• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of the promotion effect of Mo doped CuO catalysts for the low-temperature performance of NH3-SCR reaction

    2023-01-30 06:49:26HuiWangTingZhuYujieQiaoShichengDongZhenpingQu
    Chinese Chemical Letters 2022年12期

    Hui Wang,Ting Zhu,Yujie Qiao,Shicheng Dong,Zhenping Qu

    Key Laboratory of Industrial Ecology and Environmental Engineering(MOE),School of Environme ntal Science and Technology,Dalian University of Technology,Dalian 116024,China

    Keywords:Mo doped CuO NH3-SCR NOx

    ABSTRACT A novel Mo-doped CuO catalyst is developed and used for low-temperature NH3-SCR reaction.Compared with the undoped CuO sample,the Mo doped CuO catalyst shows an increased SCR performance with above 80%NOx conversion at 175°C.The XRD and Raman results have confirmed the incorporation of Mo metal ions into CuO lattice to form Mo-O-Cu species which may be related to the enhanced SCR activity.The XPS and UV–vis results reveal the creation of electron interaction between Cu and Mo in this Mo-O-Cu system which provides an increased amount of Lewis and Br?nsted acid sites,thereby promoting the adsorption capacity of NH3 and NOx as verified by NH3-TPD and NOx-TPD characterization.Besides,it also promotes the formation of oxygen vacancies,leading to the increasing of chemisorbed oxygen species,which improves the NO oxidation to NO2 activity.Furthermore,in situ DRIFTS technology was also used to study the reaction mechanism of this Mo doped CuO catalyst.The formed NO2 could react with NHx(x=3,2)species to enhance the low-temperature NH3-SCR activity via the“fast-SCR”reaction pathway.The nitrate and nitrite ad-species may react with NH3 and NH4+ad-species through the L-H pathway.

    The emission of nitrogen oxides(NOx,x=1,2)from stationary sources and mobile sources has caused atmospheric pollution problems such as acid rain,photochemical smog,and ozone holes[1].One typical technique,selective catalytic reduction with ammonia(NH3-SCR),has been widely developed to convert NOxto harmless N2and H2O.A commercial V2O5-WO3(MoO3)/TiO2catalyst has been used in the removal of NOxfor stationary sources[2,3].However,there are still some unavoidable disadvantages,such as the narrow operating temperature window between 300°C and 400°C,poor activity at the low temperature,and the biological toxicity of vanadium[4].Therefore,many researchers focus on the novel,eco-friendly,low-cost and high efficient NH3-SCR catalysts.Several transitional metal oxides catalysts,including CuOx,MnOx,CeO2and Fe2O3have been attracted great attention in recent years,which are active for the low-temperature NH3-SCR reactions[5–9].Among these catalysts systems,CuO based catalysts have been intensively studied for low-temperature de-NOx[10].However,several problems,including lack of Lewis and Br?nsted acidity and poor resistance to H2O and SO2poison remain to overcome[11,12].Several strategies,such as modification by mixing with other metal oxides,doping with other ions[8,13],and dispersion on a high surface area support[14],have been employed to enhance the de-NOxactivity of CuO and other transitional metal oxides catalysts.In our previous study[8],the Fe doped CeO2catalysts with Fe-O-Ce system were developed and enhanced the adsorption of NH3and NOx,oxygen vacancies,improving the NH3-SCR activity.MoOxhas been well recognized as an excellent“structural”and“chemical”promoter to promote deNOxperformance[15].Some researchers have reported that the addition of MoO3could enhance the adsorption and activation of NH3,which was beneficial to the improvement of the NH3-SCR activity[16].Tanget al.have developed hexagonal WO3with Mo framework substitution which resulted in hybridizing W and Mo cations with their bridging oxygen ions,thus making the electron transfers in SCR redox cycles relatively easy and leading to improved catalytic activity[17].

    Fig.1.XRD patterns(a),the elemental mapping images(b)and NOx conversion curve during NH3-SCR reaction(c)of the synthesized samples.

    Therefore,in this study,we designed these Mo doped CuO samples which can combine the advantages of both species.It is found that this Mo doped CuO catalyst is more active than pure CuO catalyst even in the presence of SO2.According to the various characterization results,the cause of the promoting effect of Mo has been proposed,including structure,chemical and adsorption properties,and reaction mechanism.The synthesis procedure of Mo doped CuO samples,experimental methods,and characterization techniques are provided in Supporting information in detail.

