• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces

    2023-01-30 06:49:06LinglingYngJiujuFngJiNingWngZhidGoJingwnXuMiYnYnSong
    Chinese Chemical Letters 2022年12期

    Lingling Yng ,Jiuju Fng ,Ji-Ning Wng ,Zhid Go ,Jingwn Xu,*,Y Mi ,c,d,*,Yn-Yn Song ,*

    a College of Sciences,Northeastern University,Shenyang 11000 4,China

    b State Key Laboratory of Precision Spectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China

    c NYU-ECNU Center fo r Computational Chemistry at NYU Shanghai,Shanghai 20 0062,China

    d Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    e College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 3210 0 4,China

    Keywords:Charge transfer Electrochromism Oxygen vacancies SERS substrate Solid/liquid interface

    ABSTRACT Although surface-enhanced Raman spectroscopy(SERS)has been applied for gathering fingerprint information,even in single molecule analysis,the decayed Raman signals in aqueous solutions largely obstruct the on-site insight reaction process.In this study,large-scaled semiconductor films with multiwalled(TiO2/WO3/TiO2)nanopore distribution are fabricated by combining electrochemical anodization and sputtering technique,and then employed as the SERS substrates for detection of molecules at the solid/liquid interfaces.Given the remarkably improved electrochromic property of the multi-walled film,such SERS substrates were endowed with tunable oxygen vacancy(VO)density and distribution via simply applying electrochemical bias voltage,which enabled one to achieve an enhanced charge transfer efficiency and thus a remarkably increased Raman signal even in solution.The VO-rich SERS substrate is highly repeatable,thus providing a reliable platform for in-situ monitoring of the target molecules or intermediates at the solid/liquid interfaces.

    Titanium oxide(TiO2),known by its high stability and electronic properties,constitutes a versatile platform in the fields of photocatalysis,energy storage,and biomedical applications[1–3].Operando monitoring of the reactions on a TiO2surface is extremely important for investigating the yields of TiO2-based photocatalysts.The full understanding of the reactions at the water/TiO2interface is crucial for further optimization of TiO2based photocatalysts or reactors[4].However,in-situmonitoring of the reactions on the TiO2surface,especially on-site reactions,under operando conditions is still a challenge.In that regard,surfaceenhanced Raman spectroscopy(SERS)is an ideal analytical technology for ultrasensitive surface chemical analysis[5–8].For example,SERS was successfully employed by Tianet al.to investigate the photoinduced reaction on the solid/gas interface of singlecrystal TiO2[9].As a matter of fact,most common TiO2-based catalysts are generally low-cost polycrystalline composites and TiO2nanomaterials are usually applied in a liquid environment.Meanwhile,compared with strong signals from a solid/gas interface,the largely decayed Raman signals in the liquid medium mean that the use of semiconductor-based SERS substrates in practice is diffi-cult[10].Therefore,improving the SERS activity of semiconductorbased substrate in liquid medium has become an urgent task.

    For semiconductor-based SERS substrates,it is generally agreed that the tuning of photoinduced charge-transfer(PICT)through band energy alignment between substrate and molecule plays a dominant role[11].Till now,lots of strategies have been developed to promote PICT efficiencies,such as n-/p-doping and stoichiometry[12–14].Especially,injecting oxygen vacancies(VO)as an important method in stoichiometry has been demonstrated to be useful for providing some additional defect levels in the bandgap of semiconductors,thus facilitating the exciton resonance in semiconductors,as well as the charge transfer(CT)between semiconductors and molecules[15–17].Recently,the SERS activities of selforganized TiO2nanotubes have been discovered by Weidinger and coworkers[18].Nevertheless,the Raman activity of TiO2nanotube arrays is significantly inferior to that of layered two-dimensional(2D)semiconductor materials,which have been demonstrated to possess a large number of structural defects[19–21].Besides the structural defects induced VO,Zhao and coworkers also utilized electrochromic technology to introduce VOinto the WO3substrate[22].Inspired by the intrinsic electrochromic capacity,feasibility,and widespread applicability of TiO2nanopore films(TiO2NPs)prepared by electrochemical anodization[23,24],we hypothesis that VOwould be also inserted by an electrochromic way,thus enabling TiO2NPs to be employed as alternative SERS substrates.

    Fig.1.SEM images of(A)TiO2 NPs and(B,C)TiO2/WO3/TiO2NPs.(D)TEM,HAADF-STEM(inset),and(E,F)HR-TEM images of TiO2/WO3/TiO2NPs.(G)Current density vs.time curves of Ti O2 NPs(I),TiO2/TiO2NPs(II),and TiO2/WO3/TiO2 NPs(III)acquired during potential pulse cycling in a voltage range from–0.8 V to+0.8 V.(H)SERS spectra of TiO2/WO3/TiO2NPs after applying different bias voltage.(I)EPR spectra of TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs.

