• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the promotion effect of Mo doped CuO catalysts for the low-temperature performance of NH3-SCR reaction

    2023-01-30 06:49:26HuiWangTingZhuYujieQiaoShichengDongZhenpingQu
    Chinese Chemical Letters 2022年12期

    Hui Wang,Ting Zhu,Yujie Qiao,Shicheng Dong,Zhenping Qu

    Key Laboratory of Industrial Ecology and Environmental Engineering(MOE),School of Environme ntal Science and Technology,Dalian University of Technology,Dalian 116024,China

    Keywords:Mo doped CuO NH3-SCR NOx

    ABSTRACT A novel Mo-doped CuO catalyst is developed and used for low-temperature NH3-SCR reaction.Compared with the undoped CuO sample,the Mo doped CuO catalyst shows an increased SCR performance with above 80%NOx conversion at 175°C.The XRD and Raman results have confirmed the incorporation of Mo metal ions into CuO lattice to form Mo-O-Cu species which may be related to the enhanced SCR activity.The XPS and UV–vis results reveal the creation of electron interaction between Cu and Mo in this Mo-O-Cu system which provides an increased amount of Lewis and Br?nsted acid sites,thereby promoting the adsorption capacity of NH3 and NOx as verified by NH3-TPD and NOx-TPD characterization.Besides,it also promotes the formation of oxygen vacancies,leading to the increasing of chemisorbed oxygen species,which improves the NO oxidation to NO2 activity.Furthermore,in situ DRIFTS technology was also used to study the reaction mechanism of this Mo doped CuO catalyst.The formed NO2 could react with NHx(x=3,2)species to enhance the low-temperature NH3-SCR activity via the“fast-SCR”reaction pathway.The nitrate and nitrite ad-species may react with NH3 and NH4+ad-species through the L-H pathway.

    The emission of nitrogen oxides(NOx,x=1,2)from stationary sources and mobile sources has caused atmospheric pollution problems such as acid rain,photochemical smog,and ozone holes[1].One typical technique,selective catalytic reduction with ammonia(NH3-SCR),has been widely developed to convert NOxto harmless N2and H2O.A commercial V2O5-WO3(MoO3)/TiO2catalyst has been used in the removal of NOxfor stationary sources[2,3].However,there are still some unavoidable disadvantages,such as the narrow operating temperature window between 300°C and 400°C,poor activity at the low temperature,and the biological toxicity of vanadium[4].Therefore,many researchers focus on the novel,eco-friendly,low-cost and high efficient NH3-SCR catalysts.Several transitional metal oxides catalysts,including CuOx,MnOx,CeO2and Fe2O3have been attracted great attention in recent years,which are active for the low-temperature NH3-SCR reactions[5–9].Among these catalysts systems,CuO based catalysts have been intensively studied for low-temperature de-NOx[10].However,several problems,including lack of Lewis and Br?nsted acidity and poor resistance to H2O and SO2poison remain to overcome[11,12].Several strategies,such as modification by mixing with other metal oxides,doping with other ions[8,13],and dispersion on a high surface area support[14],have been employed to enhance the de-NOxactivity of CuO and other transitional metal oxides catalysts.In our previous study[8],the Fe doped CeO2catalysts with Fe-O-Ce system were developed and enhanced the adsorption of NH3and NOx,oxygen vacancies,improving the NH3-SCR activity.MoOxhas been well recognized as an excellent“structural”and“chemical”promoter to promote deNOxperformance[15].Some researchers have reported that the addition of MoO3could enhance the adsorption and activation of NH3,which was beneficial to the improvement of the NH3-SCR activity[16].Tanget al.have developed hexagonal WO3with Mo framework substitution which resulted in hybridizing W and Mo cations with their bridging oxygen ions,thus making the electron transfers in SCR redox cycles relatively easy and leading to improved catalytic activity[17].

    Fig.1.XRD patterns(a),the elemental mapping images(b)and NOx conversion curve during NH3-SCR reaction(c)of the synthesized samples.

    Therefore,in this study,we designed these Mo doped CuO samples which can combine the advantages of both species.It is found that this Mo doped CuO catalyst is more active than pure CuO catalyst even in the presence of SO2.According to the various characterization results,the cause of the promoting effect of Mo has been proposed,including structure,chemical and adsorption properties,and reaction mechanism.The synthesis procedure of Mo doped CuO samples,experimental methods,and characterization techniques are provided in Supporting information in detail.