    Firstly,the structure of the Mo doped CuO samples was verified by XRD,Raman,and FE-SEM technologies.As shown in Fig.1a,the XRD patterns for all these samples can be indexed to monoclinic CuO[18].However,the(?111)and(111)diffraction peaks broaden gradually after Mo doping.With the increasing of Mo dopant amount,the particle size of samples decreases(Table S1 in Supporting information).Significantly,the positions of main diffraction peaks of Mo doped CuO over the 2θof 35°?40°shift toward higher angles with increasing of the Mo amount,which may arise from the Mo doping into the CuO lattice to form solid solutions.Since the radius of Cu2+(0.073 nm)ions is larger than that of Mo6+(0.059 nm),this difference in the ionic radii of the host and the dopant atom can lead to changes in the lattice parameters of the system(Table S1).Therefore,the Cu2+ions in the lattice of CuO were substituted by Mo6+ions,which result in monoclinic distortion.When Mo6+ions substitute Cu2+ions,Mo6+will inevitably form in this system.The oxygen vacancies could be formed,resulting from the requirement of charge compensation[19].As shown in Fig.S1(Supporting information),the Raman peaks of these Mo doped CuO samples are similar to that of the pure CuO sample.And no active modes related to secondary phases or impurities are observed,indicating the Mo species may be doped into the CuO lattice.A higher magnification FE-SEM images for the 3%Mo doped CuO sample together with Mo,O,and Cu elemental mapping are also presented in Fig.1b.It is clear that Mo species were uniformly distributed on CuO.The above-mentioned results infer that Mo6+ions were uniformly doped into the CuO and substituted the position of Cu2+ions into the lattice of CuO,leading to the formed Mo-O-Cu isostructural substitution.

    The influence of Mo species doped CuO for the NH3-SCR activity was investigated.As the results are shown in Fig.1c,the undoped CuO and pristine MoO3show very low NH3-SCR efficiency in the whole temperature range.The highest NOxconversion of the CuO sample is only about 58%,which is achieved at 225°C.The pure MoO3catalyst performs a continuous increase of NOxconversion and exhibits a higher NOxconversion than CuO at above 275°C.Interestingly,doping of Mo to CuO catalysts resulted in a significant enhancement of deNOxefficiency in the medium-low temperature range with an obviously broadened operation temperature window.Compared with undoped CuO,the NOxconversion of Mo doped CuO catalysts presents a trend of increasing.Further increasing the amount of Mo species to 3 at%,the NH3-SCR activity continues to be improved.This catalyst shows above 80%NOxconversion and 80%N2selectivity at temperatures from 175°C to 275°C(Fig.S2 in Supporting information).Besides,this Mo doped CuO catalyst has excellent resistance to high space velocity and improved tolerance of SO2(Figs.S3 and S4 in Supporting information).Compare to other reported Cu-based oxides catalysts[20,21],this Mo doped CuO oxides catalyst with low cost is one of the potential candidates for deNOxat the low temperature.

    Fig.2.Cu 2p and O 1s XPS spectra of CuO(a)and 3 at%Mo doped CuO(b)catalysts.

    XPS was carried out to study the chemical valence states of the different elements and surface elemental composition in Mo undoped and doped CuO catalysts.Fig.2 depicts the Cu 2p and O 1s spectra.The peaks at 933.77 eV and 953.65 eV with a spinenergy separation of 19.88 eV can be attributed to Cu 2p3/2and Cu 2p1/2,which are the characteristics of Cu2+ions[22].Furthermore,the appearance of satellite peaks with binding energies of 938.71–947.12 eV further confirms the existence of CuO.The BEs of Cu 2p in this doped sample decrease by 0.61 eV relative to that of Cu 2p in CuO.Depending on the valency,each Mo atom can contribute free electrons to the CuO lattice[23],which could affect the electrical properties of the CuO,inducing the electron density of Cu2+increment significantly.Therefore,XPS analysis results suggest that the bonding between the Mo and Cu cations indeed occurs,thereby forming the strong electron interaction between Mo and Cu cations.Besides,the optical band gap is obtained on the basis of UV–vis spectra(Fig.S5 in Supporting information).The bandgap value of undoped CuO is 2.31 eV which is similar to other reported CuO[24],while that of Mo doped CuO has been found to be 2.46 eV.Augmenting of the bandgap may be attributed to the charge-transfer transition between Mo6+d electrons and CuO conduction band[25],which further demonstrates the creation of electron interaction between Cu and Mo in this Mo-O-Cu system.The O 1s peaks were all fitted with two contributions.The O 1s spectra of undoped CuO catalysts present a distinct sharp peak centered around 529.53 eV,which is attributed to the lattice oxygen atoms(Oβ)coordinated with Cu atoms(Cu?O?Cu)[26].The other shoulder in the higher energy region is related to chemisorbed oxygen species(Oα)[27].In the case of the Mo doped CuO sample,a slight shift in the BE value of the sharp peak(529.73 eV)is detected,which may be assigned to the appearance of coordination of oxygen in Mo-O-Cu structure.The concentration of Oαis calculated and shown in Table S1.The ratio of Oαspecies increases with the addition of Mo cations.Based on the XRD and Raman results,it demonstrates that the introduction of Mo dopant is beneficial to the formation of oxygen vacancies,which leads to the amount increase of chemisorbed oxygen species,thereby improving the activity of NO oxidation(Fig.S6a and Fig.S7 in Supporting information).The formed NO2could enhance the NH3-SCR activityviathe“fast-SCR”reaction pathway[28].

