• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the promotion effect of Mo doped CuO catalysts for the low-temperature performance of NH3-SCR reaction

    2023-01-30 06:49:26HuiWangTingZhuYujieQiaoShichengDongZhenpingQu
    Chinese Chemical Letters 2022年12期

    Hui Wang,Ting Zhu,Yujie Qiao,Shicheng Dong,Zhenping Qu

    Key Laboratory of Industrial Ecology and Environmental Engineering(MOE),School of Environme ntal Science and Technology,Dalian University of Technology,Dalian 116024,China

    Keywords:Mo doped CuO NH3-SCR NOx

    ABSTRACT A novel Mo-doped CuO catalyst is developed and used for low-temperature NH3-SCR reaction.Compared with the undoped CuO sample,the Mo doped CuO catalyst shows an increased SCR performance with above 80%NOx conversion at 175°C.The XRD and Raman results have confirmed the incorporation of Mo metal ions into CuO lattice to form Mo-O-Cu species which may be related to the enhanced SCR activity.The XPS and UV–vis results reveal the creation of electron interaction between Cu and Mo in this Mo-O-Cu system which provides an increased amount of Lewis and Br?nsted acid sites,thereby promoting the adsorption capacity of NH3 and NOx as verified by NH3-TPD and NOx-TPD characterization.Besides,it also promotes the formation of oxygen vacancies,leading to the increasing of chemisorbed oxygen species,which improves the NO oxidation to NO2 activity.Furthermore,in situ DRIFTS technology was also used to study the reaction mechanism of this Mo doped CuO catalyst.The formed NO2 could react with NHx(x=3,2)species to enhance the low-temperature NH3-SCR activity via the“fast-SCR”reaction pathway.The nitrate and nitrite ad-species may react with NH3 and NH4+ad-species through the L-H pathway.

    The emission of nitrogen oxides(NOx,x=1,2)from stationary sources and mobile sources has caused atmospheric pollution problems such as acid rain,photochemical smog,and ozone holes[1].One typical technique,selective catalytic reduction with ammonia(NH3-SCR),has been widely developed to convert NOxto harmless N2and H2O.A commercial V2O5-WO3(MoO3)/TiO2catalyst has been used in the removal of NOxfor stationary sources[2,3].However,there are still some unavoidable disadvantages,such as the narrow operating temperature window between 300°C and 400°C,poor activity at the low temperature,and the biological toxicity of vanadium[4].Therefore,many researchers focus on the novel,eco-friendly,low-cost and high efficient NH3-SCR catalysts.Several transitional metal oxides catalysts,including CuOx,MnOx,CeO2and Fe2O3have been attracted great attention in recent years,which are active for the low-temperature NH3-SCR reactions[5–9].Among these catalysts systems,CuO based catalysts have been intensively studied for low-temperature de-NOx[10].However,several problems,including lack of Lewis and Br?nsted acidity and poor resistance to H2O and SO2poison remain to overcome[11,12].Several strategies,such as modification by mixing with other metal oxides,doping with other ions[8,13],and dispersion on a high surface area support[14],have been employed to enhance the de-NOxactivity of CuO and other transitional metal oxides catalysts.In our previous study[8],the Fe doped CeO2catalysts with Fe-O-Ce system were developed and enhanced the adsorption of NH3and NOx,oxygen vacancies,improving the NH3-SCR activity.MoOxhas been well recognized as an excellent“structural”and“chemical”promoter to promote deNOxperformance[15].Some researchers have reported that the addition of MoO3could enhance the adsorption and activation of NH3,which was beneficial to the improvement of the NH3-SCR activity[16].Tanget al.have developed hexagonal WO3with Mo framework substitution which resulted in hybridizing W and Mo cations with their bridging oxygen ions,thus making the electron transfers in SCR redox cycles relatively easy and leading to improved catalytic activity[17].

    Fig.1.XRD patterns(a),the elemental mapping images(b)and NOx conversion curve during NH3-SCR reaction(c)of the synthesized samples.

    Therefore,in this study,we designed these Mo doped CuO samples which can combine the advantages of both species.It is found that this Mo doped CuO catalyst is more active than pure CuO catalyst even in the presence of SO2.According to the various characterization results,the cause of the promoting effect of Mo has been proposed,including structure,chemical and adsorption properties,and reaction mechanism.The synthesis procedure of Mo doped CuO samples,experimental methods,and characterization techniques are provided in Supporting information in detail.