    Firstly,the structure of the Mo doped CuO samples was verified by XRD,Raman,and FE-SEM technologies.As shown in Fig.1a,the XRD patterns for all these samples can be indexed to monoclinic CuO[18].However,the(?111)and(111)diffraction peaks broaden gradually after Mo doping.With the increasing of Mo dopant amount,the particle size of samples decreases(Table S1 in Supporting information).Significantly,the positions of main diffraction peaks of Mo doped CuO over the 2θof 35°?40°shift toward higher angles with increasing of the Mo amount,which may arise from the Mo doping into the CuO lattice to form solid solutions.Since the radius of Cu2+(0.073 nm)ions is larger than that of Mo6+(0.059 nm),this difference in the ionic radii of the host and the dopant atom can lead to changes in the lattice parameters of the system(Table S1).Therefore,the Cu2+ions in the lattice of CuO were substituted by Mo6+ions,which result in monoclinic distortion.When Mo6+ions substitute Cu2+ions,Mo6+will inevitably form in this system.The oxygen vacancies could be formed,resulting from the requirement of charge compensation[19].As shown in Fig.S1(Supporting information),the Raman peaks of these Mo doped CuO samples are similar to that of the pure CuO sample.And no active modes related to secondary phases or impurities are observed,indicating the Mo species may be doped into the CuO lattice.A higher magnification FE-SEM images for the 3%Mo doped CuO sample together with Mo,O,and Cu elemental mapping are also presented in Fig.1b.It is clear that Mo species were uniformly distributed on CuO.The above-mentioned results infer that Mo6+ions were uniformly doped into the CuO and substituted the position of Cu2+ions into the lattice of CuO,leading to the formed Mo-O-Cu isostructural substitution.

    The influence of Mo species doped CuO for the NH3-SCR activity was investigated.As the results are shown in Fig.1c,the undoped CuO and pristine MoO3show very low NH3-SCR efficiency in the whole temperature range.The highest NOxconversion of the CuO sample is only about 58%,which is achieved at 225°C.The pure MoO3catalyst performs a continuous increase of NOxconversion and exhibits a higher NOxconversion than CuO at above 275°C.Interestingly,doping of Mo to CuO catalysts resulted in a significant enhancement of deNOxefficiency in the medium-low temperature range with an obviously broadened operation temperature window.Compared with undoped CuO,the NOxconversion of Mo doped CuO catalysts presents a trend of increasing.Further increasing the amount of Mo species to 3 at%,the NH3-SCR activity continues to be improved.This catalyst shows above 80%NOxconversion and 80%N2selectivity at temperatures from 175°C to 275°C(Fig.S2 in Supporting information).Besides,this Mo doped CuO catalyst has excellent resistance to high space velocity and improved tolerance of SO2(Figs.S3 and S4 in Supporting information).Compare to other reported Cu-based oxides catalysts[20,21],this Mo doped CuO oxides catalyst with low cost is one of the potential candidates for deNOxat the low temperature.

    Fig.2.Cu 2p and O 1s XPS spectra of CuO(a)and 3 at%Mo doped CuO(b)catalysts.

    XPS was carried out to study the chemical valence states of the different elements and surface elemental composition in Mo undoped and doped CuO catalysts.Fig.2 depicts the Cu 2p and O 1s spectra.The peaks at 933.77 eV and 953.65 eV with a spinenergy separation of 19.88 eV can be attributed to Cu 2p3/2and Cu 2p1/2,which are the characteristics of Cu2+ions[22].Furthermore,the appearance of satellite peaks with binding energies of 938.71–947.12 eV further confirms the existence of CuO.The BEs of Cu 2p in this doped sample decrease by 0.61 eV relative to that of Cu 2p in CuO.Depending on the valency,each Mo atom can contribute free electrons to the CuO lattice[23],which could affect the electrical properties of the CuO,inducing the electron density of Cu2+increment significantly.Therefore,XPS analysis results suggest that the bonding between the Mo and Cu cations indeed occurs,thereby forming the strong electron interaction between Mo and Cu cations.Besides,the optical band gap is obtained on the basis of UV–vis spectra(Fig.S5 in Supporting information).The bandgap value of undoped CuO is 2.31 eV which is similar to other reported CuO[24],while that of Mo doped CuO has been found to be 2.46 eV.Augmenting of the bandgap may be attributed to the charge-transfer transition between Mo6+d electrons and CuO conduction band[25],which further demonstrates the creation of electron interaction between Cu and Mo in this Mo-O-Cu system.The O 1s peaks were all fitted with two contributions.The O 1s spectra of undoped CuO catalysts present a distinct sharp peak centered around 529.53 eV,which is attributed to the lattice oxygen atoms(Oβ)coordinated with Cu atoms(Cu?O?Cu)[26].The other shoulder in the higher energy region is related to chemisorbed oxygen species(Oα)[27].In the case of the Mo doped CuO sample,a slight shift in the BE value of the sharp peak(529.73 eV)is detected,which may be assigned to the appearance of coordination of oxygen in Mo-O-Cu structure.The concentration of Oαis calculated and shown in Table S1.The ratio of Oαspecies increases with the addition of Mo cations.Based on the XRD and Raman results,it demonstrates that the introduction of Mo dopant is beneficial to the formation of oxygen vacancies,which leads to the amount increase of chemisorbed oxygen species,thereby improving the activity of NO oxidation(Fig.S6a and Fig.S7 in Supporting information).The formed NO2could enhance the NH3-SCR activityviathe“fast-SCR”reaction pathway[28].