    For this purpose,we developed a facial and effective approach to prepare a large-scale porous semiconductor substrate with good electrochromic performance.The SERS measurements were carried out by employing bis(tetrabutylammonium)dihydrogen bis(isothi ocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II)(N719)placed onto TiO2/WO3/TiO2NPs.The generation of tunable VOviaelectrochromic processing of the substrate resulted in the noticeable increase of the Raman signals of N719,and the PICT-mediated signal enhancement was attributed to the VOinduced by electrochromic effect.

    The multi-walled NPs were constructed on the self-ordered TiO2NPs that were prepared by electrochemical anodization.The scanning electron microscopy(SEM)images reveal the uniform nanotube structure of the as-formed TiO2NPs with the inner diameter of~100 nm and the length of 300 nm(Fig.1A and Fig.S1 in Supporting information).The W and Ti nanoparticles were subsequently applied onto the NPsviasputtering in sequence.This enabled one to increase the wall thickness and roughness of the NPs(Figs.1B and C).The final NPs exhibited a smaller inner diameter.The uniform distributions of W and Ti elements across the tube surface and walls were confirmedviathe morphological and elemental characterization(Fig.S2 in Supporting information),and the structural uniformity of NPs was crucial for obtaining the SERS substrates with good signal reproducibility.The annealing was carried out at 300°C to achieve the high degree of crystallinity of the hybrid NPs.The X-ray diffraction(XRD)experiments were carried out to demonstrate the annealing-induced crystalline phase transition.After annealing,the peaks attributed to a monoclinic WO3phase with preferential(002)orientation(2θ=23.0°)and anatase TiO2with(101)orientation(2θ=25.3°)could be detected(Fig.S3 in Supporting information).The morphology of TiO2/WO3/TiO2NPs was further characterized by transmission electron microscope(TEM)and high resolution(HR)-TEM in Figs.1D-F and Fig.S4(Supporting information).The crystal lattices of WO3(002)and TiO2(101)(004)can be identified at the wall of the resulted sample.These crystalline phases possess high conductivity and cyclic voltammetry stability[24].The current response and electrochromic switching ability were investigated within a potential window between+0.8 V and?0.8 V(Fig.1G).The amounts of inserted and extracted electrons during the voltage scanning were calculated based on the current-time curves.The TiO2/WO3/TiO2NPs exhibited the charge densityQcathodicof?95.9 mC/cm2,which was much higher than those of the samples without WO3coating(?37.8 mC/cm2for TiO2NPs and?68.5 mC/cm2for TiO2/TiO2NPs).Noticeably,the insertion of H+protons from the electrochromic materialsviathe application of negative bias voltage was accompanied by a reflectance change(Fig.S5 in Supporting information),which could be attributed to the lower valence states of W-and Ti-ions[25].Clearly,TiO2/WO3/TiO2NPs underwent the more pronounced reflectance changes than the other two samples under applying the same bias voltage,and the electrochromic performance can be simply tuned by applying different voltages(Fig.S6 in Supporting information).

    The SERS spectra of TiO2/WO3/TiO2NPs exposed to various negative bias voltages(labeled as VO-TiO2/WO3/TiO2NPs)are plotted in Fig.1H.It is worth mentioning that the Raman peaks of WO3broaden after the negative bias voltage(?0.5 V and?0.8 V)is applied,which can be explained by the generation of VOin the substrate[26].The introduction of VOin TiO2/WO3/TiO2NPs by applying with negative bias voltages was also verified by electron paramagnetic resonance(EPR)spectrum(Fig.1I),XRD analysis(Fig.S7 in Supporting information),Electrochemical impedance spectroscopy(Fig.S8 in Supporting information),andin-situgeneration of metal silver(Fig.S9 and Table S1 in Supporting information).It is important to note that plenty of VOin the SERS substrates are conducive thus facilitating the PICT between the probe molecules and the substrates[15].For semiconductors,the introduction of VOcan bring about a defect state that overlaps with the conduction band(CB),leading to the emergence of a band tail(Fig.S10 in Supporting information)[27].It is expected that the CT between the substrate and the adsorber would thus be facilitated,and leading to a preferable SERS activity.

