• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations

    2023-01-30 06:49:18YuchengZhngXiotongSuNorTmXiolnLoMeilingZhongQihngWuHuifngLeiZihuiChenZhngLiJieFu
    Chinese Chemical Letters 2022年12期

    Yucheng Zhng ,Xiotong Su,Nor F.Y.Tm,Xioln Lo ,Meiling Zhong ,Qihng Wu,*,Huifng Lei ,Zihui Chen,Zhng Li ,Jie Fu,*

    a Key Laboratory for Water Quality and Conservation of the Pearl Stream Delta,Ministry of Education,School of Enviro nmental Science and Engineering,Guangzhou University,Guangzhou 510006,China

    b State Key Laboratory of Marine Pollution and Department of Chemistry,City University of Hong Kong,Hong Ko ng,China

    c School of Science and Technology,Open University of Hong Kong,Hong Kong,China

    d School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    Keywords:Polystyrene nanoplastics Lead cation Aggregation kinetics Critical coagulation concentration Size effect

    ABSTRACT Once inevitably released into the aquatic environment,polystyrene nanoplastics(PS-NPs)will present complicated environmental behaviors,of which the aggregation is a key process determining their environmental fate and impact.In this study,the aggregation kinetics of different sizes(30 nm and 100 nm)of PS-NPs with metal cations(Na+,K+,Ca2+,Mg2+and Pb2+)at different solution pH(3,6 and 8)were investigated.The results showed that the aggregation of PS-NPs increased with cation concentration.Taking Pb2+as an example,the adsorption behavior of cations onto PS-NPs was determined by transmission electron microscopy(TEM)and energy dispersive X-ray(EDX)spectroscopy,which demonstrated Pb2+could be adhered onto the surface of PS-NPs with the effect of charge neutralization.The critical coagulation concentrations(CCC)of smaller PS-NPs were higher than that of larger PS-NPs for monovalent cations,whereas a different pattern is observed for divalent cations.It was suggested that there were other factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.In addition,it should be noted that PS-NPs had the capacity of adsorbing large amounts of heavy metal cations and carried them transport to a long distance,and the corresponding ecological risks need to further elucidate.

    Plastics,known as revolutionary materials,have been widely used in various fields since their birth in 1905[1].The global consumption of plastics is growing at an annual rate of 4%,increasing from 1.3 million tons in 1950 to 322 million tons in 2015,and then reaching 369 million tons in 2018[2].Due to the failure of effective collection,disposal and control of plastic wastes,some plastic fragments or particles are discharged into the natural environment,affecting the normal operation of the ecosystem.Plastic particles with a size less than 100 nm,called nanoplastics,are supposed to be a new type of contaminant,which have ignited the research passion of scholars around the world over the last decade[3].On one hand,nanoplastics from cosmetics,personal hygiene products,and industrial products such as 3D printing and nanocapsules are constantly released into the environment during their use and production[4].On the other hand,polymer-based materials are easy to degrade into plastic fragments under the action of high salinity,light,heat and microorganisms[5].

    The biological effects of nanoparticles are closely related to particle size.Moore[6]found that the bioavailability of microplastics was largely affected by their particle size.There is a growing body of literature that recognizes the toxic effects of nanoplastics on hydrobiont,which were mainly evaluated through energy consumption,oxidative damage,enzyme activity,reproduction and growth rate[7–9].Some researchers believe that the aggregation behavior of nanoplastics in water environment is one of the main factors affecting their environmental migration and biological toxicity,and thus focus on the colloidal stability and aggregation dynamics of nanoplastics[10,11].Surface chemical properties of nanoplastics play an important role in colloid aggregation,and ultimately affect their behavior and fate in water environment[12].Yuet al.[13]have investigated the aggregation of a series of surfacemodified polystyrene nanoplastics,and found that the negatively charged and positively charged nanoplastics exhibited different aggregation behaviors.In addition,it has previously been observed that solution properties such as pH,ionic strength,and valence of ions influence the colloidal stability and aggregation behavior of nanoparticles[14].Metal cations have been demonstrated to significantly affect the stability of nanoplastics when they are adhered on nanoplatics[15–17].Conversely,nanoplastics can adsorb large amounts of metal cations in heavy metals polluted water,and carry them to migrate,posing a greater potential risk[17].

    In this study,two commercial polystyrene nanoplastics(PSNPs)with different sizes,30 nm representing small size(PS-S)and 100 nm representing large size(PS-L),were used as model nanoplastics to systematically explore their aggregation kinetics in water with monovalent(Na+and K+)and divalent(Ca2+,Mg2+and Pb2+)metal cations.Polystyrene is one of the most widely used plastic materials[18],and Pb2+is also a common ion in heavy metal polluted water[19].The attachment efficiencies and critical coagulation concentrations of PS-NPs under different conditions were calculated.The research purpose is to reveal the important roles of particle size and metal cations in the aggregation process of nanoplastics.The provided information could improve the understanding of the environmental behavior and ecological risks of nanoplastics.