    Fig.3.NH3-TPD(a)and NOx-TPD profiles(c)of Mo doped CuO samples.The DRIFT spectra of NH3 adsorption(b)and NOx adsorption(d)of 3 at%Mo doped CuO sample at 150°C.

    The adsorption of NH3closely related to the surface acidity is crucial for NH3-SCR reaction[29].The NH3-TPD technology was used to study the surface acidity of the Mo undoped and doped CuO catalysts and their profiles are shown in Fig.3a.Both undoped and doped CuO samples exhibit a wide desorption peak lasting from 75°C to 400°C,indicating the surface acid sites with different thermal stability.The curve of these two catalysts is composed of two portions.The first shoulder peak located below 200°C can be attributed to the physically adsorbed NH3and weakly bound NH3species adsorbed on the Lewis or/and Br?nsted acid sites,while the second peak at 200–350°C is assigned to the NH3strongly desorbed on the Lewis or/and Br?nsted acid sites[30,31].Obviously,the intensity of the NH3desorption peak becomes higher after the doping of Mo into the CuO catalyst.The adsorption state of NH3over the 3%Mo doped CuO catalysts surface was characterized byin situDRIFTs,and the results are shown in Fig.3b.The bands at 1198 cm?1are attributed to coordinated NH3bound to Lewis acid sites,while the broad weak bands that appeared in the region of 1256–1609 cm?1may be related to the overlap of amide(NH2)species and NH4+bound to the Br?nsted acid sites,respectively[32].The NH2species may be derived from the deprotonation of NH3viapartial oxidation which also generates OH species appearing at 3643 and 3614 cm?1[33].Based on the above results,the adsorption peak intensity of the Mo doping CuO sample is significantly higher than that of the undoped CuO sample.Combing with the XRD results,the doping of Mo into CuO lattice could result in the formation of Cu-O-Mo structure.It may provide an increased amount of Lewis and Br?nsted acid sites,thereby enhancing the NH3adsorption capacity.On the one hand,the strong electron interaction between Mo and Cu could increase the amount of Lewis acid sites.On the other hand,the formed Mo=O sites could act as Br?nsted acid sites on the catalyst surface,since no bands ascribed to NH4+were observed(Fig.S8 in Supporting information).

    The NOxdesorption peaks of CuO and Mo doped CuO catalysts are all fitted with four contributions and are shown in Fig.3c.The four NOxdesorption peaks centered at 94(peak-1),138(peak-2),238(peak-3),and 366°C(peak-4)for the undoped CuO sample.The first two weak peaks are ascribed to the desorption of physisorbed NO and NO2species,respectively[34].The latter broad peak may be assigned to the decomposition of nitrite or/and monodentate nitrate species,while the last sharp peak could be attributed to the decomposition of thermostable bidentate or bridging nitrate species[35,36].After the addition of dopant Mo species,it can be found that the total amount of chemical desorbed NOxincrease obviously,especially for NO2and NO2?or/and monodentate NO3?species(Fig.S9 in Supporting information).Thein situDRIFTS of NOxdesorption from 3%Mo doped CuO catalyst were studied,and the results are shown in Fig.3d.Several bands at 1556,1516,1275,1256,and 1606,1358 cm?1appear at 150°C on the Mo doped CuO catalyst.The former three main bands are assigned to the nitrate species,while the band at 1256 cm?1is a result of the asymmetric deformation of nitrite species(vas(NO2))[33,37].The latter two bands are attributed to gaseous NO2and monodentate NO2?species,respectively[38].