    Fig.2.(A)Schematic of the electrochemical-SERS setup used in this study.(B)Atomic concentrations of N719 modified TiO2/WO3/TiO2NPs at take-off angles of 10°and 70°(inset:orientation of N719 on the sample).(C)SERS spectra of N719(3×10?3 mol/L)on pristine and VO-contained TiO2/WO3/TiO2NPs and TiO2/TiO2NPs.(D)Potential recovery of TiO2/TiO2NPs and TiO2/WO3/TiO2NPs after applying the negative bias voltage of?0.8 V for 30 s.

    As a proof-of-concept,the Raman spectra of N719 onto TiO2/WO3/TiO2NPs werein-situcollected in HCl electrolyte by using a custom-built electrochemical cell(Fig.2A).In this study,the NPs samples were exposed to a negative potential for 30 s to introduce VOin the substrate,and the Raman signals were then acquired at the open circuit potential.Considering the energy match between the incident photons and the absorption spectra of N719(Fig.S11 in Supporting information),a 532 nm laser was chosen as the excitation light source for the Raman measurements.The orientation of N719 on the TiO2surface was investigated using an angle X-ray photoelectron spectroscopy(XPS)at the take off anglesθof 10°and 70°(Fig.S12 in Supporting information).As shown in Fig.2B and Table S2(Supporting information),the O 1s(?COOH),N 1s,and S 2p signals exhibit the higher atomic concentrations at 70°(bulk models)than those at 10°.Meanwhile,the atomic population on the N 1s signals at 70°is obviously higher than those on the O 1s(?COOH)and S 2p signals.These results suggest that the?SCN groups are oriented far away from the Raman substrates,and N719 molecules have been anchored onto the TiO2surface in the form of a bridged configurationviathe two carboxyl groups.Such bidentate coordination was considered to provide a favorable way for the CT between the substrate and adsorbed molecules[28].Compared to the faint signals collected on the pristine samples(see the dot lines in Fig.2C),the prominent signals of N719 molecules at 1474,1545,and 1612 cm?1,corresponding to a typical 2,2′-bipyridyl(bpy)ring stretching mode[29],were acquired on the VO-containing samples(the solid lines in Fig.2C).In Fig.2C,VO-TiO2/WO3/TiO2NT exhibits a higher SERS activity than VO-TiO2/TiO2NPs.This phenomenon can be ascribed to the WO3thin layer.Owing to the large optical modulation capacity,long-term durability,and memory effect of WO3,the coating of WO3onto TiO2can efficiently improve the electrochromic efficiency(Fig.2D and Fig.S13 in Supporting information).Furthermore,an excessively thick WO3film could result in a rough surface and the higher charge-transfer resistance(Figs.S14 and S15 in Supporting information)[30].Therefore the W-sputtering thickness in this study was optimized at 5 nm(Figs.S16 and S17 in Supporting information).

    Fig.3.(A)SERS spectra of N719 adsorbed on TiO2/WO3/TiO2 NPs after exposed to the bias voltages of?0.8 V and+0.8 V alternately.(B)Raman intensity(at 1545 cm?1)of N719 on TiO2/WO3/TiO2NPs measured in air and in liquid.(C)SERS spectra of N719 collected from 20 randomly selected positions on VO-TiO2/WO3/TiO2NPs.(D)Intensity variation of the Raman peak at 1545 cm?1 in these 20 selected positions.

    The role of VOon the SERS signal of the substrates was further investigated by repeatedly applying positive and negative voltages cycles.In Fig.3A,an enhanced N719 signal can be observed when applying the voltage of?0.8 V.In turn,switching the voltage to+0.8 V causes the weak Raman signals.The repeatable SERS activities were achieved by switching the voltages back to?0.8 V,verifying the VOcan be electrochemically tuned with satisfactory feasibility and reproducibility.Meanwhile,these results also allow one to conclude whether the weakened SERS activity is derived from the vanishing of VOrather than from the shedding or desorption of N719 molecules from the substrates.

    To evaluate the application advantage of the proposed strategy in aqueous solutions,the Raman signals at 1545 cm?1(ν(C=C)(bpy),the stretching of the C=C bond in bpy)were collected at different N719 concentrations on TiO2/WO3/TiO2NPs in air and in aqueous solution(Fig.3B).Apparently,the Raman signals recorded in aqueous solution are much weaker than those acquired in air.Impressively,a 39-fold increase in the Raman signals was achieved from the SERS substrates with embedded VOunder a negative bias voltage.Notably,the Raman signals recorded on such a VOrich substrate in aqueous solution even exceeded those obtained in air.Moreover,the Raman signal was still conspicuous in the solution when the N719 concentration decreased to 10?6mol/L(Fig.S18 in Supporting information and Fig.3B),indicating high sensitivity of the VO-rich substrate.The enhancement factor(EF)of VO-TiO2/WO3/TiO2NPs was calculated to be 8.6×104(Fig.S19 in Supporting information).Additionally,Fig.3C shows the Raman signals of N719 at twenty randomly selected regions on VOTiO2/WO3/TiO2NPs.The relative standard deviation(RSD)of the Raman peak at 1545 cm?1is determined to be 6.65%(Fig.3D),indicating excellent reproducibility of the VO-rich substrates.