    The PS-S-NPs suspension(1.0%w/v,15 mL,30 nm)was obtained from Thermo Fisher Scientific(Shanghai,China),and PS-L-NPs suspension(2.5%w/v,10 mL,100 nm)was purchased from Tianjin BaseLine ChromTech Research Center(Tianjin,China).The NaCl,KCl,MgCl2,CaCl2and Pb(NO3)2of analytical grade were used as the experimental electrolytes.The solution pH was adjusted using 0.1 mol/L HCl and 0.1 mol/L NaOH(Titrisol,Merck,Austria).All the nanoplastics suspensions were diluted to about 10 mg/L with ultrapure water(18.2 MΩ,Milli-Q,Millipore).After adding different concentrations of electrolytes and adjusting to the desired pH,the experimental nanoplastics suspensions were prepared.The hydrodynamic diameter and zeta potential of each sample were measured by dynamic light scattering(DLS)with a 90°scattering angle(ZetaPALS/BI-90 Plus,Brookhaven Instruments Corp.,New York,USA).The suspension temperature was maintained at 25°C.The characteristic of PS-NPs before and after experiments were visualized using a TecnaiG2F20 S-Twin transmission electron microscope(TEM,FEI,USA).The distribution of elemental composition was analyzed by an energy-dispersive X-ray spectroscopy(EDX)system(X-MaxN 80T,Oxford Instruments NanoAnalysis,USA).Fourier transform-infrared(FT-IR)spectra were performed to identify the structural and functional groups of PS-NPs.

    The initial aggregation rate constant of PS-NPs(k)is proportional to the change of hydrodynamic diameter(Dh)from the timeresolved DLS measurements with respect to time(t),but inversely proportional to the primary particle concentration of PS-NPs(C)(Eq.1)[20]:

    In aggregation experiments,theCwas maintained at 10 mg/L.can be acquired by performing the linear least-squares regression for the initial increase inDh(t)witht.For most experiments,the regression analysis was performed over a time fromDh(0)to 1.3Dh(0),whereDh(0)represented the initialDh.Under some unfavorable conditions thatDh(t)fail to reach 1.3Dh(0),the aggregation of PS-NPs was negligible andwas determined with the achieved maximumDh(t).For some extremely fast aggregation thatDh(t)may go beyond 1.3Dh(0)when experiment has just begun,only the points that showed a linear relationship were chosen to calculate the aggregation rate.

    The attachment efficiency(α)was employed to calculate critical coagulation concentrations(CCC)to make a quantitative description of aggregation kinetics of PS-NPs.αwas calculated by normalizing the aggregation rate constantk(acquired in a certain suspension)to the rate constant at the fast aggregation conditionskfast(obtained in the diffusion limited aggregation regime,where the aggregation rate was independent on electrolyte concentrations)(Eq.2):

    Eventually,the experimental CCC values were determined from the intersect of extrapolated lines through the diffusion and reaction limited regimes.

    The Derjaguin-Landau-Verwey-Overbeek(DLVO)theory with particle-particle model was used to give further elucidation of the observed results.Under various chemical conditions,the interaction energy,including van der Waals attractionVA(h),and electrostatic double-layer(EDL)repulsionVR(h),were calculated[21–23].The total interaction energyVT(h)was calculated using the following equations(Eqs.3–8):

    where APWPwas the combined Hamaker constant for PS-NPs interacting through water for a PS-water-PS system,and the Hamaker constants of PS-L-NPs and PS-S-NPs were 3.5×10?21J and 2.3×10?21J respectively[23].b=5.32λwas the characteristic wavelength of the interaction with an often assumed value of 100 nm.Rwas the radius of PS-NPs.hwas separation distance between particles,which was much smaller than their radius(h<

    Fig.S1(Supporting information)presents the FT-IR spectra of PS-L-NPs and PS-S-NPs.Peaks at 700,750,and 3020 cm?1were designated to the benzene ring structure,and those peaks at 1490 and 1450 cm?1were ascribed to the aromatic C–H deformation[24,25].The broad and sharp bands at 1600 and 2920 cm?1were attributed to the stretching vibration of aromatic C=C group and deformation of aliphatic C–H group,respectively[26].Peak at 3450 cm?1was ascribed to hydroxyl stretching,originated from water adsorption[27].The peak at 1700 cm?1for PS-S-NPs probably contributed to C=O group related to the presence of carboxyl groups[28].