    Fig.3.NH3-TPD(a)and NOx-TPD profiles(c)of Mo doped CuO samples.The DRIFT spectra of NH3 adsorption(b)and NOx adsorption(d)of 3 at%Mo doped CuO sample at 150°C.

    The adsorption of NH3closely related to the surface acidity is crucial for NH3-SCR reaction[29].The NH3-TPD technology was used to study the surface acidity of the Mo undoped and doped CuO catalysts and their profiles are shown in Fig.3a.Both undoped and doped CuO samples exhibit a wide desorption peak lasting from 75°C to 400°C,indicating the surface acid sites with different thermal stability.The curve of these two catalysts is composed of two portions.The first shoulder peak located below 200°C can be attributed to the physically adsorbed NH3and weakly bound NH3species adsorbed on the Lewis or/and Br?nsted acid sites,while the second peak at 200–350°C is assigned to the NH3strongly desorbed on the Lewis or/and Br?nsted acid sites[30,31].Obviously,the intensity of the NH3desorption peak becomes higher after the doping of Mo into the CuO catalyst.The adsorption state of NH3over the 3%Mo doped CuO catalysts surface was characterized byin situDRIFTs,and the results are shown in Fig.3b.The bands at 1198 cm?1are attributed to coordinated NH3bound to Lewis acid sites,while the broad weak bands that appeared in the region of 1256–1609 cm?1may be related to the overlap of amide(NH2)species and NH4+bound to the Br?nsted acid sites,respectively[32].The NH2species may be derived from the deprotonation of NH3viapartial oxidation which also generates OH species appearing at 3643 and 3614 cm?1[33].Based on the above results,the adsorption peak intensity of the Mo doping CuO sample is significantly higher than that of the undoped CuO sample.Combing with the XRD results,the doping of Mo into CuO lattice could result in the formation of Cu-O-Mo structure.It may provide an increased amount of Lewis and Br?nsted acid sites,thereby enhancing the NH3adsorption capacity.On the one hand,the strong electron interaction between Mo and Cu could increase the amount of Lewis acid sites.On the other hand,the formed Mo=O sites could act as Br?nsted acid sites on the catalyst surface,since no bands ascribed to NH4+were observed(Fig.S8 in Supporting information).

    The NOxdesorption peaks of CuO and Mo doped CuO catalysts are all fitted with four contributions and are shown in Fig.3c.The four NOxdesorption peaks centered at 94(peak-1),138(peak-2),238(peak-3),and 366°C(peak-4)for the undoped CuO sample.The first two weak peaks are ascribed to the desorption of physisorbed NO and NO2species,respectively[34].The latter broad peak may be assigned to the decomposition of nitrite or/and monodentate nitrate species,while the last sharp peak could be attributed to the decomposition of thermostable bidentate or bridging nitrate species[35,36].After the addition of dopant Mo species,it can be found that the total amount of chemical desorbed NOxincrease obviously,especially for NO2and NO2?or/and monodentate NO3?species(Fig.S9 in Supporting information).Thein situDRIFTS of NOxdesorption from 3%Mo doped CuO catalyst were studied,and the results are shown in Fig.3d.Several bands at 1556,1516,1275,1256,and 1606,1358 cm?1appear at 150°C on the Mo doped CuO catalyst.The former three main bands are assigned to the nitrate species,while the band at 1256 cm?1is a result of the asymmetric deformation of nitrite species(vas(NO2))[33,37].The latter two bands are attributed to gaseous NO2and monodentate NO2?species,respectively[38].