    Fig.4.(A)SERS spectra of N719 on TiO2/WO3/TiO2NPs before and after exposure to different bias voltages.(B)Schematic energy level diagram and CT pathways in the N719-VO-TiO2/WO3/TiO2NPs system.

    For a comprehensive understanding of the mechanism of VOinduced SERS activity,the Raman spectra of N719 were investigated under different voltages(Fig.4A).Owing to the increase in the VOcontent with increasing negative bias voltage,the Raman signal intensity from the substrates became substantially higher[26].The band structural analysis for VO-TiO2/WO3/TiO2NPs and N719 specimens was also carried out at different voltages(Figs.S20 and S21 and Table S3 in Supporting information).Compared to pristine samples,VO-TiO2/WO3/TiO2NPs exhibited the narrower bandgaps.The Mott-Schottky analysis also demonstrates that the charge-carrier density(Nd)calculated for VO-TiO2/WO3/TiO2NPs(3.45×1019cm?3)is larger than that of the pristine sample(1.84×1018cm?3),which is beneficial for the acceleration of PICT in VO-TiO2/WO3/TiO2NPs.Meanwhile,the contribution of CT in VOTiO2/WO3/TiO2NPs to the SERS signal of N719 was quantifiably determined based on the following equation[16]:

    According to the SERS spectra in Fig.S22(Supporting information),the degree of CT(ρCT)of N719 was calculated as 0.41 and 0.69 for TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs,respectively(details were provided in supporting Information).The key role of CT in our system was further demonstratedviaattaching other Raman probes onto TiO2/WO3/TiO2NPs by chemical bonding(4-MBA)or physical absorption(Ru(bpy)32+and 2,2′-Bipyridine)(Fig.S23 in Supporting information).Compared to 4-MBA,the SERS signals of Ru(bpy)32+and 2,2′-Bipyridine were poor and didnot exhibit obvious enhancement on VO-Ti O2/WO3/TiO2NPs.Moreover,the signal of N719 was remarkably dropped when a thin layer of SiO2film was covered onto TiO2/WO3/TiO2NPs before N719 modification to block CT between substrate and molecules(Figs.S24 and S25 in Supporting information).All these results indicate that CT plays an important role in the improved SERS signals after applying the negative bias.

    Considering the location of the highest occupied molecular orbital(HOMO,?5.34 eV)and the lowest unoccupied molecular orbital(LUMO,?3.01 eV)of N719 molecules[31],the PICT could take place in following pathways(Fig.4B):(1)PICT from the HOMO of N719 to the CB of TiO2and WO3.The electrons can be directly excited from the HOMO of N719 to CB of TiO2(?4.21 eV)and WO3(?5.24 eV)[32]by an incident light of 532 nm(2.33 eV).(2)PICT from the HOMO of N719 to the defect levels(TiO2-xand WO3-x).In general,the defect levels induced by VOare usually located at~0.5?1.0 eV below the minimum value of CB[33].As a result,PICT from HOMO of N719 to defect levels(TiO2-xand WO3-x)can provide more available PICT pathways than the sample that only contains TiO2and WO3,which can further lead to a magnification of the Raman scattering cross section,thus greatly magnifying the polarization tensor of N719 molecules.(3)Electrons in the LUMO of N719 transfer from the photo-excited N719 molecules to CB of TiO2.In addition,because of the existence of the defect levels(WO3-x),the band gap of WO3can be narrowed as 1.7?2.2 eV[33].Therefore,electrons can be excited from VB to WO3-x(μex)by a 532-nm laser and the photogenerated holes in WO3-xsubsequently transfer to VB of TiO2.Meanwhile,excited electrons in CB of TiO2transfer to CB of WO3.Therefore,a built-in electric field at the interface of TiO2and WO3with the direction of the electric field pointing from WO3to TiO2is formed.Driven by the built-in electric field,photogenerated electron-hole pairs can be effectively separated,realizing spatial charge separation and prolongating the lifetime of charge carriers,and thus enhancing the SERS activity[17,34-37].

