4.The characterization of PS-L-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    Fig.5.The characterization of PS-S-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    However,for the monovalent cation system,the larger PS-NPs showed a higher tendency to aggregate,which is different with the situation in divalent cation system.The CCC values of Na+and K+for PS-L-NPs were 349.06 mmol/L and 232.60 mmol/L,which were smaller than that for PS-S-NPs(540.44 mmol/L and 412.66 mmol/L)(Fig.S5).By comparison on the zeta potential of PS-NPs(Fig.S4),PS-S-NPs had more negative charges in the same concentration of NaCl solution,indicating the smaller size of PS-NPs were indeed more stable.In fact,there are differences between studies exploring size effect on the stability of nanoparticles,even finding that the stability of colloid is insensitive to particle size[40].For instance,Afshinnia,Sikder,Cai and Baalousha[39]observed a negatively strong association between the CCC and particle size of nano-silver for monovalent cations,but no clear trend was observed for divalent cations.Deposition in secondary minimum and the narrow range of surface potential were used to explain the observed anomalous particle size effect.In DLVO theory,the surface charge of particles is assumed to be distribution uniformly,that all particles have a constant surface potential[41].In other words,it is most likely that the discrepancies with respect to particle size effects are related to the failure of the DLVO theory to consider hydrodynamic interaction and dynamics of interaction.

    In conclusion,this study set out to systematically explore the aggregation kinetics of different sizes of PS-NPs with monovalent(Na+,K+)and divalent(Ca2+,Mg2+and Pb2+)cations at different solution pH.The primary results of this investigation are summarized as follows:(1)Due to deprotonation,PS-NPs were more stable in alkaline conditions.(2)Compared with monovalent cations,divalent cations have a greater effect on the stability of PS-NPs;the hydration ability of cations with the same valence state led to the difference in the stability of PS-NPs.