    Firstly,the structure of the Mo doped CuO samples was verified by XRD,Raman,and FE-SEM technologies.As shown in Fig.1a,the XRD patterns for all these samples can be indexed to monoclinic CuO[18].However,the(?111)and(111)diffraction peaks broaden gradually after Mo doping.With the increasing of Mo dopant amount,the particle size of samples decreases(Table S1 in Supporting information).Significantly,the positions of main diffraction peaks of Mo doped CuO over the 2θof 35°?40°shift toward higher angles with increasing of the Mo amount,which may arise from the Mo doping into the CuO lattice to form solid solutions.Since the radius of Cu2+(0.073 nm)ions is larger than that of Mo6+(0.059 nm),this difference in the ionic radii of the host and the dopant atom can lead to changes in the lattice parameters of the system(Table S1).Therefore,the Cu2+ions in the lattice of CuO were substituted by Mo6+ions,which result in monoclinic distortion.When Mo6+ions substitute Cu2+ions,Mo6+will inevitably form in this system.The oxygen vacancies could be formed,resulting from the requirement of charge compensation[19].As shown in Fig.S1(Supporting information),the Raman peaks of these Mo doped CuO samples are similar to that of the pure CuO sample.And no active modes related to secondary phases or impurities are observed,indicating the Mo species may be doped into the CuO lattice.A higher magnification FE-SEM images for the 3%Mo doped CuO sample together with Mo,O,and Cu elemental mapping are also presented in Fig.1b.It is clear that Mo species were uniformly distributed on CuO.The above-mentioned results infer that Mo6+ions were uniformly doped into the CuO and substituted the position of Cu2+ions into the lattice of CuO,leading to the formed Mo-O-Cu isostructural substitution.

    The influence of Mo species doped CuO for the NH3-SCR activity was investigated.As the results are shown in Fig.1c,the undoped CuO and pristine MoO3show very low NH3-SCR efficiency in the whole temperature range.The highest NOxconversion of the CuO sample is only about 58%,which is achieved at 225°C.The pure MoO3catalyst performs a continuous increase of NOxconversion and exhibits a higher NOxconversion than CuO at above 275°C.Interestingly,doping of Mo to CuO catalysts resulted in a significant enhancement of deNOxefficiency in the medium-low temperature range with an obviously broadened operation temperature window.Compared with undoped CuO,the NOxconversion of Mo doped CuO catalysts presents a trend of increasing.Further increasing the amount of Mo species to 3 at%,the NH3-SCR activity continues to be improved.This catalyst shows above 80%NOxconversion and 80%N2selectivity at temperatures from 175°C to 275°C(Fig.S2 in Supporting information).Besides,this Mo doped CuO catalyst has excellent resistance to high space velocity and improved tolerance of SO2(Figs.S3 and S4 in Supporting information).Compare to other reported Cu-based oxides catalysts[20,21],this Mo doped CuO oxides catalyst with low cost is one of the potential candidates for deNOxat the low temperature.

    Fig.2.Cu 2p and O 1s XPS spectra of CuO(a)and 3 at%Mo doped CuO(b)catalysts.

    XPS was carried out to study the chemical valence states of the different elements and surface elemental composition in Mo undoped and doped CuO catalysts.Fig.2 depicts the Cu 2p and O 1s spectra.The peaks at 933.77 eV and 953.65 eV with a spinenergy separation of 19.88 eV can be attributed to Cu 2p3/2and Cu 2p1/2,which are the characteristics of Cu2+ions[22].Furthermore,the appearance of satellite peaks with binding energies of 938.71–947.12 eV further confirms the existence of CuO.The BEs of Cu 2p in this doped sample decrease by 0.61 eV relative to that of Cu 2p in CuO.Depending on the valency,each Mo atom can contribute free electrons to the CuO lattice[23],which could affect the electrical properties of the CuO,inducing the electron density of Cu2+increment significantly.Therefore,XPS analysis results suggest that the bonding between the Mo and Cu cations indeed occurs,thereby forming the strong electron interaction between Mo and Cu cations.Besides,the optical band gap is obtained on the basis of UV–vis spectra(Fig.S5 in Supporting information).The bandgap value of undoped CuO is 2.31 eV which is similar to other reported CuO[24],while that of Mo doped CuO has been found to be 2.46 eV.Augmenting of the bandgap may be attributed to the charge-transfer transition between Mo6+d electrons and CuO conduction band[25],which further demonstrates the creation of electron interaction between Cu and Mo in this Mo-O-Cu system.The O 1s peaks were all fitted with two contributions.The O 1s spectra of undoped CuO catalysts present a distinct sharp peak centered around 529.53 eV,which is attributed to the lattice oxygen atoms(Oβ)coordinated with Cu atoms(Cu?O?Cu)[26].The other shoulder in the higher energy region is related to chemisorbed oxygen species(Oα)[27].In the case of the Mo doped CuO sample,a slight shift in the BE value of the sharp peak(529.73 eV)is detected,which may be assigned to the appearance of coordination of oxygen in Mo-O-Cu structure.The concentration of Oαis calculated and shown in Table S1.The ratio of Oαspecies increases with the addition of Mo cations.Based on the XRD and Raman results,it demonstrates that the introduction of Mo dopant is beneficial to the formation of oxygen vacancies,which leads to the amount increase of chemisorbed oxygen species,thereby improving the activity of NO oxidation(Fig.S6a and Fig.S7 in Supporting information).The formed NO2could enhance the NH3-SCR activityviathe“fast-SCR”reaction pathway[28].