    To summarize,the electrochromic properties of the semiconductors were utilized to successfully produce the highly active SERS substrates that could be applied in aqueous electrolytes.Experiment data and theoretical calculation revealed that the abundant VOinduced by the electrochromic process facilitates the CT between the substrate and adsorbed molecules,thus enhancing their SERS activity.Especially,the as-proposed substrates were largely scalable,and their Raman signals were reproduced by controlling the applied bias voltage,thus providing an easily assessable and low-cost platform forin-situmonitoring of the reactions at the solid/liquid interfaces.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.21874013,22074013 and 22073030),the Fundamental Research Funds for the Central Universities(Nos.N2105018 and N2005027),and the China Postdoctoral Science Foundation(No.2019M661109).The CPU time was supported by the Supercomputer Centre of East China Normal University(ECNU Public Platform for Innovation No.001).Special thanks are due to the instrumental or data analysis from Analytical and Testing Center,Northeastern University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.011.

    大片电影免费在线观看免费| 久久精品亚洲熟妇少妇任你| 日本五十路高清| 国产在线一区二区三区精| 国产亚洲av片在线观看秒播厂| 91成人精品电影| av有码第一页| 亚洲九九香蕉| 亚洲黑人精品在线| 欧美中文综合在线视频| 国产日韩一区二区三区精品不卡| 日韩中文字幕欧美一区二区 | 久久99一区二区三区| 国产精品 国内视频| 久久久久视频综合| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 高清黄色对白视频在线免费看| 极品人妻少妇av视频| 久久 成人 亚洲| 老司机深夜福利视频在线观看 | 90打野战视频偷拍视频| 99热网站在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品一区蜜桃| 精品国产乱码久久久久久男人| 日本wwww免费看| 亚洲色图综合在线观看| 三上悠亚av全集在线观看| 男女床上黄色一级片免费看| 如日韩欧美国产精品一区二区三区| 国产亚洲欧美精品永久| 秋霞在线观看毛片| 一本一本久久a久久精品综合妖精| 婷婷色麻豆天堂久久| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 黄网站色视频无遮挡免费观看| 国产午夜精品一二区理论片| 亚洲精品日韩在线中文字幕| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| 欧美黑人欧美精品刺激| 亚洲美女黄色视频免费看| 中国国产av一级| 国产日韩欧美视频二区| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 久久综合国产亚洲精品| 另类精品久久| 亚洲,欧美,日韩| 久久99精品国语久久久| 国产免费视频播放在线视频| 亚洲熟女毛片儿| 又紧又爽又黄一区二区| 免费看十八禁软件| 久久免费观看电影| 日韩大码丰满熟妇| 国产免费福利视频在线观看| 欧美人与善性xxx| 国产欧美日韩一区二区三 | videos熟女内射| 国产高清不卡午夜福利| 精品欧美一区二区三区在线| 丝袜脚勾引网站| 精品一区二区三卡| 18在线观看网站| 久久国产精品人妻蜜桃| 好男人电影高清在线观看| 国产三级黄色录像| 精品久久久久久电影网| 91九色精品人成在线观看| 精品人妻一区二区三区麻豆| 精品福利永久在线观看| 免费av中文字幕在线| 午夜激情av网站| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 国语对白做爰xxxⅹ性视频网站| 国产精品熟女久久久久浪| 欧美97在线视频| 天天添夜夜摸| 国产成人免费观看mmmm| 国产精品久久久久久精品电影小说| 精品视频人人做人人爽| 中国美女看黄片| 欧美精品av麻豆av| 婷婷色av中文字幕| 人体艺术视频欧美日本| av一本久久久久| 日韩中文字幕欧美一区二区 | 美国免费a级毛片| 午夜福利视频在线观看免费| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 大香蕉久久网| 国产成人免费观看mmmm| 美女国产高潮福利片在线看| 人人妻人人爽人人添夜夜欢视频| 极品人妻少妇av视频| 不卡av一区二区三区| 久久精品熟女亚洲av麻豆精品| 日韩av不卡免费在线播放| 欧美大码av| 另类精品久久| 波野结衣二区三区在线| www.