    According to the XRD,Raman,and XPS results,Mo can be doped into CuO structure to form a CuO-liked solid solution containing a Mo?O?Cu bond,leading to a high electron density of Cu ions.On the one hand,it is beneficial to the feasibility of oxygen activation and the oxidation of NO,which have been verified by the XPS and NO oxidation activity results.On the other hand,the redox property is also promoted(Fig.S10 in Supporting information).Compared to the undoped CuO,the reduction peak shifts to the lower temperature,which will be conducive to the NH3activation(Fig.S6b).In addition,Mo/CuO catalyst was also synthesized by impregnation method and it shows a poor NH3-SCR activity compared to the designed Mo doped CuO catalyst(Fig.S11 in Supporting information).The above-mentioned results manifest that the Mo-O-Cu species with strong interaction between Mo and Cu are the main adsorption and activation sites for NOxand NH3(Figs.3a-d),thereby enhancing the NH3-SCR activity.

    Fig.4.In situ DRIFT spectra of 3%Mo doped CuO catalyst during transient NH3 exposure after NO+O2 adsorption(a,b)or upon passing NH3+NO+O2 over this catalyst(c)at 250°C as a function of time;proposed mechanism of NOx reduction(d)over this Mo doped CuO catalyst.

    The transient reaction studies were performed byin situDRIFTS to investigate the reactivity of the NOxand NH3adsorbed species,thereby exploring the mechanism of NH3-SCR reaction over 3%Mo doped CuO catalyst.The sample was covered by several adsorbed NOxspecies after pre-adsorption with 500 ppm NO+3 vol%O2at 150°C(Fig.3d).Followed by switching the 500 ppm NH3/He into the cell(after He purged),the bands assigned to NO2and NO2?rapidly disappeared(Fig.4a),suggesting the NO2can react with NHxspeciesviaa“fast SCR”reaction pathway.However,the variation trend of the other four peaks over time is slightly different.The area of these peaks was recorded as the function of time and is shown in Fig.4b.The amount of nitrate species(1556 cm?1)monotonously decrease to a certain value,when ammonia was fed into the sample cell within 2 h,indicating NO3?ad-species are also activated which could react with NH3ad-species.Interestingly,the peak area of surface NO3?(1516,1275,and 1256 cm?1)ad-species increases rapidly and then decreases gradually.This may be because intermediate species were generated and then consumed.The FTIR spectrum with pre-adsorbed NH3exposed to 500 ppm NO+3 vol%O2at 150°C is presented in Fig.S12(Supporting information).After the admission of NOx,the bands assigned to NOxadsorbed species immediately develop and overlap the bands attributed to NH3ad-species,which suggests that the adsorption capacity of NOxis superior to that of NH3.The spectra of this catalyst at 150°C in the flow of 500 ppm NO+500 ppm NH3+3 vol%O2were recorded with the purpose of studying the present species under the reaction conditions,which are shown in Fig.4c.At the initial 1 min,several bands developed at 1612,1569–1517,1476,1377,and 1216 cm?1,which are moderately increased in intensity with increasing the reaction time.The position of these bands shifts,compared with NOxand NH3adsorption spectra(Fig.S13 in Supporting information),which may result from the formation of intermediate species,e.g.,NH4NO3,NH4NO2,NO2(NH3)2[39].Meanwhile,the intensity of the bands obtained in the spectra is lower than that in this spectra of NOxadsorption,indicating NOxadsorbed species could react with NH3ad-species.There may be competitive adsorption between NH3and NOx.The adsorption sites occupied by NOxresults in inhibition of NH3adsorption and activation.Based on the present investigation,the possible NH3-SCR reaction pathways on the Mo doped CuO catalysts are proposed and shown in Fig.4d.The gaseous NH3molecules are first adsorbed on this catalyst to form dominant coordinated NH3ad-species and a small amount of NH2and NH4+ad-species.NO molecules are also adsorbed on the catalyst and then oxidized to NO2,nitrite,and nitrate species.The NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism,while the nitrite and nitrate ad-species can react with NH4+and coordinate NH3ad-species through the L-H mechanism.

    In summary,Mo doped CuO catalyst has been successfully synthesized,which shows an excellent low-temperature NH3-SCR activity.The doping of Mo into CuO lattice leads to the formation of Cu-O-Mo system with strong electron interaction between Cu and Mo,which is beneficial to the oxidation of NO to NO2,thereby enhancing the low-temperature activityviaa“fast-SCR”pathway.Moreover,it can also provide more adsorbed sites,improving the adsorption of NH3and NOxto form coordinate NH3,NH2,NH4+,and NO2?,NO3?ad-species.On the one hand,the NO2can fleetly react with coordinate NH3ad-species through the E-R mechanism.On the other hand,the nitrite and nitrate ad-species can react with NH4+,coordinate NH3and NH2ad-species through the L-H mechanism.The NOxconversion increases by about 60%at 150°C after the addition of Mo species.