(3)The smaller size of PSNPs in monovalent cation system was more stable but easier to agglomerate in divalent cation system,and there were other unknown factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by Scientific Research Project of Guangzhou University(No.YK2020017),the Program Foundation of Institute for Scientific Research of Karst Area of NSFC-GZGOV(No.U1612442),Research Grants Council of the Hong Kong Special Administrative Region,China(No.UGC/IDS(R)16/19),Industry-University Cooperation and Collaborative Education Project of the Ministry of Education of the People’s Republic of China(No.202101134012)and Innovative training program for College Students of Guangzhou University(No.S202111078039).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.056.

    一进一出抽搐动态| 国产三级中文精品| 国产精品av视频在线免费观看| 亚洲18禁久久av| 国产一区二区激情短视频| cao死你这个sao货| 最新在线观看一区二区三区| 黄色毛片三级朝国网站| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 久久这里只有精品中国| 黄频高清免费视频| 女警被强在线播放| 精品久久久久久久久久免费视频| 欧美日韩瑟瑟在线播放| 亚洲精品一区av在线观看| 日韩精品免费视频一区二区三区| 天天添夜夜摸| 麻豆成人午夜福利视频| 久久国产精品人妻蜜桃| 欧美乱码精品一区二区三区| 黑人巨大精品欧美一区二区mp4| 99久久久亚洲精品蜜臀av| 少妇粗大呻吟视频| x7x7x7水蜜桃| 成人国产综合亚洲| 久久这里只有精品19| av国产免费在线观看| 免费在线观看影片大全网站| 欧美精品啪啪一区二区三区| 男男h啪啪无遮挡| 中文字幕熟女人妻在线| 国产精品爽爽va在线观看网站| av中文乱码字幕在线| 午夜两性在线视频| 亚洲熟女毛片儿| 99久久久亚洲精品蜜臀av| 又黄又粗又硬又大视频| 欧美乱码精品一区二区三区| 国产伦一二天堂av在线观看| 欧美日本视频| 久久午夜综合久久蜜桃| 亚洲第一欧美日韩一区二区三区| 亚洲成av人片免费观看| 香蕉国产在线看| 亚洲五月婷婷丁香| 成人手机av| 18美女黄网站色大片免费观看| 最近最新免费中文字幕在线| 亚洲五月天丁香| 欧美在线一区亚洲| 色播亚洲综合网| 极品教师在线免费播放| 色综合站精品国产| 日本精品一区二区三区蜜桃| 欧美午夜高清在线| 久久这里只有精品中国| av中文乱码字幕在线| 国产精品久久久久久亚洲av鲁大| 亚洲中文字幕一区二区三区有码在线看 | 99热只有精品国产| 国产av在哪里看| 久久婷婷成人综合色麻豆| 国产精品久久久久久久电影 | 亚洲国产欧美网| 亚洲人成网站高清观看| www.精华液| 91麻豆av在线| 日本一区二区免费在线视频| 久久九九热精品免费| 国内毛片毛片毛片毛片毛片| 久久中文看片网| 亚洲片人在线观看| 99久久精品国产亚洲精品| 国产高清视频在线观看网站| 国产精品久久久av美女十八| 妹子高潮喷水视频| 天天一区二区日本电影三级| 国产99久久九九免费精品| 可以免费在线观看a视频的电影网站| 又大又爽又粗| 老鸭窝网址在线观看| 欧美性猛交黑人性爽| 十八禁网站免费在线| 五月玫瑰六月丁香| 亚洲熟妇中文字幕五十中出| avwww免费| 无遮挡黄片免费观看| 97碰自拍视频| 久久香蕉精品热| 岛国在线观看网站| 亚洲成av人片在线播放无| xxx96com| 久久人妻av系列| 午夜成年电影在线免费观看| 99久久精品国产亚洲精品| 国产亚洲欧美98| 久久九九热精品免费| 国产成人精品久久二区二区91| 黄频高清免费视频| 丰满的人妻完整版| 日韩欧美精品v在线| 香蕉久久夜色| 亚洲av成人一区二区三| 亚洲中文日韩欧美视频| 亚洲欧美日韩高清在线视频| 99久久综合精品五月天人人| 女人被狂操c到高潮| 亚洲成人久久爱视频| 又大又爽又粗| 国产午夜精品久久久久久| 午夜福利欧美成人| 天天躁夜夜躁狠狠躁躁| 国产99白浆流出| 国产视频一区二区在线看| 成年版毛片免费区| 亚洲欧美日韩高清在线视频| 亚洲天堂国产精品一区在线| www.