• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces

    2023-01-30 06:49:06LinglingYngJiujuFngJiNingWngZhidGoJingwnXuMiYnYnSong
    Chinese Chemical Letters 2022年12期

    Lingling Yng ,Jiuju Fng ,Ji-Ning Wng ,Zhid Go ,Jingwn Xu,*,Y Mi ,c,d,*,Yn-Yn Song ,*

    a College of Sciences,Northeastern University,Shenyang 11000 4,China

    b State Key Laboratory of Precision Spectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China

    c NYU-ECNU Center fo r Computational Chemistry at NYU Shanghai,Shanghai 20 0062,China

    d Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    e College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 3210 0 4,China

    Keywords:Charge transfer Electrochromism Oxygen vacancies SERS substrate Solid/liquid interface

    ABSTRACT Although surface-enhanced Raman spectroscopy(SERS)has been applied for gathering fingerprint information,even in single molecule analysis,the decayed Raman signals in aqueous solutions largely obstruct the on-site insight reaction process.In this study,large-scaled semiconductor films with multiwalled(TiO2/WO3/TiO2)nanopore distribution are fabricated by combining electrochemical anodization and sputtering technique,and then employed as the SERS substrates for detection of molecules at the solid/liquid interfaces.Given the remarkably improved electrochromic property of the multi-walled film,such SERS substrates were endowed with tunable oxygen vacancy(VO)density and distribution via simply applying electrochemical bias voltage,which enabled one to achieve an enhanced charge transfer efficiency and thus a remarkably increased Raman signal even in solution.The VO-rich SERS substrate is highly repeatable,thus providing a reliable platform for in-situ monitoring of the target molecules or intermediates at the solid/liquid interfaces.

    Titanium oxide(TiO2),known by its high stability and electronic properties,constitutes a versatile platform in the fields of photocatalysis,energy storage,and biomedical applications[1–3].Operando monitoring of the reactions on a TiO2surface is extremely important for investigating the yields of TiO2-based photocatalysts.The full understanding of the reactions at the water/TiO2interface is crucial for further optimization of TiO2based photocatalysts or reactors[4].However,in-situmonitoring of the reactions on the TiO2surface,especially on-site reactions,under operando conditions is still a challenge.In that regard,surfaceenhanced Raman spectroscopy(SERS)is an ideal analytical technology for ultrasensitive surface chemical analysis[5–8].For example,SERS was successfully employed by Tianet al.to investigate the photoinduced reaction on the solid/gas interface of singlecrystal TiO2[9].As a matter of fact,most common TiO2-based catalysts are generally low-cost polycrystalline composites and TiO2nanomaterials are usually applied in a liquid environment.Meanwhile,compared with strong signals from a solid/gas interface,the largely decayed Raman signals in the liquid medium mean that the use of semiconductor-based SERS substrates in practice is diffi-cult[10].Therefore,improving the SERS activity of semiconductorbased substrate in liquid medium has become an urgent task.

    For semiconductor-based SERS substrates,it is generally agreed that the tuning of photoinduced charge-transfer(PICT)through band energy alignment between substrate and molecule plays a dominant role[11].Till now,lots of strategies have been developed to promote PICT efficiencies,such as n-/p-doping and stoichiometry[12–14].Especially,injecting oxygen vacancies(VO)as an important method in stoichiometry has been demonstrated to be useful for providing some additional defect levels in the bandgap of semiconductors,thus facilitating the exciton resonance in semiconductors,as well as the charge transfer(CT)between semiconductors and molecules[15–17].Recently,the SERS activities of selforganized TiO2nanotubes have been discovered by Weidinger and coworkers[18].Nevertheless,the Raman activity of TiO2nanotube arrays is significantly inferior to that of layered two-dimensional(2D)semiconductor materials,which have been demonstrated to possess a large number of structural defects[19–21].Besides the structural defects induced VO,Zhao and coworkers also utilized electrochromic technology to introduce VOinto the WO3substrate[22].Inspired by the intrinsic electrochromic capacity,feasibility,and widespread applicability of TiO2nanopore films(TiO2NPs)prepared by electrochemical anodization[23,24],we hypothesis that VOwould be also inserted by an electrochromic way,thus enabling TiO2NPs to be employed as alternative SERS substrates.