    Declaration of competing interest

    The article has no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21806017,21876019),the Fundamental Research Funds for the Central Universities(No.DUT20RC(4)003)and National Key Research and Development Program of China(No.2019YFC1903903).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.075.

    精品久久久久久久末码| 国产精品免费一区二区三区在线| АⅤ资源中文在线天堂| 久久性视频一级片| 国产aⅴ精品一区二区三区波| 91九色精品人成在线观看| 成人av一区二区三区在线看| 国产黄a三级三级三级人| 色精品久久人妻99蜜桃| av黄色大香蕉| 欧美精品啪啪一区二区三区| 村上凉子中文字幕在线| 51午夜福利影视在线观看| 免费在线观看成人毛片| 亚洲国产日韩欧美精品在线观看 | 国内揄拍国产精品人妻在线| 国产精品久久久久久人妻精品电影| 最新在线观看一区二区三区| 亚洲国产日韩欧美精品在线观看 | a级毛片a级免费在线| 在线观看午夜福利视频| 亚洲天堂国产精品一区在线| 国产精品久久久久久久电影 | www.www免费av| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 欧美国产日韩亚洲一区| 亚洲国产精品成人综合色| 人妻丰满熟妇av一区二区三区| 香蕉国产在线看| 非洲黑人性xxxx精品又粗又长| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久人妻蜜臀av| 99国产精品一区二区三区| 不卡一级毛片| 人人妻,人人澡人人爽秒播| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 偷拍熟女少妇极品色| 色播亚洲综合网| 久久久久久久精品吃奶| 午夜免费激情av| 亚洲国产色片| 一本一本综合久久| 久久久久国内视频| 精品国产乱码久久久久久男人| 丰满的人妻完整版| 丰满人妻一区二区三区视频av | 好男人电影高清在线观看| 亚洲国产看品久久| 亚洲国产欧美人成| 免费看美女性在线毛片视频| 18美女黄网站色大片免费观看| 美女cb高潮喷水在线观看 | 日本熟妇午夜| 无限看片的www在线观看| 欧美日韩瑟瑟在线播放| 欧美一区二区精品小视频在线| 国产精品av视频在线免费观看| 九色成人免费人妻av| а√天堂www在线а√下载| 国产精品日韩av在线免费观看| 波多野结衣高清作品| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美人成| 岛国在线免费视频观看| 亚洲成av人片免费观看| 热99re8久久精品国产| 欧美黄色淫秽网站| 成人av在线播放网站| 亚洲第一欧美日韩一区二区三区| 精品日产1卡2卡| 国产又黄又爽又无遮挡在线| 精品久久久久久久人妻蜜臀av| 免费av不卡在线播放| 免费在线观看影片大全网站| 嫩草影视91久久| 国产真人三级小视频在线观看| 亚洲熟妇熟女久久| 丝袜人妻中文字幕| 欧美色欧美亚洲另类二区| 欧美一级a爱片免费观看看| 免费在线观看视频国产中文字幕亚洲| 日本黄大片高清| 99re在线观看精品视频| 宅男免费午夜| 国产亚洲欧美在线一区二区| 亚洲av电影在线进入| 狠狠狠狠99中文字幕| 亚洲aⅴ乱码一区二区在线播放| 禁无遮挡网站| 亚洲精品456在线播放app | 男女那种视频在线观看| 日韩大尺度精品在线看网址| netflix在线观看网站| 中文字幕av在线有码专区| 欧美一级a爱片免费观看看| 亚洲第一电影网av| 国产av麻豆久久久久久久| 老司机深夜福利视频在线观看| 成人永久免费在线观看视频| 欧美日韩国产亚洲二区| 老司机在亚洲福利影院| 精品一区二区三区视频在线观看免费| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 久久精品综合一区二区三区| 精品国产乱码久久久久久男人| 成人国产综合亚洲| 黄色 视频免费看| 人人妻人人澡欧美一区二区| 亚洲激情在线av| 90打野战视频偷拍视频| 91在线精品国自产拍蜜月 | 一边摸一边抽搐一进一小说| 在线看三级毛片| 久久精品国产综合久久久| 男人舔奶头视频| 在线观看美女被高潮喷水网站 | 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 人人妻,人人澡人人爽秒播| 男女之事视频高清在线观看| 两个人看的免费小视频| 国产精品影院久久| av视频在线观看入口| 国产高清videossex| 亚洲精品在线美女| 免费大片18禁| 亚洲国产中文字幕在线视频| 特级一级黄色大片| 变态另类成人亚洲欧美熟女| 黄色 视频免费看| 亚洲片人在线观看| 