熟女人妻精品国产| 国产精品 欧美亚洲| 99热6这里只有精品| 欧美性猛交黑人性爽| 亚洲男人天堂网一区| 麻豆久久精品国产亚洲av| 中文字幕最新亚洲高清| 首页视频小说图片口味搜索| 亚洲一卡2卡3卡4卡5卡精品中文| 老鸭窝网址在线观看| 亚洲中文av在线| 亚洲美女视频黄频| 成人av一区二区三区在线看| 曰老女人黄片| 色综合婷婷激情| 男女那种视频在线观看| 桃色一区二区三区在线观看| 毛片女人毛片| 最近视频中文字幕2019在线8| 激情在线观看视频在线高清| 午夜福利成人在线免费观看| 成人午夜高清在线视频| 老汉色av国产亚洲站长工具| 欧美日本亚洲视频在线播放| 国产精品亚洲一级av第二区| 欧美日本视频| 一本精品99久久精品77| 国产成人一区二区三区免费视频网站| 最近最新免费中文字幕在线| 波多野结衣高清作品| 亚洲真实伦在线观看| 亚洲电影在线观看av| 欧美精品啪啪一区二区三区| 国产亚洲精品av在线| xxx96com| 日本在线视频免费播放| 国内精品久久久久久久电影| 国产av又大| 搡老妇女老女人老熟妇| 日本精品一区二区三区蜜桃| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久国产精品人妻aⅴ院| 夜夜躁狠狠躁天天躁| 欧美黑人巨大hd| 视频区欧美日本亚洲| 日日爽夜夜爽网站| 亚洲成a人片在线一区二区| 成人av在线播放网站| 18美女黄网站色大片免费观看| 国产亚洲精品久久久久5区| 长腿黑丝高跟| av国产免费在线观看| 国产高清视频在线播放一区| 国产精品国产高清国产av| 看免费av毛片| 国产人伦9x9x在线观看| 国产激情偷乱视频一区二区| 99在线视频只有这里精品首页| 18美女黄网站色大片免费观看| 国产成人av教育| 国产真实乱freesex| 级片在线观看| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 不卡一级毛片| 小说图片视频综合网站| www日本在线高清视频| 国产精品乱码一区二三区的特点| 91九色精品人成在线观看| 午夜久久久久精精品| 久久久国产成人精品二区| 禁无遮挡网站| www.www免费av| 欧美在线一区亚洲| 亚洲七黄色美女视频| a级毛片a级免费在线| 俄罗斯特黄特色一大片| 亚洲人成77777在线视频| 久久香蕉国产精品| 国产一区二区在线av高清观看| 国产一区二区在线av高清观看| 久久精品综合一区二区三区| 一个人免费在线观看的高清视频| 亚洲精品美女久久久久99蜜臀| 99精品欧美一区二区三区四区| 国产精品av视频在线免费观看| 日韩 欧美 亚洲 中文字幕| 在线视频色国产色| 色在线成人网| 久久久国产欧美日韩av| av国产免费在线观看| av欧美777| 色在线成人网| 久久中文看片网| www.999成人在线观看| 欧美性猛交黑人性爽| 午夜福利欧美成人| 一a级毛片在线观看| 国产成年人精品一区二区| 亚洲国产精品999在线| 亚洲自拍偷在线| 欧美一区二区精品小视频在线| 每晚都被弄得嗷嗷叫到高潮| 无遮挡黄片免费观看| 色综合亚洲欧美另类图片| АⅤ资源中文在线天堂| 九色成人免费人妻av| 90打野战视频偷拍视频| 亚洲av电影在线进入| 少妇裸体淫交视频免费看高清 | 757午夜福利合集在线观看| 欧美日本视频| 欧美日韩国产亚洲二区| 黑人操中国人逼视频| 在线观看舔阴道视频| 国产激情欧美一区二区| 看黄色毛片网站| 黑人操中国人逼视频| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 看片在线看免费视频| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| 欧美性长视频在线观看| 午夜免费成人在线视频| 18禁黄网站禁片免费观看直播| 亚洲精品在线观看二区| 亚洲乱码一区二区免费版| 国产一区二区在线观看日韩 | 一进一出抽搐动态| 国产欧美日韩一区二区精品| 国产成人影院久久av| 又大又爽又粗| 男插女下体视频免费在线播放| 亚洲人成77777在线视频| av有码第一页| 亚洲国产欧洲综合997久久,| 午夜影院日韩av| 搡老岳熟女国产| 国产真人三级小视频在线观看| 午夜a级毛片| 久久精品aⅴ一区二区三区四区| 亚洲成人中文字幕在线播放| 色噜噜av男人的天堂激情| 男人舔女人下体高潮全视频| 亚洲成人精品中文字幕电影| 大型黄色视频在线免费观看| 欧美一区二区精品小视频在线| 欧美在线黄色| 国产一区二区三区视频了| 妹子高潮喷水视频| 免费无遮挡裸体视频| 老熟妇乱子伦视频在线观看| 99久久99久久久精品蜜桃| 好看av亚洲va欧美ⅴa在| 无限看片的www在线观看| 两个人看的免费小视频| 在线播放国产精品三级| 色av中文字幕| 99久久综合精品五月天人人| 国产69精品久久久久777片 | 久久国产精品人妻蜜桃| 国模一区二区三区四区视频 | 欧美日本亚洲视频在线播放| 成人国产一区最新在线观看| 两个人的视频大全免费| 曰老女人黄片| 国产精品一区二区三区四区免费观看 | www.