    According to the XRD,Raman,and XPS results,Mo can be doped into CuO structure to form a CuO-liked solid solution containing a Mo?O?Cu bond,leading to a high electron density of Cu ions.On the one hand,it is beneficial to the feasibility of oxygen activation and the oxidation of NO,which have been verified by the XPS and NO oxidation activity results.On the other hand,the redox property is also promoted(Fig.S10 in Supporting information).Compared to the undoped CuO,the reduction peak shifts to the lower temperature,which will be conducive to the NH3activation(Fig.S6b).In addition,Mo/CuO catalyst was also synthesized by impregnation method and it shows a poor NH3-SCR activity compared to the designed Mo doped CuO catalyst(Fig.S11 in Supporting information).The above-mentioned results manifest that the Mo-O-Cu species with strong interaction between Mo and Cu are the main adsorption and activation sites for NOxand NH3(Figs.3a-d),thereby enhancing the NH3-SCR activity.

    Fig.4.In situ DRIFT spectra of 3%Mo doped CuO catalyst during transient NH3 exposure after NO+O2 adsorption(a,b)or upon passing NH3+NO+O2 over this catalyst(c)at 250°C as a function of time;proposed mechanism of NOx reduction(d)over this Mo doped CuO catalyst.

    The transient reaction studies were performed byin situDRIFTS to investigate the reactivity of the NOxand NH3adsorbed species,thereby exploring the mechanism of NH3-SCR reaction over 3%Mo doped CuO catalyst.The sample was covered by several adsorbed NOxspecies after pre-adsorption with 500 ppm NO+3 vol%O2at 150°C(Fig.3d).Followed by switching the 500 ppm NH3/He into the cell(after He purged),the bands assigned to NO2and NO2?rapidly disappeared(Fig.4a),suggesting the NO2can react with NHxspeciesviaa“fast SCR”reaction pathway.However,the variation trend of the other four peaks over time is slightly different.The area of these peaks was recorded as the function of time and is shown in Fig.4b.The amount of nitrate species(1556 cm?1)monotonously decrease to a certain value,when ammonia was fed into the sample cell within 2 h,indicating NO3?ad-species are also activated which could react with NH3ad-species.Interestingly,the peak area of surface NO3?(1516,1275,and 1256 cm?1)ad-species increases rapidly and then decreases gradually.This may be because intermediate species were generated and then consumed.The FTIR spectrum with pre-adsorbed NH3exposed to 500 ppm NO+3 vol%O2at 150°C is presented in Fig.S12(Supporting information).After the admission of NOx,the bands assigned to NOxadsorbed species immediately develop and overlap the bands attributed to NH3ad-species,which suggests that the adsorption capacity of NOxis superior to that of NH3.The spectra of this catalyst at 150°C in the flow of 500 ppm NO+500 ppm NH3+3 vol%O2were recorded with the purpose of studying the present species under the reaction conditions,which are shown in Fig.4c.At the initial 1 min,several bands developed at 1612,1569–1517,1476,1377,and 1216 cm?1,which are moderately increased in intensity with increasing the reaction time.The position of these bands shifts,compared with NOxand NH3adsorption spectra(Fig.S13 in Supporting information),which may result from the formation of intermediate species,e.g.,NH4NO3,NH4NO2,NO2(NH3)2[39].Meanwhile,the intensity of the bands obtained in the spectra is lower than that in this spectra of NOxadsorption,indicating NOxadsorbed species could react with NH3ad-species.There may be competitive adsorption between NH3and NOx.The adsorption sites occupied by NOxresults in inhibition of NH3adsorption and activation.Based on the present investigation,the possible NH3-SCR reaction pathways on the Mo doped CuO catalysts are proposed and shown in Fig.4d.The gaseous NH3molecules are first adsorbed on this catalyst to form dominant coordinated NH3ad-species and a small amount of NH2and NH4+ad-species.NO molecules are also adsorbed on the catalyst and then oxidized to NO2,nitrite,and nitrate species.The NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism,while the nitrite and nitrate ad-species can react with NH4+and coordinate NH3ad-species through the L-H mechanism.

    In summary,Mo doped CuO catalyst has been successfully synthesized,which shows an excellent low-temperature NH3-SCR activity.The doping of Mo into CuO lattice leads to the formation of Cu-O-Mo system with strong electron interaction between Cu and Mo,which is beneficial to the oxidation of NO to NO2,thereby enhancing the low-temperature activityviaa“fast-SCR”pathway.Moreover,it can also provide more adsorbed sites,improving the adsorption of NH3and NOxto form coordinate NH3,NH2,NH4+,and NO2?,NO3?ad-species.On the one hand,the NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism.On the other hand,the nitrite and nitrate ad-species can react with NH4+,coordinate NH3and NH2ad-species through the L-H mechanism.The NOxconversion increases by about 60%at 150°C after the addition of Mo species.