    Fig.1.SEM images of(A)TiO2 NPs and(B,C)TiO2/WO3/TiO2NPs.(D)TEM,HAADF-STEM(inset),and(E,F)HR-TEM images of TiO2/WO3/TiO2NPs.(G)Current density vs.time curves of Ti O2 NPs(I),TiO2/TiO2NPs(II),and TiO2/WO3/TiO2 NPs(III)acquired during potential pulse cycling in a voltage range from–0.8 V to+0.8 V.(H)SERS spectra of TiO2/WO3/TiO2NPs after applying different bias voltage.(I)EPR spectra of TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs.

    For this purpose,we developed a facial and effective approach to prepare a large-scale porous semiconductor substrate with good electrochromic performance.The SERS measurements were carried out by employing bis(tetrabutylammonium)dihydrogen bis(isothi ocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II)(N719)placed onto TiO2/WO3/TiO2NPs.The generation of tunable VOviaelectrochromic processing of the substrate resulted in the noticeable increase of the Raman signals of N719,and the PICT-mediated signal enhancement was attributed to the VOinduced by electrochromic effect.

    The multi-walled NPs were constructed on the self-ordered TiO2NPs that were prepared by electrochemical anodization.The scanning electron microscopy(SEM)images reveal the uniform nanotube structure of the as-formed TiO2NPs with the inner diameter of~100 nm and the length of 300 nm(Fig.1A and Fig.S1 in Supporting information).The W and Ti nanoparticles were subsequently applied onto the NPsviasputtering in sequence.This enabled one to increase the wall thickness and roughness of the NPs(Figs.1B and C).The final NPs exhibited a smaller inner diameter.The uniform distributions of W and Ti elements across the tube surface and walls were confirmedviathe morphological and elemental characterization(Fig.S2 in Supporting information),and the structural uniformity of NPs was crucial for obtaining the SERS substrates with good signal reproducibility.The annealing was carried out at 300°C to achieve the high degree of crystallinity of the hybrid NPs.The X-ray diffraction(XRD)experiments were carried out to demonstrate the annealing-induced crystalline phase transition.After annealing,the peaks attributed to a monoclinic WO3phase with preferential(002)orientation(2θ=23.0°)and anatase TiO2with(101)orientation(2θ=25.3°)could be detected(Fig.S3 in Supporting information).The morphology of TiO2/WO3/TiO2NPs was further characterized by transmission electron microscope(TEM)and high resolution(HR)-TEM in Figs.1D-F and Fig.S4(Supporting information).The crystal lattices of WO3(002)and TiO2(101)(004)can be identified at the wall of the resulted sample.These crystalline phases possess high conductivity and cyclic voltammetry stability[24].The current response and electrochromic switching ability were investigated within a potential window between+0.8 V and?0.8 V(Fig.1G).The amounts of inserted and extracted electrons during the voltage scanning were calculated based on the current-time curves.The TiO2/WO3/TiO2NPs exhibited the charge densityQcathodicof?95.9 mC/cm2,which was much higher than those of the samples without WO3coating(?37.8 mC/cm2for TiO2NPs and?68.5 mC/cm2for TiO2/TiO2NPs).Noticeably,the insertion of H+protons from the electrochromic materialsviathe application of negative bias voltage was accompanied by a reflectance change(Fig.S5 in Supporting information),which could be attributed to the lower valence states of W-and Ti-ions[25].Clearly,TiO2/WO3/TiO2NPs underwent the more pronounced reflectance changes than the other two samples under applying the same bias voltage,and the electrochromic performance can be simply tuned by applying different voltages(Fig.S6 in Supporting information).