    Fig.3.NH3-TPD(a)and NOx-TPD profiles(c)of Mo doped CuO samples.The DRIFT spectra of NH3 adsorption(b)and NOx adsorption(d)of 3 at%Mo doped CuO sample at 150°C.

    The adsorption of NH3closely related to the surface acidity is crucial for NH3-SCR reaction[29].The NH3-TPD technology was used to study the surface acidity of the Mo undoped and doped CuO catalysts and their profiles are shown in Fig.3a.Both undoped and doped CuO samples exhibit a wide desorption peak lasting from 75°C to 400°C,indicating the surface acid sites with different thermal stability.The curve of these two catalysts is composed of two portions.The first shoulder peak located below 200°C can be attributed to the physically adsorbed NH3and weakly bound NH3species adsorbed on the Lewis or/and Br?nsted acid sites,while the second peak at 200–350°C is assigned to the NH3strongly desorbed on the Lewis or/and Br?nsted acid sites[30,31].Obviously,the intensity of the NH3desorption peak becomes higher after the doping of Mo into the CuO catalyst.The adsorption state of NH3over the 3%Mo doped CuO catalysts surface was characterized byin situDRIFTs,and the results are shown in Fig.3b.The bands at 1198 cm?1are attributed to coordinated NH3bound to Lewis acid sites,while the broad weak bands that appeared in the region of 1256–1609 cm?1may be related to the overlap of amide(NH2)species and NH4+bound to the Br?nsted acid sites,respectively[32].The NH2species may be derived from the deprotonation of NH3viapartial oxidation which also generates OH species appearing at 3643 and 3614 cm?1[33].Based on the above results,the adsorption peak intensity of the Mo doping CuO sample is significantly higher than that of the undoped CuO sample.Combing with the XRD results,the doping of Mo into CuO lattice could result in the formation of Cu-O-Mo structure.It may provide an increased amount of Lewis and Br?nsted acid sites,thereby enhancing the NH3adsorption capacity.On the one hand,the strong electron interaction between Mo and Cu could increase the amount of Lewis acid sites.On the other hand,the formed Mo=O sites could act as Br?nsted acid sites on the catalyst surface,since no bands ascribed to NH4+were observed(Fig.S8 in Supporting information).

    The NOxdesorption peaks of CuO and Mo doped CuO catalysts are all fitted with four contributions and are shown in Fig.3c.The four NOxdesorption peaks centered at 94(peak-1),138(peak-2),238(peak-3),and 366°C(peak-4)for the undoped CuO sample.The first two weak peaks are ascribed to the desorption of physisorbed NO and NO2species,respectively[34].The latter broad peak may be assigned to the decomposition of nitrite or/and monodentate nitrate species,while the last sharp peak could be attributed to the decomposition of thermostable bidentate or bridging nitrate species[35,36].After the addition of dopant Mo species,it can be found that the total amount of chemical desorbed NOxincrease obviously,especially for NO2and NO2?or/and monodentate NO3?species(Fig.S9 in Supporting information).Thein situDRIFTS of NOxdesorption from 3%Mo doped CuO catalyst were studied,and the results are shown in Fig.3d.Several bands at 1556,1516,1275,1256,and 1606,1358 cm?1appear at 150°C on the Mo doped CuO catalyst.The former three main bands are assigned to the nitrate species,while the band at 1256 cm?1is a result of the asymmetric deformation of nitrite species(vas(NO2))[33,37].The latter two bands are attributed to gaseous NO2and monodentate NO2?species,respectively[38].

    According to the XRD,Raman,and XPS results,Mo can be doped into CuO structure to form a CuO-liked solid solution containing a Mo?O?Cu bond,leading to a high electron density of Cu ions.On the one hand,it is beneficial to the feasibility of oxygen activation and the oxidation of NO,which have been verified by the XPS and NO oxidation activity results.On the other hand,the redox property is also promoted(Fig.S10 in Supporting information).Compared to the undoped CuO,the reduction peak shifts to the lower temperature,which will be conducive to the NH3activation(Fig.S6b).In addition,Mo/CuO catalyst was also synthesized by impregnation method and it shows a poor NH3-SCR activity compared to the designed Mo doped CuO catalyst(Fig.S11 in Supporting information).The above-mentioned results manifest that the Mo-O-Cu species with strong interaction between Mo and Cu are the main adsorption and activation sites for NOxand NH3(Figs.3a-d),thereby enhancing the NH3-SCR activity.