    Declaration of competing interest

    The article has no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21806017,21876019),the Fundamental Research Funds for the Central Universities(No.DUT20RC(4)003)and National Key Research and Development Program of China(No.2019YFC1903903).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.075.

    神马国产精品三级电影在线观看 | 一a级毛片在线观看| 午夜福利,免费看| 俄罗斯特黄特色一大片| 一级作爱视频免费观看| 午夜免费鲁丝| 每晚都被弄得嗷嗷叫到高潮| 国产主播在线观看一区二区| 免费女性裸体啪啪无遮挡网站| 日本一区二区免费在线视频| 久久国产亚洲av麻豆专区| 成年版毛片免费区| 一级a爱片免费观看的视频| 国产亚洲欧美在线一区二区| 国产成人av教育| 精品国产乱子伦一区二区三区| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三区在线| 亚洲av成人av| 嫁个100分男人电影在线观看| 精品午夜福利视频在线观看一区| 搞女人的毛片| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 免费不卡黄色视频| 亚洲午夜理论影院| 国产三级在线视频| 国产av精品麻豆| 99在线视频只有这里精品首页| 国产在线精品亚洲第一网站| 麻豆久久精品国产亚洲av| 1024香蕉在线观看| 国产亚洲av嫩草精品影院| 久久伊人香网站| 国产精品一区二区三区四区久久 | 亚洲国产精品成人综合色| 在线av久久热| 亚洲国产精品合色在线| 97人妻精品一区二区三区麻豆 | 久久久精品欧美日韩精品| 操出白浆在线播放| 中文字幕高清在线视频| 人人妻,人人澡人人爽秒播| 黄色视频不卡| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区| 变态另类成人亚洲欧美熟女 | 最近最新中文字幕大全电影3 | ponron亚洲| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 欧美国产日韩亚洲一区| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 嫁个100分男人电影在线观看| 正在播放国产对白刺激| 中文亚洲av片在线观看爽| 免费少妇av软件| 久久久精品欧美日韩精品| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 国产免费av片在线观看野外av| 大陆偷拍与自拍| 日韩高清综合在线| 欧美一级a爱片免费观看看 | 亚洲国产高清在线一区二区三 | 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 手机成人av网站| 男女下面进入的视频免费午夜 | 1024香蕉在线观看| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| av天堂在线播放| 精品久久久久久久毛片微露脸| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影 | 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻久久中文字幕3abv| 欧美在线黄色| 午夜免费激情av| 九色国产91popny在线| 日韩中文字幕欧美一区二区| 成人亚洲精品一区在线观看| 老司机福利观看| 国产乱人伦免费视频| 精品人妻在线不人妻| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 又紧又爽又黄一区二区| 女生性感内裤真人,穿戴方法视频| 操出白浆在线播放| 搞女人的毛片| 一进一出好大好爽视频| 桃红色精品国产亚洲av| 一级毛片高清免费大全| 国产xxxxx性猛交| 中文字幕av电影在线播放| 久久人人97超碰香蕉20202| 淫秽高清视频在线观看| 成熟少妇高潮喷水视频| 妹子高潮喷水视频| 亚洲狠狠婷婷综合久久图片| 免费久久久久久久精品成人欧美视频| www日本在线高清视频| 不卡av一区二区三区| 夜夜爽天天搞| 久久精品91无色码中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久国产成人精品二区| 色av中文字幕| 国产激情欧美一区二区| 在线十欧美十亚洲十日本专区| 午夜两性在线视频| 色在线成人网| 欧美老熟妇乱子伦牲交| 中文字幕另类日韩欧美亚洲嫩草| 18禁美女被吸乳视频| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 成人18禁在线播放| 