    Fig.1.TEM images and hydrodynamic size distributions of PS-L-NPs(a,b),and PSS-NPs(c,d).

    The size and shape of PS-L-NPs were detected by TEM,and it showed that PS-L-NPs had a spherical shape with an average diameter of 100 nm(Fig.1a).The hydrodynamic size distribution of PS-L-NPs measured by DLS was ranged from 80 nm to 150 nm with an average diameter of 110 nm(Fig.1b).The morphology of PS-SNPs was also confirmed by TEM(Fig.1c).The hydrodynamic size distribution of PS-S-NPs was ranged from 20 nm to 70 nm with an average diameter of 33 nm(Fig.1d).

    To assess the effect of pH on PS-NPs aggregation,the attachment efficiencies(α)of PS-L-NPs and PS-S-NPs with different concentrations of NaCl were calculated and displayed in Fig.2.Whenαapproaches to 1,the aggregation process is regarded as diffusionlimited[29].Different solution pH(3,6 and 8)led to differences in the aggregation profiles,and a higher pH value hindered the approaching ofαto 1.Correspondingly,the experimental CCC of NaCl for PS-L-NPs at pH of 3,6 and 8 were 193.86 mmol/L,349.06 mmol/L and 470.41 mmol/L,respectively,and for PS-S-NPs were 380.13 mmol/L,540.44 mmol/L and 755.26 mmol/L,respectively.There was a strong linear correlation between CCC and pH value(Fig.S2 in Supporting information).From this data,the aggregation of PS-NPs was suppressed with decreasing the solution pH,which is consistent with the phenomenon reported in previous study[30].The DLVO theoretical calculations were accorded with the experimental CCC values under different pH conditions.As shown in Fig.S3(Supporting information),the energy barrier decreased with increasing the concentration of NaCl,which is also reported by other studies[31].

    Previous studies have indicated the protonation and deprotonation on the surface of PS-NPs play an important role in the aggregation behavior[32].Therefore,the zeta potential of PS-NPs was measured and it was found that the zeta potential became more negative with increasing the pH values(Fig.S4 in Supporting information).For example,the zeta potential of PS-L-NPs in NaCl solution of 400 mmol/L decreased from?6.69 mV to?14.97 mV with increasing the pH from 6 to 8(Fig.S4a),indicating that electrostatic repulsion between PS-NPs could be increased under alkaline conditions,which may reduce the aggregation between nanoplastics particles.It is suggested that the surface of PS-NPs could be easily deprotonated with increasing the pH,leading to improved stability of PS-NPs[33].

    For convenience,the subsequent aggregation experiments were carried out at pH 6.Fig.3 presents the increases of hydrodynamic diameter of PS-NPs along time with different types and concentrations of cations.In the presence of low concentration of cations,like 100 mmol/L NaCl,PS-NPs kept a relative stability due to the dominance of electrostatic repulsive forces[14].With the increase of cation concentration,hydrodynamic diameter of PS-NPs increased quickly.According to the DLVO theory,the addition of cations led to characteristic adsorption and charge neutralization,where van der Waals forces dominated and the repulsion barrier was compressed.Thus,it was shown in Fig.S3 that the energy barriers of PS-NPs had been weakened as the cation concentration increased.When the cation concentration reached the CCC value,the PS-NPs were extremely unstable due to diffusion limitation,which eventually led to agglomeration between particles(Fig.S5 in Supporting information).

    Compared the effects of mono-and divalent cations on PS-NPs aggregation,it is found that divalent cations were easier to induce the aggregation of PS-NPs relative to monovalent cations.For instance,the CCC values of NaCl and KCl for PS-L-NPs were ranged from 232.60 mmol/L to 349.06 mmol/L,while those of MgCl2,CaCl2and Pb(NO3)2were reduced to 16.25–40.31 mmol/L(Fig.S5).The ratio between the CCC values of Ca2+and Na+was proportional toz?3.37(wherez=2 was the counterion valence for calcium)(Table S1 in Supporting information),consisting with the Schulze-Hardy Rule[34].For the differences in CCC values of cations with the same valence state,a possible explanation was ascribed to the hydration layer forming between metal cations and water molecules.In other words,cations with larger radii tend to interact with more water molecules[30,35],thus producing a higher promotion effect on the aggregation of PS-NPs.Correspondingly,the promotion effects of divalent cations were in the same order with their radii:Pb2+>Ca2+>Mg2+(Table S1).