    The SERS spectra of TiO2/WO3/TiO2NPs exposed to various negative bias voltages(labeled as VO-TiO2/WO3/TiO2NPs)are plotted in Fig.1H.It is worth mentioning that the Raman peaks of WO3broaden after the negative bias voltage(?0.5 V and?0.8 V)is applied,which can be explained by the generation of VOin the substrate[26].The introduction of VOin TiO2/WO3/TiO2NPs by applying with negative bias voltages was also verified by electron paramagnetic resonance(EPR)spectrum(Fig.1I),XRD analysis(Fig.S7 in Supporting information),Electrochemical impedance spectroscopy(Fig.S8 in Supporting information),andin-situgeneration of metal silver(Fig.S9 and Table S1 in Supporting information).It is important to note that plenty of VOin the SERS substrates are conducive thus facilitating the PICT between the probe molecules and the substrates[15].For semiconductors,the introduction of VOcan bring about a defect state that overlaps with the conduction band(CB),leading to the emergence of a band tail(Fig.S10 in Supporting information)[27].It is expected that the CT between the substrate and the adsorber would thus be facilitated,and leading to a preferable SERS activity.

    Fig.2.(A)Schematic of the electrochemical-SERS setup used in this study.(B)Atomic concentrations of N719 modified TiO2/WO3/TiO2NPs at take-off angles of 10°and 70°(inset:orientation of N719 on the sample).(C)SERS spectra of N719(3×10?3 mol/L)on pristine and VO-contained TiO2/WO3/TiO2NPs and TiO2/TiO2NPs.(D)Potential recovery of TiO2/TiO2NPs and TiO2/WO3/TiO2NPs after applying the negative bias voltage of?0.8 V for 30 s.

    As a proof-of-concept,the Raman spectra of N719 onto TiO2/WO3/TiO2NPs werein-situcollected in HCl electrolyte by using a custom-built electrochemical cell(Fig.2A).In this study,the NPs samples were exposed to a negative potential for 30 s to introduce VOin the substrate,and the Raman signals were then acquired at the open circuit potential.Considering the energy match between the incident photons and the absorption spectra of N719(Fig.S11 in Supporting information),a 532 nm laser was chosen as the excitation light source for the Raman measurements.The orientation of N719 on the TiO2surface was investigated using an angle X-ray photoelectron spectroscopy(XPS)at the take off anglesθof 10°and 70°(Fig.S12 in Supporting information).As shown in Fig.2B and Table S2(Supporting information),the O 1s(?COOH),N 1s,and S 2p signals exhibit the higher atomic concentrations at 70°(bulk models)than those at 10°.Meanwhile,the atomic population on the N 1s signals at 70°is obviously higher than those on the O 1s(?COOH)and S 2p signals.These results suggest that the?SCN groups are oriented far away from the Raman substrates,and N719 molecules have been anchored onto the TiO2surface in the form of a bridged configurationviathe two carboxyl groups.Such bidentate coordination was considered to provide a favorable way for the CT between the substrate and adsorbed molecules[28].Compared to the faint signals collected on the pristine samples(see the dot lines in Fig.2C),the prominent signals of N719 molecules at 1474,1545,and 1612 cm?1,corresponding to a typical 2,2′-bipyridyl(bpy)ring stretching mode[29],were acquired on the VO-containing samples(the solid lines in Fig.2C).In Fig.2C,VO-TiO2/WO3/TiO2NT exhibits a higher SERS activity than VO-TiO2/TiO2NPs.This phenomenon can be ascribed to the WO3thin layer.Owing to the large optical modulation capacity,long-term durability,and memory effect of WO3,the coating of WO3onto TiO2can efficiently improve the electrochromic efficiency(Fig.2D and Fig.S13 in Supporting information).Furthermore,an excessively thick WO3film could result in a rough surface and the higher charge-transfer resistance(Figs.S14 and S15 in Supporting information)[30].Therefore the W-sputtering thickness in this study was optimized at 5 nm(Figs.S16 and S17 in Supporting information).

    Fig.3.(A)SERS spectra of N719 adsorbed on TiO2/WO3/TiO2 NPs after exposed to the bias voltages of?0.8 V and+0.8 V alternately.(B)Raman intensity(at 1545 cm?1)of N719 on TiO2/WO3/TiO2NPs measured in air and in liquid.(C)SERS spectra of N719 collected from 20 randomly selected positions on VO-TiO2/WO3/TiO2NPs.(D)Intensity variation of the Raman peak at 1545 cm?1 in these 20 selected positions.