    Fig.4.In situ DRIFT spectra of 3%Mo doped CuO catalyst during transient NH3 exposure after NO+O2 adsorption(a,b)or upon passing NH3+NO+O2 over this catalyst(c)at 250°C as a function of time;proposed mechanism of NOx reduction(d)over this Mo doped CuO catalyst.

    The transient reaction studies were performed byin situDRIFTS to investigate the reactivity of the NOxand NH3adsorbed species,thereby exploring the mechanism of NH3-SCR reaction over 3%Mo doped CuO catalyst.The sample was covered by several adsorbed NOxspecies after pre-adsorption with 500 ppm NO+3 vol%O2at 150°C(Fig.3d).Followed by switching the 500 ppm NH3/He into the cell(after He purged),the bands assigned to NO2and NO2?rapidly disappeared(Fig.4a),suggesting the NO2can react with NHxspeciesviaa“fast SCR”reaction pathway.However,the variation trend of the other four peaks over time is slightly different.The area of these peaks was recorded as the function of time and is shown in Fig.4b.The amount of nitrate species(1556 cm?1)monotonously decrease to a certain value,when ammonia was fed into the sample cell within 2 h,indicating NO3?ad-species are also activated which could react with NH3ad-species.Interestingly,the peak area of surface NO3?(1516,1275,and 1256 cm?1)ad-species increases rapidly and then decreases gradually.This may be because intermediate species were generated and then consumed.The FTIR spectrum with pre-adsorbed NH3exposed to 500 ppm NO+3 vol%O2at 150°C is presented in Fig.S12(Supporting information).After the admission of NOx,the bands assigned to NOxadsorbed species immediately develop and overlap the bands attributed to NH3ad-species,which suggests that the adsorption capacity of NOxis superior to that of NH3.The spectra of this catalyst at 150°C in the flow of 500 ppm NO+500 ppm NH3+3 vol%O2were recorded with the purpose of studying the present species under the reaction conditions,which are shown in Fig.4c.At the initial 1 min,several bands developed at 1612,1569–1517,1476,1377,and 1216 cm?1,which are moderately increased in intensity with increasing the reaction time.The position of these bands shifts,compared with NOxand NH3adsorption spectra(Fig.S13 in Supporting information),which may result from the formation of intermediate species,e.g.,NH4NO3,NH4NO2,NO2(NH3)2[39].Meanwhile,the intensity of the bands obtained in the spectra is lower than that in this spectra of NOxadsorption,indicating NOxadsorbed species could react with NH3ad-species.There may be competitive adsorption between NH3and NOx.The adsorption sites occupied by NOxresults in inhibition of NH3adsorption and activation.Based on the present investigation,the possible NH3-SCR reaction pathways on the Mo doped CuO catalysts are proposed and shown in Fig.4d.The gaseous NH3molecules are first adsorbed on this catalyst to form dominant coordinated NH3ad-species and a small amount of NH2and NH4+ad-species.NO molecules are also adsorbed on the catalyst and then oxidized to NO2,nitrite,and nitrate species.The NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism,while the nitrite and nitrate ad-species can react with NH4+and coordinate NH3ad-species through the L-H mechanism.

    In summary,Mo doped CuO catalyst has been successfully synthesized,which shows an excellent low-temperature NH3-SCR activity.The doping of Mo into CuO lattice leads to the formation of Cu-O-Mo system with strong electron interaction between Cu and Mo,which is beneficial to the oxidation of NO to NO2,thereby enhancing the low-temperature activityviaa“fast-SCR”pathway.Moreover,it can also provide more adsorbed sites,improving the adsorption of NH3and NOxto form coordinate NH3,NH2,NH4+,and NO2?,NO3?ad-species.On the one hand,the NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism.On the other hand,the nitrite and nitrate ad-species can react with NH4+,coordinate NH3and NH2ad-species through the L-H mechanism.The NOxconversion increases by about 60%at 150°C after the addition of Mo species.

    Declaration of competing interest

    The article has no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21806017,21876019),the Fundamental Research Funds for the Central Universities(No.DUT20RC(4)003)and National Key Research and Development Program of China(No.2019YFC1903903).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.075.