    At present,a large number of studies have reported the size effect on the agglomeration and stability of nanoparticles,however,the size effect on the aggregation of PS-NPs has not been investigated explicitly in the existing literature[36–40].The DLVO theory predicts a marked decrease in rates of coagulation of colloidal particles with an increase in particle size[41].In this study,the CCC values of divalent ions(Ca2+,Mg2+and Pb2+)for PS-S-NPs were lower than for PS-L-NPs(Fig.S5),which agreed with DLVO prediction.This revealed that the PS-L-NPs needed a higher concentration of divalent cations to break the stable state.The more negative zeta potential of PS-L-NPs relative to PS-S-NPs also confirmed the recalcitrance of PS-L-NPs to aggregation(Fig.S4).Besides,a common view was that higher adsorption rate of divalent cations occurred on the smaller particle,owing to the higher Gibbs free energy associated with the smaller particles.Figs.4 and 5 present the TEM and EDX spectra of PS-NPs after the aggregation experiments with Pb2+.From Fig.4a,we can see that PS-L-NPs strikingly aggregated each other.At the same time,the EDX spectra showed the enrichment of Pb on the surface of PS-L-NPs,indicating that Pb2+cations were adsorbed on PS-L-NPs(Figs.4b-d).This characterization demonstrated the important role of Pb2+in the induction of PS-NPs aggregation by the charge neutralization.Relatively,after the aggregation experiment with Pb2+,the PS-S-NPs agglomerated closely into larger particles(>1μm)and the surfaces were studded with Pb(Fig.5).This result demonstrated a stronger adsorption capacity of PS-S-NPs for Pb2+,which might be the key reason to explain the higher aggregation potential of smaller PS-NPs relative to larger PS-NPs with divalent cations.

    Fig.2.Attachment efficiencies(α)of PS-L-NPs(a)and PS-S-NPs(b)with different concentrations of NaCl at different solution pH.

    Fig.3.Aggregation kinetics of PS-L-NPs(left)and PS-S-NPs(right)with different concentrations of NaCl(a,b),KCl(c,d),CaCl2(e,f),MgCl2(g,h)and Pb(NO3)2(i,j)at pH 6.

    Fig.4.The characterization of PS-L-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    Fig.5.The characterization of PS-S-NPs aggregates with Pb(NO3)2:(a)TEM image,(b)EDX spectrum,and mapping for element of carbon(c)and lead(d).

    However,for the monovalent cation system,the larger PS-NPs showed a higher tendency to aggregate,which is different with the situation in divalent cation system.The CCC values of Na+and K+for PS-L-NPs were 349.06 mmol/L and 232.60 mmol/L,which were smaller than that for PS-S-NPs(540.44 mmol/L and 412.66 mmol/L)(Fig.S5).By comparison on the zeta potential of PS-NPs(Fig.S4),PS-S-NPs had more negative charges in the same concentration of NaCl solution,indicating the smaller size of PS-NPs were indeed more stable.In fact,there are differences between studies exploring size effect on the stability of nanoparticles,even finding that the stability of colloid is insensitive to particle size[40].For instance,Afshinnia,Sikder,Cai and Baalousha[39]observed a negatively strong association between the CCC and particle size of nano-silver for monovalent cations,but no clear trend was observed for divalent cations.Deposition in secondary minimum and the narrow range of surface potential were used to explain the observed anomalous particle size effect.In DLVO theory,the surface charge of particles is assumed to be distribution uniformly,that all particles have a constant surface potential[41].In other words,it is most likely that the discrepancies with respect to particle size effects are related to the failure of the DLVO theory to consider hydrodynamic interaction and dynamics of interaction.

    In conclusion,this study set out to systematically explore the aggregation kinetics of different sizes of PS-NPs with monovalent(Na+,K+)and divalent(Ca2+,Mg2+and Pb2+)cations at different solution pH.The primary results of this investigation are summarized as follows:(1)Due to deprotonation,PS-NPs were more stable in alkaline conditions.(2)Compared with monovalent cations,divalent cations have a greater effect on the stability of PS-NPs;the hydration ability of cations with the same valence state led to the difference in the stability of PS-NPs.(3)The smaller size of PSNPs in monovalent cation system was more stable but easier to agglomerate in divalent cation system,and there were other unknown factors that DLVO theory does not consider affect the stability of NPs with different particle sizes.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The project is supported by Scientific Research Project of Guangzhou University(No.YK2020017),the Program Foundation of Institute for Scientific Research of Karst Area of NSFC-GZGOV(No.U1612442),Research Grants Council of the Hong Kong Special Administrative Region,China(No.UGC/IDS(R)16/19),Industry-University Cooperation and Collaborative Education Project of the Ministry of Education of the People’s Republic of China(No.202101134012)and Innovative training program for College Students of Guangzhou University(No.S202111078039).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.056.