色哟哟哟哟哟哟| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产精品sss在线观看| 精品国产一区二区久久| 丁香六月欧美| 国产xxxxx性猛交| 亚洲七黄色美女视频| 大码成人一级视频| 又黄又爽又免费观看的视频| 国产一区二区三区综合在线观看| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产又色又爽无遮挡免费看| www.www免费av| 50天的宝宝边吃奶边哭怎么回事| 日本免费一区二区三区高清不卡 | 两性午夜刺激爽爽歪歪视频在线观看 | 看片在线看免费视频| 成人国产一区最新在线观看| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清 | 老司机福利观看| 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 精品久久蜜臀av无| 老司机在亚洲福利影院| 老汉色av国产亚洲站长工具| 成年女人毛片免费观看观看9| 国产精品1区2区在线观看.| 黄片小视频在线播放| 真人一进一出gif抽搐免费| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 日韩有码中文字幕| 亚洲专区国产一区二区| videosex国产| 成人18禁在线播放| av天堂在线播放| 国产成人精品无人区| 色尼玛亚洲综合影院| 午夜两性在线视频| 黄色视频,在线免费观看| 欧美中文综合在线视频| 好看av亚洲va欧美ⅴa在| 午夜视频精品福利| 久久久水蜜桃国产精品网| 久久人妻福利社区极品人妻图片| 九色国产91popny在线| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 国产av在哪里看| 高清黄色对白视频在线免费看| 91麻豆av在线| netflix在线观看网站| 国产亚洲精品av在线| 国产成人欧美在线观看| 国产av一区在线观看免费| 一级毛片精品| 天天一区二区日本电影三级 | 两个人视频免费观看高清| 禁无遮挡网站| 法律面前人人平等表现在哪些方面| 丝袜美足系列| 精品国产亚洲在线| 午夜a级毛片| 国产精品精品国产色婷婷| 真人一进一出gif抽搐免费| 午夜成年电影在线免费观看| 中文字幕精品免费在线观看视频| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 精品人妻在线不人妻| 久久香蕉激情| 国产熟女xx| 午夜福利一区二区在线看| 麻豆国产av国片精品| 精品国产国语对白av| 久久精品aⅴ一区二区三区四区| 91国产中文字幕| 一本综合久久免费| 长腿黑丝高跟| 国产片内射在线| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 真人做人爱边吃奶动态| 两个人免费观看高清视频| 波多野结衣一区麻豆| 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 精品久久蜜臀av无| 成人国产一区最新在线观看| 视频在线观看一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 亚洲精品中文字幕在线视频| cao死你这个sao货| 99国产精品99久久久久| 亚洲男人天堂网一区| 在线av久久热| 国产午夜福利久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 欧美丝袜亚洲另类 | 激情在线观看视频在线高清| 在线永久观看黄色视频| 99riav亚洲国产免费| 色尼玛亚洲综合影院| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 成人手机av| 色尼玛亚洲综合影院| 色老头精品视频在线观看| 亚洲成人精品中文字幕电影| 大型av网站在线播放| 国产精品亚洲av一区麻豆| 在线国产一区二区在线| 日本五十路高清| 成人亚洲精品一区在线观看| 亚洲人成电影免费在线| 久久精品国产综合久久久| 国产精品影院久久| 免费观看人在逋| 久久久精品国产亚洲av高清涩受| 久久精品国产综合久久久| 此物有八面人人有两片| 久久人妻熟女aⅴ| 亚洲免费av在线视频| 成人精品一区二区免费| 亚洲国产毛片av蜜桃av| 国产成人精品久久二区二区91| 国产单亲对白刺激| 欧美精品亚洲一区二区| 精品人妻在线不人妻| 夜夜爽天天搞| 黄色a级毛片大全视频| 午夜影院日韩av| 黄片大片在线免费观看| 99国产精品一区二区三区| 88av欧美| √禁漫天堂资源中文www| 久久久久亚洲av毛片大全| 午夜免费激情av| 不卡av一区二区三区| 国产亚洲欧美在线一区二区| 我的亚洲天堂| 91麻豆精品激情在线观看国产| 夜夜夜夜夜久久久久| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 丁香六月欧美| 中文字幕人妻丝袜一区二区| 在线播放国产精品三级| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| ponron亚洲| 