自偷自拍.com| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美98| 国产v大片淫在线免费观看| 国产片内射在线| 国产探花在线观看一区二区| 久久伊人香网站| 欧美在线黄色| 一级毛片高清免费大全| 男女做爰动态图高潮gif福利片| 久久国产乱子伦精品免费另类| 欧美黑人欧美精品刺激| a级毛片a级免费在线| 母亲3免费完整高清在线观看| 1024视频免费在线观看| 97超级碰碰碰精品色视频在线观看| 两个人看的免费小视频| 亚洲一区中文字幕在线| 999久久久国产精品视频| 国产欧美日韩一区二区三| 搡老妇女老女人老熟妇| 嫁个100分男人电影在线观看| 色综合欧美亚洲国产小说| 一级毛片精品| 在线观看www视频免费| 午夜福利欧美成人| 中国美女看黄片| 国产1区2区3区精品| 亚洲乱码一区二区免费版| 日本一二三区视频观看| 亚洲中文日韩欧美视频| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 亚洲五月婷婷丁香| 亚洲精品国产一区二区精华液| 亚洲成av人片在线播放无| 日韩免费av在线播放| 国产成年人精品一区二区| 99riav亚洲国产免费| 成人亚洲精品av一区二区| 一本大道久久a久久精品| 亚洲全国av大片| 亚洲精品粉嫩美女一区| 男人的好看免费观看在线视频 | 成人永久免费在线观看视频| 在线观看www视频免费| 久久中文看片网| 最近最新免费中文字幕在线| 欧美另类亚洲清纯唯美| 日韩国内少妇激情av| 国产精品久久久久久亚洲av鲁大| 99精品欧美一区二区三区四区| 亚洲精品久久国产高清桃花| 欧美日韩亚洲国产一区二区在线观看| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 美女黄网站色视频| 视频区欧美日本亚洲| 免费在线观看黄色视频的| 亚洲人成网站高清观看| 日韩精品中文字幕看吧| 亚洲乱码一区二区免费版| 国产精品九九99| 一进一出抽搐动态| 黑人欧美特级aaaaaa片| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 国产片内射在线| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 久久久精品国产亚洲av高清涩受| 夜夜躁狠狠躁天天躁| 少妇粗大呻吟视频| 日韩欧美三级三区| 免费看十八禁软件| 亚洲人与动物交配视频| 国产97色在线日韩免费| 国产激情欧美一区二区| 成人特级黄色片久久久久久久| 18禁黄网站禁片免费观看直播| 美女大奶头视频| 十八禁网站免费在线| 两个人免费观看高清视频| 黄色视频不卡| 中亚洲国语对白在线视频| 国产视频内射| 成人18禁在线播放| 欧美乱色亚洲激情| 999久久久精品免费观看国产| 巨乳人妻的诱惑在线观看| 天堂动漫精品| a级毛片在线看网站| 级片在线观看| 亚洲av中文字字幕乱码综合| 精品国产亚洲在线| avwww免费| 久久精品国产亚洲av高清一级| 操出白浆在线播放| 久久国产精品人妻蜜桃| 免费无遮挡裸体视频| 少妇人妻一区二区三区视频| 久久久久久大精品| 国产av又大| 狂野欧美激情性xxxx| 免费在线观看日本一区| 身体一侧抽搐| 国产欧美日韩一区二区三| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 午夜精品一区二区三区免费看| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 别揉我奶头~嗯~啊~动态视频| 国产1区2区3区精品| 久久欧美精品欧美久久欧美| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 欧美不卡视频在线免费观看 | 操出白浆在线播放| 精品国产乱子伦一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| 怎么达到女性高潮| 日本免费一区二区三区高清不卡| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| 欧美日韩亚洲综合一区二区三区_| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 国产精品久久久久久精品电影| 国产精品自产拍在线观看55亚洲| 国产成人影院久久av| 亚洲免费av在线视频| 国内精品久久久久精免费| 欧美日韩瑟瑟在线播放| 午夜视频精品福利| 日韩欧美一区二区三区在线观看| 亚洲性夜色夜夜综合| 日韩大码丰满熟妇| 亚洲一区高清亚洲精品| 窝窝影院91人妻| 欧美三级亚洲精品| 久久亚洲精品不卡| 怎么达到女性高潮| 久久精品亚洲精品国产色婷小说| 亚洲熟女毛片儿| 日韩免费av在线播放| 久久天堂一区二区三区四区| 亚洲无线在线观看| 久久性视频一级片| 少妇的丰满在线观看| 9191精品国产免费久久| 在线观看免费视频日本深夜| 99国产极品粉嫩在线观看| 香蕉av资源在线| 露出奶头的视频| 在线观看免费日韩欧美大片| 色综合欧美亚洲国产小说| 欧美 亚洲 国产 日韩一| 一进一出好大好爽视频| 欧美日韩一级在线毛片| 一本大道久久a久久精品| 大型黄色视频在线免费观看| 婷婷六月久久综合丁香| 1024手机看黄色片| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 欧美色视频一区免费| 亚洲自偷自拍图片 自拍| 黄片小视频在线播放| 