    99香蕉大伊视频| netflix在线观看网站| 久久精品国产亚洲av高清一级| 欧美日韩瑟瑟在线播放| 一进一出抽搐gif免费好疼 | 久久久精品国产亚洲av高清涩受| 在线观看日韩欧美| 黑人巨大精品欧美一区二区mp4| 超色免费av| 亚洲人成网站在线播放欧美日韩| 两性夫妻黄色片| 韩国av一区二区三区四区| 十八禁网站免费在线| 欧美午夜高清在线| 999久久久精品免费观看国产| xxxhd国产人妻xxx| www.熟女人妻精品国产| 啦啦啦 在线观看视频| 亚洲 欧美 日韩 在线 免费| 美女午夜性视频免费| 正在播放国产对白刺激| 国产成人精品无人区| 欧美在线黄色| 亚洲国产精品合色在线| 亚洲人成伊人成综合网2020| 免费高清视频大片| 国产成人欧美| 高潮久久久久久久久久久不卡| 亚洲五月婷婷丁香| 欧美黄色片欧美黄色片| 亚洲熟女毛片儿| 国产在线精品亚洲第一网站| 91国产中文字幕| 1024香蕉在线观看| 精品一区二区三区视频在线观看免费 | 一本大道久久a久久精品| 69av精品久久久久久| 国产av一区二区精品久久| 91字幕亚洲| 成熟少妇高潮喷水视频| 亚洲国产看品久久| 黄色毛片三级朝国网站| av片东京热男人的天堂| 国产91精品成人一区二区三区| 大型黄色视频在线免费观看| 亚洲男人的天堂狠狠| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| 国产精品 欧美亚洲| 最好的美女福利视频网| bbb黄色大片| 日本 av在线| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 国产高清国产精品国产三级| av网站在线播放免费| 人人妻人人添人人爽欧美一区卜| 亚洲欧美一区二区三区久久| 欧美激情高清一区二区三区| 欧美 亚洲 国产 日韩一| 十八禁网站免费在线| 80岁老熟妇乱子伦牲交| 中文欧美无线码| 咕卡用的链子| 亚洲成人免费av在线播放| 90打野战视频偷拍视频| 男人操女人黄网站| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 老熟妇仑乱视频hdxx| av在线播放免费不卡| cao死你这个sao货| 精品日产1卡2卡| videosex国产| 90打野战视频偷拍视频| 老鸭窝网址在线观看| 国产成人精品无人区| av电影中文网址| a级片在线免费高清观看视频| 午夜福利在线免费观看网站| 久久午夜综合久久蜜桃| 亚洲激情在线av| 欧美大码av| 色哟哟哟哟哟哟| 欧美另类亚洲清纯唯美| 国产精品久久久人人做人人爽| 亚洲一区高清亚洲精品| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清 | 国产无遮挡羞羞视频在线观看| 午夜福利免费观看在线| 丰满饥渴人妻一区二区三| 大码成人一级视频| 人成视频在线观看免费观看| 亚洲精品国产一区二区精华液| 欧美日韩亚洲综合一区二区三区_| 成人av一区二区三区在线看| 免费久久久久久久精品成人欧美视频| 91成年电影在线观看| 国产精品99久久99久久久不卡| 精品一区二区三区四区五区乱码| 深夜精品福利| 一个人免费在线观看的高清视频| 757午夜福利合集在线观看| 国产欧美日韩综合在线一区二区| 九色亚洲精品在线播放| 女人被狂操c到高潮| 国产精品二区激情视频| 亚洲国产精品合色在线| 色婷婷av一区二区三区视频| 成在线人永久免费视频| 91字幕亚洲| av天堂久久9| 国产精品免费一区二区三区在线| 在线十欧美十亚洲十日本专区| 国产极品粉嫩免费观看在线| 黄色女人牲交| 动漫黄色视频在线观看| 韩国av一区二区三区四区| 亚洲第一青青草原| 国产精品一区二区在线不卡| 日韩免费av在线播放| av网站在线播放免费| 19禁男女啪啪无遮挡网站| 亚洲国产欧美网| 桃红色精品国产亚洲av| 看片在线看免费视频| 国产欧美日韩一区二区三区在线| 波多野结衣av一区二区av| av国产精品久久久久影院| 色综合站精品国产| 咕卡用的链子| av在线播放免费不卡| 免费一级毛片在线播放高清视频 | 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 国产精品国产av在线观看| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 日韩一卡2卡3卡4卡2021年| 真人做人爱边吃奶动态| 999久久久国产精品视频| 免费看十八禁软件| 欧美乱码精品一区二区三区| avwww免费| 欧美一级毛片孕妇| 精品久久久精品久久久| 久久天躁狠狠躁夜夜2o2o| 免费在线观看视频国产中文字幕亚洲| 99在线视频只有这里精品首页| 手机成人av网站| 欧美中文综合在线视频| 国产av一区二区精品久久| 国产精品电影一区二区三区| 日日干狠狠操夜夜爽| 久久久久国内视频| 