成人特级av手机在线观看| 嫁个100分男人电影在线观看| 老司机午夜十八禁免费视频| 日韩欧美在线二视频| 丁香六月欧美| 欧美日韩瑟瑟在线播放| 亚洲人成网站在线播放欧美日韩| 日韩欧美国产一区二区入口| 免费av毛片视频| 偷拍熟女少妇极品色| 日本一二三区视频观看| aaaaa片日本免费| 99久久成人亚洲精品观看| 韩国av一区二区三区四区| 日韩中文字幕欧美一区二区| 精品电影一区二区在线| 一进一出好大好爽视频| 18禁美女被吸乳视频| 在线免费观看不下载黄p国产 | 两个人视频免费观看高清| 一本精品99久久精品77| 国产三级在线视频| 亚洲五月婷婷丁香| 成人高潮视频无遮挡免费网站| 国产精品久久久人人做人人爽| 男插女下体视频免费在线播放| 黄色丝袜av网址大全| 一本综合久久免费| 老熟妇乱子伦视频在线观看| 啦啦啦免费观看视频1| 久久久精品欧美日韩精品| 99国产精品一区二区蜜桃av| 一进一出抽搐动态| 高清在线国产一区| 国产亚洲精品av在线| 日本成人三级电影网站| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 色播亚洲综合网| 国产日本99.免费观看| 久久热在线av| 麻豆一二三区av精品| 亚洲va日本ⅴa欧美va伊人久久| 国产一级毛片七仙女欲春2| 色噜噜av男人的天堂激情| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 亚洲av电影不卡..在线观看| 一级毛片高清免费大全| av福利片在线观看| 日本与韩国留学比较| 天堂√8在线中文| 18禁裸乳无遮挡免费网站照片| 国产激情久久老熟女| 一二三四在线观看免费中文在| 久久精品影院6| 三级毛片av免费| 免费在线观看日本一区| 少妇熟女aⅴ在线视频| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 男女之事视频高清在线观看| 在线观看免费午夜福利视频| 国产精品久久电影中文字幕| 日韩欧美在线乱码| 不卡一级毛片| 在线永久观看黄色视频| 日韩av在线大香蕉| 精品久久蜜臀av无| 99国产精品99久久久久| 日韩免费av在线播放| 久久精品aⅴ一区二区三区四区| 欧美黑人欧美精品刺激| 欧美成人性av电影在线观看| 国产美女午夜福利| 中文字幕久久专区| 老熟妇乱子伦视频在线观看| 免费看a级黄色片| 久久亚洲精品不卡| 亚洲九九香蕉| 欧美色视频一区免费| av黄色大香蕉| 亚洲午夜精品一区,二区,三区| 亚洲成人精品中文字幕电影| 极品教师在线免费播放| 操出白浆在线播放| 一级毛片高清免费大全| 国产精品一及| 性欧美人与动物交配| 精品国产超薄肉色丝袜足j| 俄罗斯特黄特色一大片| 啦啦啦韩国在线观看视频| av国产免费在线观看| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av| 两个人的视频大全免费| 我要搜黄色片| 夜夜躁狠狠躁天天躁| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 亚洲午夜理论影院| 丰满人妻一区二区三区视频av | 国产成人欧美在线观看| 99久久久亚洲精品蜜臀av| 黄频高清免费视频| 亚洲av中文字字幕乱码综合| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 色播亚洲综合网| 亚洲国产欧美网| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 国产99白浆流出| 欧美zozozo另类| 国产成人精品久久二区二区免费| 天堂√8在线中文| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 99热6这里只有精品| 欧美日韩综合久久久久久 | 免费在线观看日本一区| 99热只有精品国产| 老司机福利观看| 两个人的视频大全免费| 久久性视频一级片| 99视频精品全部免费 在线 | 久久久久久人人人人人| 青草久久国产| 亚洲欧美精品综合一区二区三区| 国产伦人伦偷精品视频| 国产探花在线观看一区二区| 久久中文看片网| 成熟少妇高潮喷水视频| 日韩成人在线观看一区二区三区| 美女 人体艺术 gogo| 熟女电影av网| av视频在线观看入口| 欧美高清成人免费视频www| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 国产一区二区在线观看日韩 | 国产激情久久老熟女| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区| 精品国产超薄肉色丝袜足j| 色播亚洲综合网| 亚洲无线观看免费| 亚洲中文av在线| 天堂影院成人在线观看| 在线永久观看黄色视频| 精品日产1卡2卡| 亚洲真实伦在线观看| 亚洲国产色片| 国产99白浆流出| 亚洲五月天丁香| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 精品一区二区三区av网在线观看| 