熟女人妻精品国产| 亚洲专区中文字幕在线| 性色av乱码一区二区三区2| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边抽搐一进一出视频| 午夜免费观看性视频| 亚洲精品日韩在线中文字幕| 国产成人精品久久二区二区免费| 午夜福利乱码中文字幕| 观看av在线不卡| av国产久精品久网站免费入址| 波多野结衣av一区二区av| 久久精品国产亚洲av高清一级| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 视频区欧美日本亚洲| 女人精品久久久久毛片| 麻豆乱淫一区二区| 九草在线视频观看| 日韩av免费高清视频| 一边摸一边做爽爽视频免费| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 激情视频va一区二区三区| 国产在线免费精品| 亚洲国产中文字幕在线视频| 国产爽快片一区二区三区| 亚洲九九香蕉| 国产高清videossex| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜| 可以免费在线观看a视频的电影网站| 欧美精品亚洲一区二区| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 91字幕亚洲| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 老司机靠b影院| 黑丝袜美女国产一区| av网站在线播放免费| 亚洲欧美激情在线| 国产有黄有色有爽视频| 高潮久久久久久久久久久不卡| 好男人电影高清在线观看| 成年美女黄网站色视频大全免费| 欧美日韩视频高清一区二区三区二| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 97在线人人人人妻| 麻豆av在线久日| 脱女人内裤的视频| 国产日韩欧美在线精品| 在线观看免费午夜福利视频| 国产精品免费视频内射| 最近中文字幕2019免费版| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 成年人黄色毛片网站| 9191精品国产免费久久| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 黄网站色视频无遮挡免费观看| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 久久久久久人人人人人| 一级片免费观看大全| 色视频在线一区二区三区| 午夜免费成人在线视频| 两性夫妻黄色片| 99九九在线精品视频| 国产午夜精品一二区理论片| 欧美黄色淫秽网站| 老司机靠b影院| 国产一区二区激情短视频 | 老司机影院毛片| 免费观看av网站的网址| 中国美女看黄片| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 亚洲熟女毛片儿| 女人被躁到高潮嗷嗷叫费观| 天天影视国产精品| 一级,二级,三级黄色视频| 免费一级毛片在线播放高清视频 | 老司机靠b影院| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 欧美精品高潮呻吟av久久| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看 | 成人午夜精彩视频在线观看| 免费不卡黄色视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美精品自产自拍| 一级毛片女人18水好多 | 亚洲av电影在线观看一区二区三区| 亚洲精品一区蜜桃| 欧美人与性动交α欧美精品济南到| 老司机亚洲免费影院| 亚洲成av片中文字幕在线观看| 女人精品久久久久毛片| 蜜桃国产av成人99| 这个男人来自地球电影免费观看| www日本在线高清视频| 亚洲成av片中文字幕在线观看| 一本色道久久久久久精品综合| 日韩中文字幕欧美一区二区 | 国产男人的电影天堂91| 亚洲国产成人一精品久久久| 国产黄色免费在线视频| 不卡av一区二区三区| 日本黄色日本黄色录像| 国产人伦9x9x在线观看| 国产又爽黄色视频| 久久久精品国产亚洲av高清涩受| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 黄片小视频在线播放| 久久久久视频综合| 乱人伦中国视频| 丝袜人妻中文字幕| 国产精品久久久久久精品电影小说| 国产一区二区激情短视频 | 99热全是精品| 性色av乱码一区二区三区2| 免费在线观看日本一区| 亚洲国产精品999| av又黄又爽大尺度在线免费看| 欧美日韩亚洲高清精品| 超色免费av| 欧美性长视频在线观看| 日韩熟女老妇一区二区性免费视频| 男女高潮啪啪啪动态图| 精品视频人人做人人爽| 日韩中文字幕视频在线看片| 十八禁高潮呻吟视频| 大香蕉久久成人网| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 国产精品一区二区免费欧美 | cao死你这个sao货| 