    亚洲天堂国产精品一区在线| 亚洲aⅴ乱码一区二区在线播放| 最新中文字幕久久久久| 嫩草影视91久久| 久久香蕉精品热| 内射极品少妇av片p| 国产精品电影一区二区三区| 淫妇啪啪啪对白视频| 亚洲人成网站高清观看| 欧美一级毛片孕妇| 狂野欧美白嫩少妇大欣赏| 国产成人影院久久av| 日本a在线网址| 有码 亚洲区| 国产蜜桃级精品一区二区三区| 精品人妻1区二区| 一区二区三区高清视频在线| 日本成人三级电影网站| 日韩精品中文字幕看吧| 老司机深夜福利视频在线观看| 一级毛片女人18水好多| 日日摸夜夜添夜夜添小说| 国产亚洲精品av在线| www日本在线高清视频| 色老头精品视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女| 国产精品久久久久久久电影 | 一区二区三区激情视频| 亚洲专区中文字幕在线| 丁香欧美五月| 成年版毛片免费区| 国产色爽女视频免费观看| 高潮久久久久久久久久久不卡| 99久久成人亚洲精品观看| 最近最新中文字幕大全电影3| 中文字幕人妻熟人妻熟丝袜美 | eeuss影院久久| 91麻豆精品激情在线观看国产| 久久久久久久久久黄片| 天堂动漫精品| 国产一区二区激情短视频| 99国产综合亚洲精品| 亚洲av熟女| 久久精品91无色码中文字幕| 一本久久中文字幕| 在线观看日韩欧美| 久9热在线精品视频| 午夜激情欧美在线| 三级毛片av免费| 亚洲人成电影免费在线| 99久久精品国产亚洲精品| 久久久久性生活片| 成人av在线播放网站| 麻豆成人午夜福利视频| 在线观看日韩欧美| 亚洲成a人片在线一区二区| 成年女人毛片免费观看观看9| 亚洲第一欧美日韩一区二区三区| 久久精品国产99精品国产亚洲性色| 无人区码免费观看不卡| 色综合欧美亚洲国产小说| 最近最新中文字幕大全电影3| 亚洲中文日韩欧美视频| 欧美日韩国产亚洲二区| 欧美精品啪啪一区二区三区| 日本黄色视频三级网站网址| 久久久久久九九精品二区国产| 女人高潮潮喷娇喘18禁视频| 国产伦精品一区二区三区视频9 | 精品欧美国产一区二区三| 少妇人妻精品综合一区二区 | 草草在线视频免费看| avwww免费| 免费av毛片视频| 19禁男女啪啪无遮挡网站| 99在线人妻在线中文字幕| АⅤ资源中文在线天堂| 亚洲性夜色夜夜综合| 欧美成人a在线观看| 日韩亚洲欧美综合| 亚洲av不卡在线观看| 亚洲男人的天堂狠狠| 99久久成人亚洲精品观看| 一级毛片女人18水好多| 91在线观看av| 国产精品国产高清国产av| 又紧又爽又黄一区二区| 亚洲一区二区三区色噜噜| 午夜福利在线在线| 久久人人精品亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 婷婷六月久久综合丁香| 波多野结衣高清作品| АⅤ资源中文在线天堂| 亚洲av电影在线进入| 18禁美女被吸乳视频| 中国美女看黄片| 精品熟女少妇八av免费久了| 亚洲人成伊人成综合网2020| 熟女少妇亚洲综合色aaa.| 午夜久久久久精精品| 免费观看精品视频网站| av专区在线播放| 亚洲一区二区三区不卡视频| 亚洲色图av天堂| 精品国产超薄肉色丝袜足j| 亚洲专区中文字幕在线| 国产一区二区在线观看日韩 | 最近最新免费中文字幕在线| 午夜精品在线福利| 在线免费观看不下载黄p国产 | 日韩欧美三级三区| 丰满乱子伦码专区| 久久6这里有精品| 免费看十八禁软件| 好男人在线观看高清免费视频| av女优亚洲男人天堂| 国产日本99.免费观看| 亚洲人成网站高清观看| 成人永久免费在线观看视频| 国产毛片a区久久久久| 欧美最新免费一区二区三区 | 日日摸夜夜添夜夜添小说| 国产探花极品一区二区| 全区人妻精品视频| 人人妻,人人澡人人爽秒播| avwww免费| 欧美一区二区亚洲| avwww免费| 他把我摸到了高潮在线观看| 老汉色av国产亚洲站长工具| 亚洲国产欧美人成| 久久天躁狠狠躁夜夜2o2o| 欧美成狂野欧美在线观看| 51国产日韩欧美| 天堂影院成人在线观看| 欧美日韩国产亚洲二区| 小说图片视频综合网站| 亚洲乱码一区二区免费版| 色吧在线观看| 舔av片在线| 日本a在线网址| 性色avwww在线观看| 国产美女午夜福利| 亚洲av电影不卡..