国产91精品成人一区二区三区| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 久久中文字幕一级| 色综合婷婷激情| 亚洲av成人av| 国产人伦9x9x在线观看| 丰满的人妻完整版| 国产高清videossex| 男人舔女人下体高潮全视频| 精品日产1卡2卡| 亚洲美女黄片视频| 欧美3d第一页| 此物有八面人人有两片| 女警被强在线播放| 18禁观看日本| 操出白浆在线播放| 国产乱人视频| 麻豆国产av国片精品| 国产精品久久久久久久电影 | 成人18禁在线播放| 久久亚洲精品不卡| 日本在线视频免费播放| 国产精品久久久人人做人人爽| 成人亚洲精品av一区二区| 日韩成人在线观看一区二区三区| 又爽又黄无遮挡网站| 国产av在哪里看| 欧美日韩福利视频一区二区| 欧美一区二区精品小视频在线| 成年人黄色毛片网站| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 在线十欧美十亚洲十日本专区| 久久中文字幕人妻熟女| 亚洲国产日韩欧美精品在线观看 | 欧美乱妇无乱码| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩卡通动漫| 亚洲欧美日韩东京热| 极品教师在线免费播放| 无限看片的www在线观看| 99国产综合亚洲精品| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲| 香蕉久久夜色| 亚洲18禁久久av| 少妇的丰满在线观看| 久久精品91蜜桃| 天天添夜夜摸| 小蜜桃在线观看免费完整版高清| 琪琪午夜伦伦电影理论片6080| 欧美一级a爱片免费观看看| 黄片小视频在线播放| 丰满人妻熟妇乱又伦精品不卡| 日本 av在线| 欧美一级毛片孕妇| 美女午夜性视频免费| 中出人妻视频一区二区| 国产真人三级小视频在线观看| 国产97色在线日韩免费| 色在线成人网| 久久久国产成人精品二区| 亚洲美女黄片视频| 精品午夜福利视频在线观看一区| 亚洲国产看品久久| 色尼玛亚洲综合影院| 男女下面进入的视频免费午夜| 亚洲第一欧美日韩一区二区三区| 午夜a级毛片| 国产激情久久老熟女| 久久精品夜夜夜夜夜久久蜜豆| 特大巨黑吊av在线直播| 日本 av在线| 久久伊人香网站| 久久婷婷人人爽人人干人人爱| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 欧美日韩亚洲国产一区二区在线观看| 亚洲片人在线观看| 国产综合懂色| 国产精品一区二区三区四区久久| 脱女人内裤的视频| 国产精品九九99| 丁香六月欧美| 中文字幕熟女人妻在线| 久久精品国产综合久久久| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 51午夜福利影视在线观看| 少妇熟女aⅴ在线视频| 亚洲av熟女| 日韩精品中文字幕看吧| 欧美xxxx黑人xx丫x性爽| 国产亚洲av高清不卡| 美女cb高潮喷水在线观看 | 国产视频内射| 成人三级黄色视频| 久久伊人香网站| 1024香蕉在线观看| 啦啦啦观看免费观看视频高清| 亚洲熟妇中文字幕五十中出| 久久久久久久久中文| 极品教师在线免费播放| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 精品国产超薄肉色丝袜足j| 好男人在线观看高清免费视频| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 日韩欧美精品v在线| 人妻久久中文字幕网| 国产亚洲av高清不卡| 男插女下体视频免费在线播放| 不卡一级毛片| 精品一区二区三区四区五区乱码| 美女免费视频网站| 国产精品永久免费网站| 99精品欧美一区二区三区四区| 夜夜躁狠狠躁天天躁| 丰满人妻一区二区三区视频av | 亚洲中文日韩欧美视频| 性色av乱码一区二区三区2| 国产精品电影一区二区三区| 欧美午夜高清在线| 少妇丰满av| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 88av欧美| 中文字幕最新亚洲高清| 国产精品香港三级国产av潘金莲| 老司机午夜福利在线观看视频| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 狂野欧美激情性xxxx| 亚洲中文字幕一区二区三区有码在线看 | 麻豆成人午夜福利视频| 日本成人三级电影网站| 亚洲aⅴ乱码一区二区在线播放| 欧美高清成人免费视频www| 老汉色av国产亚洲站长工具| 国产又黄又爽又无遮挡在线| 国产不卡一卡二| 少妇的丰满在线观看| av天堂在线播放| 麻豆国产av国片精品| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 欧美日韩乱码在线| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 国产成人精品久久二区二区91| 成人一区二区视频在线观看| 亚洲美女视频黄频| 