女性被躁到高潮视频| 久久精品成人免费网站| 欧美老熟妇乱子伦牲交| 麻豆成人av在线观看| 丁香六月欧美| 国产精品美女特级片免费视频播放器 | 午夜a级毛片| 夜夜夜夜夜久久久久| 久久香蕉国产精品| 国产无遮挡羞羞视频在线观看| 国产单亲对白刺激| av网站免费在线观看视频| 国产成人精品无人区| 日本黄色视频三级网站网址| e午夜精品久久久久久久| 亚洲 欧美 日韩 在线 免费| 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 精品国产一区二区三区四区第35| 午夜精品在线福利| 19禁男女啪啪无遮挡网站| 亚洲情色 制服丝袜| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 女性生殖器流出的白浆| 日本黄色视频三级网站网址| 国产精品99久久99久久久不卡| 啦啦啦 在线观看视频| 成人国产一区最新在线观看| 成人18禁高潮啪啪吃奶动态图| 最近最新中文字幕大全免费视频| 午夜福利一区二区在线看| 亚洲专区中文字幕在线| 纯流量卡能插随身wifi吗| 一级a爱视频在线免费观看| 免费不卡黄色视频| 啦啦啦 在线观看视频| 99re在线观看精品视频| 黑人巨大精品欧美一区二区mp4| 欧美最黄视频在线播放免费 | 一级毛片女人18水好多| 日本三级黄在线观看| 91国产中文字幕| 露出奶头的视频| 在线观看www视频免费| 美女国产高潮福利片在线看| 欧美另类亚洲清纯唯美| 亚洲一区二区三区欧美精品| 国产精品一区二区三区四区久久 | 在线十欧美十亚洲十日本专区| 国产av一区在线观看免费| 久久精品人人爽人人爽视色| 日韩免费av在线播放| 制服诱惑二区| 80岁老熟妇乱子伦牲交| av国产精品久久久久影院| 欧美黄色淫秽网站| а√天堂www在线а√下载| 日韩成人在线观看一区二区三区| 夜夜爽天天搞| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美软件| 免费在线观看日本一区| 国产人伦9x9x在线观看| 国产精品久久电影中文字幕| 91老司机精品| 真人做人爱边吃奶动态| 午夜福利影视在线免费观看| av免费在线观看网站| 亚洲 欧美 日韩 在线 免费| 99久久人妻综合| 啦啦啦免费观看视频1| 国产av一区二区精品久久| 久久精品国产清高在天天线| 久久中文看片网| 亚洲视频免费观看视频| 成人免费观看视频高清| 91成年电影在线观看| 国产精品久久久久久人妻精品电影| 后天国语完整版免费观看| 欧美黄色淫秽网站| 精品国产乱子伦一区二区三区| 亚洲欧美日韩高清在线视频| 欧洲精品卡2卡3卡4卡5卡区| 日韩大尺度精品在线看网址 | 国产欧美日韩一区二区三| 亚洲,欧美精品.| 亚洲av成人av| 日本黄色日本黄色录像| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 一级作爱视频免费观看| 成人手机av| 十分钟在线观看高清视频www| √禁漫天堂资源中文www| netflix在线观看网站| 一级黄色大片毛片| 色在线成人网| 琪琪午夜伦伦电影理论片6080| 免费在线观看完整版高清| 久久中文看片网| 欧美日本亚洲视频在线播放| 97碰自拍视频| 亚洲国产毛片av蜜桃av| 亚洲国产精品999在线| av欧美777| 美女午夜性视频免费| 亚洲精品美女久久av网站| av在线播放免费不卡| 黄色女人牲交| 国产欧美日韩精品亚洲av| 亚洲狠狠婷婷综合久久图片| 露出奶头的视频| 母亲3免费完整高清在线观看| 两性夫妻黄色片| 亚洲人成电影免费在线| 欧美中文日本在线观看视频| 夜夜躁狠狠躁天天躁| 麻豆一二三区av精品| 又黄又爽又免费观看的视频| 黄网站色视频无遮挡免费观看| 免费在线观看影片大全网站| 久久久久亚洲av毛片大全| 亚洲精品一卡2卡三卡4卡5卡| 免费一级毛片在线播放高清视频 | 少妇粗大呻吟视频| 一级a爱视频在线免费观看| 咕卡用的链子| 老司机深夜福利视频在线观看| 91老司机精品| www.精华液| 多毛熟女@视频| 精品一区二区三区av网在线观看| 我的亚洲天堂| 国产精品99久久99久久久不卡| 一区二区三区激情视频| 午夜福利欧美成人| 国产精品国产av在线观看| 国产一区二区在线av高清观看| 久久中文字幕人妻熟女| 日韩人妻精品一区2区三区| bbb黄色大片| 亚洲精品国产色婷婷电影| 中文字幕最新亚洲高清| 99久久99久久久精品蜜桃| 一级黄色大片毛片| av电影中文网址| 亚洲 欧美 日韩 在线 免费| 国产高清videossex| 欧美大码av| 久久久久国产精品人妻aⅴ院| 男人舔女人的私密视频| 在线视频色国产色| 19禁男女啪啪无遮挡网站| 免费搜索国产男女视频| 99久久精品国产亚洲精品| 国产人伦9x9x在线观看| 精品久久久精品久久久| 免费在线观看视频国产中文字幕亚洲| 