在线观看| 久久久久久久亚洲中文字幕 | 成人一区二区视频在线观看| 亚洲午夜理论影院| 欧美不卡视频在线免费观看| 午夜福利高清视频| 91av网一区二区| 深夜精品福利| 亚洲欧美一区二区三区黑人| 男插女下体视频免费在线播放| 夜夜夜夜夜久久久久| av黄色大香蕉| 一区二区三区国产精品乱码| 国内精品一区二区在线观看| 一区二区三区高清视频在线| 欧美av亚洲av综合av国产av| 久久中文看片网| 嫩草影院精品99| 老鸭窝网址在线观看| 精品一区二区三区视频在线 | 一区二区三区高清视频在线| 婷婷六月久久综合丁香| 国产精品日韩av在线免费观看| 男女之事视频高清在线观看| www.www免费av| 精品无人区乱码1区二区| 日本三级黄在线观看| 日日夜夜操网爽| 熟妇人妻久久中文字幕3abv| 午夜两性在线视频| 日韩欧美国产一区二区入口| 男女做爰动态图高潮gif福利片| 国产成人福利小说| 一夜夜www| 麻豆成人午夜福利视频| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 一个人看视频在线观看www免费 | 欧美黑人巨大hd| aaaaa片日本免费| 欧美丝袜亚洲另类 | 国产蜜桃级精品一区二区三区| 极品教师在线免费播放| 俺也久久电影网| 少妇的丰满在线观看| 免费在线观看日本一区| 国语自产精品视频在线第100页| 欧美+亚洲+日韩+国产| 搡女人真爽免费视频火全软件 | 男女下面进入的视频免费午夜| 久久久国产精品麻豆| 青草久久国产| 亚洲av不卡在线观看| 人人妻人人看人人澡| 久久香蕉精品热| 色噜噜av男人的天堂激情| 99国产综合亚洲精品| 久久久国产成人免费| 久久久久精品国产欧美久久久| 国产亚洲精品一区二区www| 久久久久久人人人人人| 久久中文看片网| 91在线精品国自产拍蜜月 | 日本黄大片高清| 他把我摸到了高潮在线观看| 18禁在线播放成人免费| 日韩亚洲欧美综合| 久久久久精品国产欧美久久久| 国产伦一二天堂av在线观看| 亚洲成人久久性| 亚洲激情在线av| 精品免费久久久久久久清纯| 三级毛片av免费| 日日夜夜操网爽| 亚洲 欧美 日韩 在线 免费| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 十八禁人妻一区二区| 国产精品 欧美亚洲| 一本综合久久免费| av在线蜜桃| 亚洲,欧美精品.| www.www免费av| svipshipincom国产片| 熟妇人妻久久中文字幕3abv| 日韩免费av在线播放| 岛国视频午夜一区免费看| 欧美zozozo另类| 婷婷丁香在线五月| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 国产成人福利小说| 欧美色视频一区免费| 两个人视频免费观看高清| av女优亚洲男人天堂| 国产精品电影一区二区三区| 日韩欧美 国产精品| 他把我摸到了高潮在线观看| 免费观看人在逋| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 精品国产亚洲在线| 亚洲国产精品sss在线观看| 亚洲美女黄片视频| 18禁在线播放成人免费| 成人性生交大片免费视频hd| 国产精品 欧美亚洲| 91麻豆av在线| 91在线观看av| 欧美精品啪啪一区二区三区| 一进一出抽搐gif免费好疼| 高清日韩中文字幕在线| 啪啪无遮挡十八禁网站| 成人亚洲精品av一区二区| 亚洲在线自拍视频| 精品福利观看| 3wmmmm亚洲av在线观看| 麻豆久久精品国产亚洲av| 搡老熟女国产l中国老女人| 国内少妇人妻偷人精品xxx网站| 国产精品免费一区二区三区在线| 国产精品久久久久久人妻精品电影| e午夜精品久久久久久久| 中文字幕高清在线视频| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 亚洲黑人精品在线| 中出人妻视频一区二区| 国产熟女xx| 久久精品人妻少妇| 床上黄色一级片| 色精品久久人妻99蜜桃| 亚洲人成网站在线播| 在线十欧美十亚洲十日本专区| 色在线成人网| 露出奶头的视频| 一本久久中文字幕| 高清在线国产一区| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件 | 少妇人妻一区二区三区视频| 亚洲无线在线观看| 欧美日韩一级在线毛片| 人妻丰满熟妇av一区二区三区| 国产爱豆传媒在线观看| 嫩草影院精品99| 亚洲精品影视一区二区三区av| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| 人人妻人人澡欧美一区二区| 国产精品日韩av在线免费观看| 久久久色成人| 亚洲人成网站高清观看| 欧美日韩黄片免| 久久久成人免费电影| 欧美成人一区二区免费高清观看| 老司机福利观看| 国产精品一区二区三区四区免费观看 | 18美女黄网站色大片免费观看| 内地一区二区视频在线| 欧美精品啪啪一区二区三区| 啦啦啦免费观看视频1| 99久久无色码亚洲精品果冻| 99久久综合精品五月天人人| 亚洲色图av天堂| avwww免费| 中亚洲国语对白在线视频| 日韩欧美在线二视频| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 中亚洲国语对白在线视频| 日韩欧美在线二视频| 免费无遮挡裸体视频| 