国产97色在线日韩免费| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 无限看片的www在线观看| 女生性感内裤真人,穿戴方法视频| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 国产美女午夜福利| 亚洲电影在线观看av| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 丰满的人妻完整版| 成人三级做爰电影| 神马国产精品三级电影在线观看| 久久久久九九精品影院| 免费无遮挡裸体视频| av在线天堂中文字幕| 中文字幕高清在线视频| 黄频高清免费视频| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 亚洲国产精品sss在线观看| 国产av一区在线观看免费| 亚洲国产欧洲综合997久久,| 亚洲国产日韩欧美精品在线观看 | www国产在线视频色| 日本 av在线| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 国产精品国产高清国产av| 国产亚洲精品久久久com| 久久精品人妻少妇| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 黑人操中国人逼视频| 日本a在线网址| 久久香蕉精品热| 女警被强在线播放| 最新中文字幕久久久久 | 久久精品aⅴ一区二区三区四区| 亚洲在线自拍视频| 免费看美女性在线毛片视频| av天堂中文字幕网| 亚洲精华国产精华精| 国语自产精品视频在线第100页| 免费电影在线观看免费观看| 久久精品影院6| 国产成人av激情在线播放| 免费av毛片视频| 亚洲欧洲精品一区二区精品久久久| 五月伊人婷婷丁香| 精品久久蜜臀av无| 国产不卡一卡二| 国产高清videossex| 亚洲片人在线观看| 亚洲第一电影网av| 深夜精品福利| 看免费av毛片| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放| 国产乱人伦免费视频| 美女cb高潮喷水在线观看 | 69av精品久久久久久| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看 | h日本视频在线播放| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久国产高清桃花| 欧美三级亚洲精品| 精品欧美国产一区二区三| 老熟妇仑乱视频hdxx| 日韩有码中文字幕| 亚洲国产高清在线一区二区三| 日韩高清综合在线| 午夜两性在线视频| 欧美乱妇无乱码| 欧美日韩综合久久久久久 | 亚洲熟妇中文字幕五十中出| 日本在线视频免费播放| 色噜噜av男人的天堂激情| e午夜精品久久久久久久| 一区二区三区高清视频在线| 久久久久九九精品影院| 老司机在亚洲福利影院| 国产成人精品无人区| 一本综合久久免费| 国产精品爽爽va在线观看网站| 99国产精品99久久久久| 久久久国产精品麻豆| 国产午夜精品论理片| 国内毛片毛片毛片毛片毛片| 看黄色毛片网站| 听说在线观看完整版免费高清| 国产熟女xx| 亚洲av电影在线进入| 色综合婷婷激情| 我要搜黄色片| 亚洲va日本ⅴa欧美va伊人久久| 黄频高清免费视频| 老司机在亚洲福利影院| 中亚洲国语对白在线视频| 精品不卡国产一区二区三区| 免费看十八禁软件| 999久久久精品免费观看国产| tocl精华| 久久精品人妻少妇| 久久这里只有精品19| 午夜福利在线在线| 又爽又黄无遮挡网站| 国产又色又爽无遮挡免费看| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 高潮久久久久久久久久久不卡| www.999成人在线观看| 免费观看精品视频网站| 成人特级av手机在线观看| 亚洲成人中文字幕在线播放| 日本三级黄在线观看| 99久久精品热视频| 日韩欧美在线乱码| 免费观看的影片在线观看| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| а√天堂www在线а√下载| 日韩免费av在线播放| 美女扒开内裤让男人捅视频| a级毛片a级免费在线| 亚洲 欧美 日韩 在线 免费| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 国产乱人伦免费视频| av片东京热男人的天堂| 亚洲,欧美精品.| 岛国在线观看网站| 精品无人区乱码1区二区| 国产91精品成人一区二区三区| 日韩国内少妇激情av| 99精品久久久久人妻精品| 国产精品av视频在线免费观看| 亚洲av成人一区二区三| a在线观看视频网站| 欧美在线黄色| 国产精品电影一区二区三区| 国模一区二区三区四区视频 | 国产人伦9x9x在线观看| 免费看美女性在线毛片视频| 午夜福利在线观看免费完整高清在 | 51午夜福利影视在线观看| 午夜视频精品福利| 天堂影院成人在线观看| 观看美女的网站| 国产爱豆传媒在线观看| 亚洲第一电影网av| 一夜夜www| 日韩人妻高清精品专区| 午夜久久久久精精品| 性色av乱码一区二区三区2|