欧美性长视频在线观看| 伊人久久大香线蕉亚洲五| 在线视频色国产色| 欧美黑人精品巨大| 99热只有精品国产| 久久精品影院6| 黄色视频,在线免费观看| 一级,二级,三级黄色视频| 如日韩欧美国产精品一区二区三区| 国产av又大| 精品一区二区三区四区五区乱码| 视频区图区小说| 亚洲第一欧美日韩一区二区三区| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 不卡av一区二区三区| 国产成+人综合+亚洲专区| 午夜福利影视在线免费观看| 国产精品国产高清国产av| 中文亚洲av片在线观看爽| 免费看a级黄色片| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| av福利片在线| 亚洲欧洲精品一区二区精品久久久| xxxhd国产人妻xxx| 水蜜桃什么品种好| 变态另类成人亚洲欧美熟女 | 精品电影一区二区在线| www.自偷自拍.com| 国产精品九九99| 国产一区二区激情短视频| 欧美激情高清一区二区三区| 国产精品久久久久久人妻精品电影| www国产在线视频色| 亚洲 欧美一区二区三区| 欧美日韩瑟瑟在线播放| 男人舔女人的私密视频| av视频免费观看在线观看| 99国产综合亚洲精品| 久99久视频精品免费| 中文字幕最新亚洲高清| 热99国产精品久久久久久7| 悠悠久久av| 国产免费av片在线观看野外av| 一夜夜www| 国产精品免费一区二区三区在线| 欧美午夜高清在线| 91精品三级在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看 | 悠悠久久av| 国产精品久久久av美女十八| www.999成人在线观看| 最近最新免费中文字幕在线| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 999精品在线视频| 男人舔女人下体高潮全视频| 欧美日韩亚洲综合一区二区三区_| 狠狠狠狠99中文字幕| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 国产无遮挡羞羞视频在线观看| 亚洲片人在线观看| 日本精品一区二区三区蜜桃| 国产精品影院久久| 日韩成人在线观看一区二区三区| 99国产极品粉嫩在线观看| 长腿黑丝高跟| 日韩高清综合在线| 美女扒开内裤让男人捅视频| 国产亚洲精品一区二区www| 亚洲av成人不卡在线观看播放网| 99国产精品免费福利视频| 99riav亚洲国产免费| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看.| 国产av一区二区精品久久| 中国美女看黄片| 搡老乐熟女国产| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 亚洲精华国产精华精| 中出人妻视频一区二区| 中文字幕av电影在线播放| 亚洲午夜精品一区,二区,三区| 一二三四在线观看免费中文在| 日本五十路高清| 国产成年人精品一区二区 | 亚洲一码二码三码区别大吗| 99香蕉大伊视频| 欧美中文综合在线视频| 日韩国内少妇激情av| 涩涩av久久男人的天堂| 露出奶头的视频| 成人国语在线视频| 精品国产国语对白av| 麻豆久久精品国产亚洲av | 亚洲av成人av| 国产有黄有色有爽视频| 亚洲人成伊人成综合网2020| 亚洲欧美一区二区三区久久| 亚洲精品在线美女| 日本免费一区二区三区高清不卡 | 亚洲国产欧美网| 老司机在亚洲福利影院| 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 国产成人av教育| 亚洲avbb在线观看| 午夜福利影视在线免费观看| 亚洲av成人不卡在线观看播放网| 长腿黑丝高跟| 免费人成视频x8x8入口观看| 成年女人毛片免费观看观看9| a级毛片黄视频| 日本欧美视频一区| 一夜夜www| 欧美中文日本在线观看视频| 丝袜美腿诱惑在线| 欧美精品一区二区免费开放| www.精华液| 很黄的视频免费| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 久久99一区二区三区| 午夜久久久在线观看| 欧美乱色亚洲激情| www.自偷自拍.com| 91av网站免费观看| www.