好男人视频免费观看在线| 国产伦理片在线播放av一区| 国产男女内射视频| 免费少妇av软件| 99热国产这里只有精品6| 又紧又爽又黄一区二区| 亚洲欧美精品自产自拍| 美国免费a级毛片| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 国产日韩欧美在线精品| 精品一区二区三区四区五区乱码 | a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜一区二区| 亚洲av电影在线观看一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲人成电影免费在线| 国产精品久久久久久精品古装| 永久免费av网站大全| 丝袜美足系列| 成年人免费黄色播放视频| 国产视频首页在线观看| 午夜福利视频在线观看免费| 日韩大码丰满熟妇| 91精品伊人久久大香线蕉| 国产真人三级小视频在线观看| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 日本午夜av视频| 国产精品久久久久成人av| 高清视频免费观看一区二区| 十分钟在线观看高清视频www| 校园人妻丝袜中文字幕| 丁香六月天网| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 高清av免费在线| 午夜两性在线视频| 视频区欧美日本亚洲| 少妇的丰满在线观看| 亚洲欧美日韩另类电影网站| 伊人亚洲综合成人网| 超碰成人久久| 国产高清不卡午夜福利| netflix在线观看网站| 男女床上黄色一级片免费看| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 熟女少妇亚洲综合色aaa.| av在线app专区| 日本一区二区免费在线视频| 另类精品久久| 久久精品亚洲av国产电影网| 麻豆乱淫一区二区| 一区二区三区精品91| 一二三四在线观看免费中文在| 中文字幕人妻丝袜制服| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 免费看不卡的av| 国产精品免费大片| 欧美黑人精品巨大| 国产成人啪精品午夜网站| 国产精品久久久av美女十八| 日韩中文字幕视频在线看片| 国产真人三级小视频在线观看| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av片在线观看秒播厂| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 亚洲欧美成人综合另类久久久| 亚洲精品中文字幕在线视频| 嫁个100分男人电影在线观看 | 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 亚洲国产欧美一区二区综合| 97人妻天天添夜夜摸| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 精品国产一区二区三区久久久樱花| 久久国产亚洲av麻豆专区| 中文字幕人妻丝袜一区二区| 国产99久久九九免费精品| 一本一本久久a久久精品综合妖精| 中文字幕最新亚洲高清| 蜜桃在线观看..| 久久久久精品国产欧美久久久 | 美女高潮到喷水免费观看| 黄色a级毛片大全视频| 久久av网站| 久久国产精品人妻蜜桃| 久久精品国产亚洲av涩爱| 我的亚洲天堂| 久久久久精品人妻al黑| 午夜免费鲁丝| 19禁男女啪啪无遮挡网站| 久久99热这里只频精品6学生| 深夜精品福利| 精品一区二区三区av网在线观看 | 婷婷色av中文字幕| 亚洲人成电影免费在线| 久久精品国产a三级三级三级| 国产成人一区二区三区免费视频网站 | 久久久久久久大尺度免费视频| 亚洲天堂av无毛| 亚洲精品国产区一区二| 精品熟女少妇八av免费久了| 国产爽快片一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲 国产 在线| 国产成人av教育| 999久久久国产精品视频| 成人手机av| 五月天丁香电影| 欧美黑人欧美精品刺激| 午夜av观看不卡| 亚洲中文日韩欧美视频| 丝瓜视频免费看黄片| 久久人妻福利社区极品人妻图片 | 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 一级毛片我不卡| 香蕉丝袜av| 一本大道久久a久久精品| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| 母亲3免费完整高清在线观看| 深夜精品福利| 一区二区三区四区激情视频| www.av在线官网国产| 国产成人免费无遮挡视频| 黄色一级大片看看| 99九九在线精品视频| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产av成人精品| 男女之事视频高清在线观看 | 国产成人精品在线电影| 欧美人与性动交α欧美软件| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 免费不卡黄色视频| 亚洲国产看品久久| 国产视频首页在线观看| 捣出白浆h1v1| 亚洲国产欧美网| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 亚洲av日韩在线播放| 丝袜脚勾引网站| 最新的欧美精品一区二区| 韩国高清视频一区二区三区| 免费在线观看黄色视频的| av线在线观看网站| 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 在线观看国产h片| 深夜精品福利| 