日韩大码丰满熟妇| 久久久久国产精品人妻aⅴ院| 亚洲视频免费观看视频| 精品日产1卡2卡| 自线自在国产av| 香蕉国产在线看| 美女国产高潮福利片在线看| 香蕉丝袜av| 亚洲欧美日韩高清在线视频| 宅男免费午夜| 国产亚洲欧美精品永久| 大型黄色视频在线免费观看| 国产成人影院久久av| 亚洲自偷自拍图片 自拍| 99在线人妻在线中文字幕| 伦理电影免费视频| 日韩 欧美 亚洲 中文字幕| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女 | 97人妻天天添夜夜摸| 亚洲av电影在线进入| 九色国产91popny在线| 国产成人系列免费观看| 黄色片一级片一级黄色片| 亚洲三区欧美一区| 久久久久久久久久久久大奶| 精品国产国语对白av| www.999成人在线观看| 午夜成年电影在线免费观看| 国产又色又爽无遮挡免费看| av片东京热男人的天堂| 久久欧美精品欧美久久欧美| 无人区码免费观看不卡| 国产欧美日韩一区二区三区在线| av福利片在线| 不卡一级毛片| 青草久久国产| 精品少妇一区二区三区视频日本电影| 久久久久久久精品吃奶| www日本在线高清视频| 国产三级黄色录像| www.熟女人妻精品国产| 午夜两性在线视频| 国产一区二区激情短视频| tocl精华| 啦啦啦韩国在线观看视频| 亚洲专区中文字幕在线| 香蕉国产在线看| 精品福利观看| 亚洲av熟女| 9191精品国产免费久久| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 9191精品国产免费久久| 亚洲 欧美一区二区三区| 国产精品综合久久久久久久免费 | 91av网站免费观看| 我的亚洲天堂| 亚洲第一av免费看| 精品熟女少妇八av免费久了| 成人国产综合亚洲| 成人免费观看视频高清| 少妇的丰满在线观看| 日韩欧美国产一区二区入口| 深夜精品福利| 国产精品美女特级片免费视频播放器 | 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 久久久久久久久久久久大奶| 久久精品国产99精品国产亚洲性色 | 日韩大尺度精品在线看网址 | 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女| 多毛熟女@视频| 午夜精品国产一区二区电影| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 男人的好看免费观看在线视频 | 久久久久九九精品影院| 亚洲中文日韩欧美视频| 少妇被粗大的猛进出69影院| 国产精品久久久久久精品电影 | 亚洲免费av在线视频| 国产亚洲av高清不卡| 亚洲中文av在线| 欧美一级毛片孕妇| 99久久久亚洲精品蜜臀av| 欧美乱妇无乱码| 亚洲中文字幕日韩| 两性夫妻黄色片| 精品国产超薄肉色丝袜足j| 99riav亚洲国产免费| 亚洲欧美精品综合一区二区三区| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 欧美成人一区二区免费高清观看 | 69精品国产乱码久久久| 久久久久久人人人人人| x7x7x7水蜜桃| 色在线成人网| 狂野欧美激情性xxxx| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 男女下面进入的视频免费午夜 | 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 久久久精品欧美日韩精品| 国产亚洲精品一区二区www| 大陆偷拍与自拍| 好看av亚洲va欧美ⅴa在| 中文字幕另类日韩欧美亚洲嫩草| 9热在线视频观看99| 亚洲国产精品成人综合色| 亚洲色图av天堂| 视频在线观看一区二区三区| 国产成人欧美| 女警被强在线播放| 免费看a级黄色片| 久久久久久亚洲精品国产蜜桃av| 亚洲自拍偷在线| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| 国产精品永久免费网站| 十八禁网站免费在线| 欧美一级a爱片免费观看看 | 亚洲第一青青草原| 亚洲精品av麻豆狂野| 国产精品爽爽va在线观看网站 | 黄色成人免费大全| 嫁个100分男人电影在线观看| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 国产欧美日韩一区二区三区在线| av片东京热男人的天堂| 亚洲国产精品999在线| 欧美日韩亚洲国产一区二区在线观看| avwww免费| 日韩欧美国产在线观看| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 国产精品爽爽va在线观看网站 | 又紧又爽又黄一区二区| 久9热在线精品视频| 国产高清视频在线播放一区| 99久久国产精品久久久| 午夜福利18| 婷婷丁香在线五月| 久99久视频精品免费| 亚洲最大成人中文| 中亚洲国语对白在线视频| 亚洲中文字幕日韩| 18禁黄网站禁片午夜丰满| 亚洲国产欧美日韩在线播放| 国产欧美日韩综合在线一区二区| 亚洲自拍偷在线| 