国产乱人视频| 宅男免费午夜| 久久九九热精品免费| 99热这里只有是精品50| 内射极品少妇av片p| 一进一出抽搐gif免费好疼| 色噜噜av男人的天堂激情| 长腿黑丝高跟| 麻豆国产av国片精品| av专区在线播放| 久久欧美精品欧美久久欧美| 久久久久久国产a免费观看| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 婷婷精品国产亚洲av在线| 久久精品综合一区二区三区| 午夜激情福利司机影院| 在线国产一区二区在线| 亚洲精品亚洲一区二区| 中文字幕熟女人妻在线| 两人在一起打扑克的视频| 两性午夜刺激爽爽歪歪视频在线观看| 午夜a级毛片| 亚洲五月婷婷丁香| 国产 一区 欧美 日韩| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 色在线成人网| 18禁美女被吸乳视频| 日韩欧美在线二视频| 久久香蕉精品热| 亚洲熟妇中文字幕五十中出| 三级毛片av免费| 久久精品国产综合久久久| 亚洲成人精品中文字幕电影| av视频在线观看入口| 欧美极品一区二区三区四区| 99久久九九国产精品国产免费| 中亚洲国语对白在线视频| av黄色大香蕉| 一进一出抽搐gif免费好疼| 有码 亚洲区| 少妇的丰满在线观看| 婷婷精品国产亚洲av| 中文字幕人妻丝袜一区二区| 精品一区二区三区视频在线 | 国产精品免费一区二区三区在线| 麻豆国产av国片精品| 看黄色毛片网站| 美女免费视频网站| 亚洲五月天丁香| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 亚洲av第一区精品v没综合| 两个人看的免费小视频| 免费看光身美女| 在线观看一区二区三区| 一区二区三区免费毛片| 欧美最黄视频在线播放免费| 成人国产一区最新在线观看| 一个人免费在线观看的高清视频| 免费在线观看亚洲国产| 一个人看视频在线观看www免费 | 真人做人爱边吃奶动态| 日本五十路高清| 国产精品久久久久久人妻精品电影| 中文字幕人妻熟人妻熟丝袜美 | or卡值多少钱| 亚洲av电影不卡..在线观看| 一个人看的www免费观看视频| 久久精品国产清高在天天线| 国产成人aa在线观看| 久久久久国产精品人妻aⅴ院| 18禁国产床啪视频网站| 高清毛片免费观看视频网站| 国产激情偷乱视频一区二区| 国产真实伦视频高清在线观看 | 欧美日本视频| eeuss影院久久| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 国产成人系列免费观看| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久人妻蜜臀av| 精品久久久久久,| 免费看十八禁软件| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 精品人妻一区二区三区麻豆 | 国产精品电影一区二区三区| 日韩欧美精品v在线| 最后的刺客免费高清国语| 亚洲avbb在线观看| 欧美日韩国产亚洲二区| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 精品国产美女av久久久久小说| 久9热在线精品视频| 在线国产一区二区在线| 国产免费av片在线观看野外av| 51国产日韩欧美| 在线观看66精品国产| 国产一区二区激情短视频| 色综合欧美亚洲国产小说| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放| 丁香六月欧美| 国产精品av视频在线免费观看| 午夜激情欧美在线| 欧美最新免费一区二区三区 | 好男人电影高清在线观看| 久久久久久久精品吃奶| 日日摸夜夜添夜夜添小说| avwww免费| 午夜激情欧美在线| 99视频精品全部免费 在线| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 欧美+亚洲+日韩+国产| 男插女下体视频免费在线播放| 香蕉久久夜色| 天堂√8在线中文| 校园春色视频在线观看| 久久久久久人人人人人| 欧美在线一区亚洲| 看黄色毛片网站| 宅男免费午夜| 中出人妻视频一区二区| 两个人的视频大全免费| 啪啪无遮挡十八禁网站| 国产亚洲精品av在线| 亚洲av成人av| 成熟少妇高潮喷水视频| 91久久精品电影网| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| 九色成人免费人妻av| 欧美日韩福利视频一区二区| 欧美日韩精品网址| 亚洲狠狠婷婷综合久久图片| 国产 一区 欧美 日韩| av国产免费在线观看| 国内精品久久久久久久电影| 一区二区三区激情视频| 91久久精品国产一区二区成人 | ponron亚洲| 久久精品91无色码中文字幕| 