亚洲男人的天堂狠狠| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 一级毛片精品| 午夜福利欧美成人| 久9热在线精品视频| 亚洲欧美日韩东京热| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 超碰成人久久| 中文字幕人成人乱码亚洲影| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 性色av乱码一区二区三区2| 十八禁人妻一区二区| 黄片大片在线免费观看| 人妻久久中文字幕网| 久久久久久久久中文| 2021天堂中文幕一二区在线观| 俄罗斯特黄特色一大片| 色av中文字幕| 妹子高潮喷水视频| 亚洲av第一区精品v没综合| 日日夜夜操网爽| 深夜精品福利| 国产成人啪精品午夜网站| 久久婷婷成人综合色麻豆| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久人妻精品电影| 一本综合久久免费| 免费在线观看完整版高清| 女警被强在线播放| 国产免费男女视频| 国产免费av片在线观看野外av| 1024视频免费在线观看| 啦啦啦韩国在线观看视频| 国产真人三级小视频在线观看| 嫁个100分男人电影在线观看| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区| 免费在线观看黄色视频的| 成人高潮视频无遮挡免费网站| 宅男免费午夜| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 亚洲欧美日韩无卡精品| 舔av片在线| 无人区码免费观看不卡| 日日爽夜夜爽网站| 天天躁夜夜躁狠狠躁躁| 亚洲熟妇熟女久久| 一本一本综合久久| 两个人看的免费小视频| 亚洲中文字幕日韩| 亚洲激情在线av| 嫁个100分男人电影在线观看| 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看 | 色av中文字幕| 不卡一级毛片| 免费看十八禁软件| 好看av亚洲va欧美ⅴa在| 午夜免费观看网址| 国产激情久久老熟女| 久久久国产欧美日韩av| 成人av在线播放网站| 亚洲专区国产一区二区| 日韩欧美免费精品| 黄色毛片三级朝国网站| 岛国视频午夜一区免费看| 老司机福利观看| av中文乱码字幕在线| 欧美成狂野欧美在线观看| 午夜激情av网站| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 亚洲av电影不卡..在线观看| 久久久久亚洲av毛片大全| 国产真实乱freesex| 成人特级黄色片久久久久久久| cao死你这个sao货| 国产伦一二天堂av在线观看| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 亚洲国产精品sss在线观看| 午夜老司机福利片| 国产精品综合久久久久久久免费| 久久久久九九精品影院| www日本在线高清视频| 舔av片在线| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 两个人看的免费小视频| 色综合亚洲欧美另类图片| 亚洲国产中文字幕在线视频| 丁香欧美五月| 国产成人欧美在线观看| 人人妻,人人澡人人爽秒播| 日本一区二区免费在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久性视频一级片| 午夜两性在线视频| 又大又爽又粗| 亚洲专区国产一区二区| 一级片免费观看大全| 岛国在线观看网站| 成人午夜高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| 无限看片的www在线观看| 中文字幕熟女人妻在线| 在线国产一区二区在线| 久久久国产精品麻豆| 天堂av国产一区二区熟女人妻 | 啪啪无遮挡十八禁网站| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 香蕉久久夜色| 俄罗斯特黄特色一大片| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 麻豆一二三区av精品| 久久久久久久午夜电影| 日日爽夜夜爽网站| 麻豆国产97在线/欧美 | 国产精品98久久久久久宅男小说| 成人午夜高清在线视频| 日本熟妇午夜| 久久久久久久精品吃奶| 免费无遮挡裸体视频| 欧美zozozo另类| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看 | 中文字幕高清在线视频| 淫秽高清视频在线观看| 在线国产一区二区在线| 精品久久久久久久毛片微露脸| 99久久99久久久精品蜜桃| 精品久久久久久久毛片微露脸| 男男h啪啪无遮挡| 一个人免费在线观看的高清视频| 日韩欧美在线乱码| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 天堂av国产一区二区熟女人妻 | 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 此物有八面人人有两片| 精品日产1卡2卡|