一卡2卡三卡四卡精品乱码亚洲| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 国产一卡二卡三卡精品| 啦啦啦韩国在线观看视频| 亚洲人成77777在线视频| 香蕉久久夜色| 国产成人精品久久二区二区91| 黄色成人免费大全| 午夜精品久久久久久毛片777| 精品人妻1区二区| 免费在线观看亚洲国产| 中文字幕人成人乱码亚洲影| 国产aⅴ精品一区二区三区波| 啦啦啦 在线观看视频| 可以在线观看毛片的网站| 久久中文字幕人妻熟女| 国产精品免费视频内射| 欧美色视频一区免费| 自线自在国产av| 国内精品久久久久久久电影| 午夜福利欧美成人| 91大片在线观看| 在线天堂中文资源库| 丝袜美足系列| 亚洲av熟女| 成人特级黄色片久久久久久久| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 久久天堂一区二区三区四区| 变态另类丝袜制服| 别揉我奶头~嗯~啊~动态视频| 曰老女人黄片| 90打野战视频偷拍视频| 国产日韩一区二区三区精品不卡| 一a级毛片在线观看| 一进一出抽搐动态| 亚洲熟女毛片儿| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 免费av毛片视频| 少妇的丰满在线观看| 99久久久亚洲精品蜜臀av| 日本 欧美在线| 国产精品亚洲美女久久久| 国产午夜精品久久久久久| av天堂久久9| 国产xxxxx性猛交| 欧美色欧美亚洲另类二区 | 一级片免费观看大全| 亚洲国产高清在线一区二区三 | 一卡2卡三卡四卡精品乱码亚洲| 宅男免费午夜| 99久久99久久久精品蜜桃| 人成视频在线观看免费观看| 999久久久精品免费观看国产| 精品无人区乱码1区二区| 精品国产一区二区三区四区第35| 久久人人爽av亚洲精品天堂| 免费高清在线观看日韩| 99国产精品一区二区三区| 久久久久九九精品影院| www.自偷自拍.com| 欧美中文综合在线视频| 一二三四社区在线视频社区8| 国产亚洲精品综合一区在线观看 | 深夜精品福利| 91九色精品人成在线观看| 亚洲国产精品成人综合色| 黄色 视频免费看| 国产精品亚洲av一区麻豆| 黄色女人牲交| 精品久久久久久久人妻蜜臀av | 搡老熟女国产l中国老女人| a级毛片在线看网站| 999精品在线视频| 十分钟在线观看高清视频www| 国产一卡二卡三卡精品| 亚洲av成人一区二区三| 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 久久久久久久精品吃奶| 一边摸一边抽搐一进一出视频| 嫩草影院精品99| 99在线人妻在线中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产一区在线观看成人免费| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 亚洲欧美激情综合另类| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 久久青草综合色| 啦啦啦免费观看视频1| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 亚洲中文av在线| 可以在线观看毛片的网站| 男女床上黄色一级片免费看| 在线播放国产精品三级| 久热这里只有精品99| 熟女少妇亚洲综合色aaa.| 国产av在哪里看| 国产麻豆69| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| 国产精品电影一区二区三区| 俄罗斯特黄特色一大片| 黄色成人免费大全| 欧美人与性动交α欧美精品济南到| 亚洲国产精品sss在线观看| 我的亚洲天堂| 亚洲精品粉嫩美女一区| 99国产精品99久久久久| 一区福利在线观看| 亚洲无线在线观看| 在线观看舔阴道视频| 久久人妻福利社区极品人妻图片| 好看av亚洲va欧美ⅴa在| 极品教师在线免费播放| 级片在线观看| 在线永久观看黄色视频| 91麻豆av在线| 97人妻精品一区二区三区麻豆 | 91精品三级在线观看| 亚洲欧洲精品一区二区精品久久久| 啦啦啦免费观看视频1| 精品欧美一区二区三区在线| 国产真人三级小视频在线观看| 国产精品亚洲av一区麻豆| 人人妻人人澡欧美一区二区 | 亚洲中文字幕一区二区三区有码在线看 | 大香蕉久久成人网| 久久久久亚洲av毛片大全| 制服人妻中文乱码| 成人亚洲精品一区在线观看| 国产精品98久久久久久宅男小说| 99久久精品国产亚洲精品| 亚洲男人天堂网一区| 国产精品亚洲美女久久久| 国产av又大| 日韩欧美国产一区二区入口| 伦理电影免费视频| 91av网站免费观看| 女人被躁到高潮嗷嗷叫费观| 欧美另类亚洲清纯唯美| 亚洲无线在线观看| 一级黄色大片毛片| 国产成人欧美在线观看| 日韩三级视频一区二区三区| 午夜激情av网站| 久久久久久亚洲精品国产蜜桃av| 88av欧美| 97人妻天天添夜夜摸| 在线观看免费午夜福利视频| 在线永久观看黄色视频| 国产成+人综合+亚洲专区| 日韩有码中文字幕| 亚洲精品久久成人aⅴ小说| 91九色精品人成在线观看| 午夜福利视频1000在线观看 | 精品第一国产精品| 男女下面插进去视频免费观看|