搞女人的毛片| 国产成人福利小说| 高清在线国产一区| 2021天堂中文幕一二区在线观| 搡老妇女老女人老熟妇| 国产精品永久免费网站| 免费在线观看影片大全网站| 长腿黑丝高跟| 国产美女午夜福利| 欧美日韩国产亚洲二区| 日韩精品青青久久久久久| 热99在线观看视频| 欧美性猛交╳xxx乱大交人| 特大巨黑吊av在线直播| 成人国产综合亚洲| 噜噜噜噜噜久久久久久91| 国内精品久久久久精免费| 久久婷婷人人爽人人干人人爱| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 毛片女人毛片| av福利片在线观看| 日韩av在线大香蕉| 国产亚洲精品一区二区www| 欧美一区二区国产精品久久精品| 国产成人av激情在线播放| 亚洲片人在线观看| 国产单亲对白刺激| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 亚洲成人免费电影在线观看| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 女人十人毛片免费观看3o分钟| 熟妇人妻久久中文字幕3abv| 中文字幕熟女人妻在线| 精品久久久久久久人妻蜜臀av| 老汉色av国产亚洲站长工具| 国产色爽女视频免费观看| 热99在线观看视频| 熟女少妇亚洲综合色aaa.| av国产免费在线观看| 亚洲一区高清亚洲精品| 午夜福利在线在线| 精品熟女少妇八av免费久了| 三级国产精品欧美在线观看| 给我免费播放毛片高清在线观看| 在线天堂最新版资源| 午夜福利在线观看吧| 国产乱人伦免费视频| 久久久久久久精品吃奶| 免费看光身美女| 亚洲欧美一区二区三区黑人| 91九色精品人成在线观看| 90打野战视频偷拍视频| 看片在线看免费视频| 久久香蕉国产精品| 毛片女人毛片| 国产乱人伦免费视频| 日本 欧美在线| 欧美不卡视频在线免费观看| 搡老妇女老女人老熟妇| 亚洲最大成人中文| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看 | 中文字幕人成人乱码亚洲影| 欧美黄色淫秽网站| 村上凉子中文字幕在线| 欧美色欧美亚洲另类二区| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 日韩有码中文字幕| 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 人人妻,人人澡人人爽秒播| e午夜精品久久久久久久| 亚洲成人中文字幕在线播放| 人妻久久中文字幕网| 在线观看一区二区三区| 99热这里只有精品一区| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 精品乱码久久久久久99久播| 夜夜躁狠狠躁天天躁| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕 | 十八禁网站免费在线| 免费观看精品视频网站| 亚洲精品美女久久久久99蜜臀| 国产激情偷乱视频一区二区| 90打野战视频偷拍视频| 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 亚洲在线观看片| 亚洲av美国av| 怎么达到女性高潮| 国产精品一区二区三区四区久久| 欧美最黄视频在线播放免费| 国产一区二区激情短视频| 亚洲中文日韩欧美视频| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 亚洲av熟女| 国产视频一区二区在线看| 男人和女人高潮做爰伦理| 日本免费一区二区三区高清不卡| 亚洲人成伊人成综合网2020| 国产午夜精品久久久久久一区二区三区 | 国产免费av片在线观看野外av| 欧美国产日韩亚洲一区| 香蕉av资源在线| 精品久久久久久久久久免费视频| 日韩欧美三级三区| 中文字幕久久专区| 一个人免费在线观看的高清视频| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 欧美日韩精品网址| 一本久久中文字幕| 久久久久久九九精品二区国产| 一本一本综合久久| ponron亚洲| 最好的美女福利视频网| 婷婷亚洲欧美| 在线看三级毛片| 精品久久久久久久久久免费视频| 免费人成在线观看视频色| 91九色精品人成在线观看| 欧美一区二区精品小视频在线| 久久这里只有精品中国| 最近最新中文字幕大全免费视频| 国产精品久久电影中文字幕| 老熟妇乱子伦视频在线观看| 久久精品国产自在天天线| 制服丝袜大香蕉在线| 少妇人妻精品综合一区二区 | 在线国产一区二区在线| 国产真人三级小视频在线观看| 91在线精品国自产拍蜜月 | 变态另类成人亚洲欧美熟女| 美女黄网站色视频| 好男人在线观看高清免费视频| 人人妻人人看人人澡|