色播在线永久视频| a级片在线免费高清观看视频| 最新在线观看一区二区三区 | 国产欧美亚洲国产| 久久国产精品人妻蜜桃| 1024香蕉在线观看| 夫妻午夜视频| 国产淫语在线视频| 老司机午夜十八禁免费视频| 国产亚洲av片在线观看秒播厂| 欧美精品人与动牲交sv欧美| 在线观看www视频免费| 最黄视频免费看| 日本五十路高清| 久久久久久亚洲精品国产蜜桃av| 午夜福利乱码中文字幕| 欧美日韩视频高清一区二区三区二| 九草在线视频观看| 中文字幕精品免费在线观看视频| 亚洲av欧美aⅴ国产| 国产精品国产三级国产专区5o| 国产熟女午夜一区二区三区| av在线app专区| 高清av免费在线| 国产91精品成人一区二区三区 | 男女国产视频网站| 亚洲精品美女久久久久99蜜臀 | 国产福利在线免费观看视频| 亚洲精品成人av观看孕妇| 波多野结衣一区麻豆| 国产深夜福利视频在线观看| av又黄又爽大尺度在线免费看| 80岁老熟妇乱子伦牲交| 免费在线观看日本一区| 国产有黄有色有爽视频| 一级黄色大片毛片| 国产欧美日韩综合在线一区二区| 午夜影院在线不卡| 中国国产av一级| 五月开心婷婷网| 一本久久精品| 又大又爽又粗| 中文字幕亚洲精品专区| 成人国语在线视频| 亚洲精品一二三| 久久精品久久精品一区二区三区| 香蕉丝袜av| 一二三四在线观看免费中文在| 波多野结衣一区麻豆| av在线app专区| 男女边吃奶边做爰视频| 啦啦啦 在线观看视频| 一本综合久久免费| 麻豆av在线久日| 午夜视频精品福利| xxx大片免费视频| 宅男免费午夜| 国产免费一区二区三区四区乱码| 国产精品久久久久久人妻精品电影 | www.精华液| 深夜精品福利| 一本综合久久免费| 免费高清在线观看视频在线观看| 久久精品国产a三级三级三级| 欧美日韩亚洲国产一区二区在线观看 | 中国美女看黄片| 国产高清视频在线播放一区 | 五月天丁香电影| 国产精品偷伦视频观看了| 99久久人妻综合| 国产激情久久老熟女| 在线精品无人区一区二区三| 一本大道久久a久久精品| 又大又爽又粗| 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 在线天堂中文资源库| 欧美 亚洲 国产 日韩一| 嫁个100分男人电影在线观看 | 午夜久久久在线观看| 99国产精品免费福利视频| 日韩免费高清中文字幕av| 婷婷色麻豆天堂久久| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 久久久久精品人妻al黑| 色婷婷久久久亚洲欧美| 日本色播在线视频| 在线观看一区二区三区激情| 人人澡人人妻人| 香蕉丝袜av| 国产精品一二三区在线看| 操美女的视频在线观看| 亚洲精品一二三| av国产久精品久网站免费入址| 日韩人妻精品一区2区三区| 午夜精品国产一区二区电影| 亚洲精品国产一区二区精华液| 国产在线视频一区二区| 丝袜美足系列| 美女脱内裤让男人舔精品视频| 免费在线观看视频国产中文字幕亚洲 | 免费看不卡的av| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 免费av中文字幕在线| 热99久久久久精品小说推荐| 一级毛片电影观看| 国产又色又爽无遮挡免| 两个人看的免费小视频| 一二三四社区在线视频社区8| 亚洲,一卡二卡三卡| 美女高潮到喷水免费观看| 亚洲成人手机| 大陆偷拍与自拍| 精品久久久精品久久久| 丝袜美腿诱惑在线| 超碰成人久久| 男的添女的下面高潮视频| 国产精品免费视频内射| 丝袜人妻中文字幕| 免费看av在线观看网站| 别揉我奶头~嗯~啊~动态视频 | 十八禁高潮呻吟视频| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 国产免费又黄又爽又色| 欧美日韩亚洲国产一区二区在线观看 | 黄色视频在线播放观看不卡| 1024视频免费在线观看| 又紧又爽又黄一区二区| 国产色视频综合| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 久久精品aⅴ一区二区三区四区| 亚洲精品av麻豆狂野| a级毛片在线看网站| av天堂在线播放| 欧美久久黑人一区二区| 久久人妻熟女aⅴ| 少妇粗大呻吟视频| 国产激情久久老熟女| 亚洲av电影在线进入| 天堂俺去俺来也www色官网| 可以免费在线观看a视频的电影网站| www.999成人在线观看| 男人爽女人下面视频在线观看| 又大又黄又爽视频免费| 少妇被粗大的猛进出69影院| av电影中文网址| 欧美日韩视频精品一区| h视频一区二区三区| 精品国产国语对白av| 中文欧美无线码| 精品视频人人做人人爽| 久久久国产一区二区| 性高湖久久久久久久久免费观看| 亚洲五月色婷婷综合| 一本色道久久久久久精品综合| 久久鲁丝午夜福利片| 下体分泌物呈黄色| 国产麻豆69| 欧美黑人欧美精品刺激| 国产精品久久久久久精品电影小说| 久久久精品国产亚洲av高清涩受| 亚洲,欧美精品.| 久久久久网色| 日韩制服骚丝袜av| 亚洲久久久国产精品| 黄色视频在线播放观看不卡| 两人在一起打扑克的视频| 国产欧美日韩精品亚洲av| 老司机在亚洲福利影院| e午夜精品久久久久久久| www.999成人在线观看| 国产精品一区二区精品视频观看| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 午夜激情av网站| 日韩大片免费观看网站| 黄色一级大片看看| 国产日韩欧美视频二区| 午夜激情久久久久久久| 午夜福利在线免费观看网站| 国产精品久久久久久精品古装| 国产精品欧美亚洲77777| 中文字幕另类日韩欧美亚洲嫩草|