精华液| 欧美成人午夜精品| 精品久久久久久,| 日韩av在线大香蕉| 成熟少妇高潮喷水视频| 国产精品一区二区精品视频观看| 午夜福利一区二区在线看| 在线观看午夜福利视频| 婷婷丁香在线五月| 久久精品国产综合久久久| 色哟哟哟哟哟哟| 五月开心婷婷网| 久久九九热精品免费| 免费观看精品视频网站| 日本免费一区二区三区高清不卡 | 国产精华一区二区三区| 婷婷丁香在线五月| 女性被躁到高潮视频| 757午夜福利合集在线观看| 999精品在线视频| 午夜福利,免费看| 午夜精品在线福利| 亚洲精品久久午夜乱码| 久久精品亚洲熟妇少妇任你| 久久婷婷成人综合色麻豆| 国产不卡一卡二| 国产91精品成人一区二区三区| 日本免费a在线| 两人在一起打扑克的视频| 精品国产国语对白av| 亚洲伊人色综图| 日本免费a在线| 桃色一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 一级a爱视频在线免费观看| a级片在线免费高清观看视频| 国产精品偷伦视频观看了| 高潮久久久久久久久久久不卡| 黄色 视频免费看| www.999成人在线观看| tocl精华| 精品久久久久久久久久免费视频 | 精品无人区乱码1区二区| 91精品国产国语对白视频| 精品国产亚洲在线| 久久久久久久午夜电影 | 国产激情欧美一区二区| 国产亚洲精品久久久久久毛片| 亚洲第一青青草原| 如日韩欧美国产精品一区二区三区| 亚洲精品av麻豆狂野| 色在线成人网| av网站免费在线观看视频| 色尼玛亚洲综合影院| 亚洲av五月六月丁香网| 亚洲av美国av| 久久久久九九精品影院| 亚洲欧美一区二区三区久久| 一区二区日韩欧美中文字幕| 亚洲五月婷婷丁香| 真人做人爱边吃奶动态| 成人三级黄色视频| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 老熟妇仑乱视频hdxx| 黑丝袜美女国产一区| 欧美成人免费av一区二区三区| www日本在线高清视频| 欧美+亚洲+日韩+国产| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 亚洲精品av麻豆狂野| 12—13女人毛片做爰片一| 久久精品aⅴ一区二区三区四区| 久久精品亚洲av国产电影网| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 黄色女人牲交| 久久久久国内视频| 高清在线国产一区| 欧美成人午夜精品| 亚洲久久久国产精品| 久久九九热精品免费| 亚洲av片天天在线观看| 丝袜在线中文字幕| 大陆偷拍与自拍| 精品久久久久久电影网| 国产精品1区2区在线观看.| 久久精品影院6| 性少妇av在线| 老熟妇仑乱视频hdxx| 欧美日韩视频精品一区| 制服人妻中文乱码| 亚洲人成网站在线播放欧美日韩| 欧美午夜高清在线| 高清毛片免费观看视频网站 | 久久精品91无色码中文字幕| 黄色丝袜av网址大全| 久久精品91蜜桃| 99精品欧美一区二区三区四区| 欧美乱妇无乱码| 久热爱精品视频在线9| 国产xxxxx性猛交| 操出白浆在线播放| 在线观看免费视频日本深夜| 久久人妻熟女aⅴ| 精品国产乱子伦一区二区三区| 午夜a级毛片| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区三区在线| 超色免费av| 9热在线视频观看99| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 国产精品免费一区二区三区在线| 国产单亲对白刺激| 国产精品影院久久| 国产麻豆69| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| 日韩中文字幕欧美一区二区| 亚洲五月天丁香| 亚洲国产精品合色在线| 日本免费a在线| 搡老熟女国产l中国老女人| 啦啦啦 在线观看视频| 国产精品一区二区免费欧美| 欧美午夜高清在线| 免费av中文字幕在线| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 男女午夜视频在线观看| 精品一区二区三区四区五区乱码| 麻豆久久精品国产亚洲av | 日韩大尺度精品在线看网址 | 久久久国产欧美日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| a在线观看视频网站| 又紧又爽又黄一区二区| 日韩人妻精品一区2区三区| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 成人精品一区二区免费| 女生性感内裤真人,穿戴方法视频| 国产成人av激情在线播放| 免费av毛片视频| av天堂久久9| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 精品人妻在线不人妻| 熟女少妇亚洲综合色aaa.| 在线观看一区二区三区激情| 97超级碰碰碰精品色视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 制服诱惑二区| 在线观看www视频免费| 大香蕉久久成人网| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 久久国产精品影院| www.www免费av| 丰满饥渴人妻一区二区三| 久久久久九九精品影院| 久久久久久免费高清国产稀缺| 成人手机av|