    The role of VOon the SERS signal of the substrates was further investigated by repeatedly applying positive and negative voltages cycles.In Fig.3A,an enhanced N719 signal can be observed when applying the voltage of?0.8 V.In turn,switching the voltage to+0.8 V causes the weak Raman signals.The repeatable SERS activities were achieved by switching the voltages back to?0.8 V,verifying the VOcan be electrochemically tuned with satisfactory feasibility and reproducibility.Meanwhile,these results also allow one to conclude whether the weakened SERS activity is derived from the vanishing of VOrather than from the shedding or desorption of N719 molecules from the substrates.

    To evaluate the application advantage of the proposed strategy in aqueous solutions,the Raman signals at 1545 cm?1(ν(C=C)(bpy),the stretching of the C=C bond in bpy)were collected at different N719 concentrations on TiO2/WO3/TiO2NPs in air and in aqueous solution(Fig.3B).Apparently,the Raman signals recorded in aqueous solution are much weaker than those acquired in air.Impressively,a 39-fold increase in the Raman signals was achieved from the SERS substrates with embedded VOunder a negative bias voltage.Notably,the Raman signals recorded on such a VOrich substrate in aqueous solution even exceeded those obtained in air.Moreover,the Raman signal was still conspicuous in the solution when the N719 concentration decreased to 10?6mol/L(Fig.S18 in Supporting information and Fig.3B),indicating high sensitivity of the VO-rich substrate.The enhancement factor(EF)of VO-TiO2/WO3/TiO2NPs was calculated to be 8.6×104(Fig.S19 in Supporting information).Additionally,Fig.3C shows the Raman signals of N719 at twenty randomly selected regions on VOTiO2/WO3/TiO2NPs.The relative standard deviation(RSD)of the Raman peak at 1545 cm?1is determined to be 6.65%(Fig.3D),indicating excellent reproducibility of the VO-rich substrates.

    Fig.4.(A)SERS spectra of N719 on TiO2/WO3/TiO2NPs before and after exposure to different bias voltages.(B)Schematic energy level diagram and CT pathways in the N719-VO-TiO2/WO3/TiO2NPs system.

    For a comprehensive understanding of the mechanism of VOinduced SERS activity,the Raman spectra of N719 were investigated under different voltages(Fig.4A).Owing to the increase in the VOcontent with increasing negative bias voltage,the Raman signal intensity from the substrates became substantially higher[26].The band structural analysis for VO-TiO2/WO3/TiO2NPs and N719 specimens was also carried out at different voltages(Figs.S20 and S21 and Table S3 in Supporting information).Compared to pristine samples,VO-TiO2/WO3/TiO2NPs exhibited the narrower bandgaps.The Mott-Schottky analysis also demonstrates that the charge-carrier density(Nd)calculated for VO-TiO2/WO3/TiO2NPs(3.45×1019cm?3)is larger than that of the pristine sample(1.84×1018cm?3),which is beneficial for the acceleration of PICT in VO-TiO2/WO3/TiO2NPs.Meanwhile,the contribution of CT in VOTiO2/WO3/TiO2NPs to the SERS signal of N719 was quantifiably determined based on the following equation[16]:

    According to the SERS spectra in Fig.S22(Supporting information),the degree of CT(ρCT)of N719 was calculated as 0.41 and 0.69 for TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs,respectively(details were provided in supporting Information).The key role of CT in our system was further demonstratedviaattaching other Raman probes onto TiO2/WO3/TiO2NPs by chemical bonding(4-MBA)or physical absorption(Ru(bpy)32+and 2,2′-Bipyridine)(Fig.S23 in Supporting information).Compared to 4-MBA,the SERS signals of Ru(bpy)32+and 2,2′-Bipyridine were poor and didnot exhibit obvious enhancement on VO-Ti O2/WO3/TiO2NPs.Moreover,the signal of N719 was remarkably dropped when a thin layer of SiO2film was covered onto TiO2/WO3/TiO2NPs before N719 modification to block CT between substrate and molecules(Figs.S24 and S25 in Supporting information).All these results indicate that CT plays an important role in the improved SERS signals after applying the negative bias.

    Considering the location of the highest occupied molecular orbital(HOMO,?5.34 eV)and the lowest unoccupied molecular orbital(LUMO,?3.01 eV)of N719 molecules[31],the PICT could take place in following pathways(Fig.4B):(1)PICT from the HOMO of N719 to the CB of TiO2and WO3.The electrons can be directly excited from the HOMO of N719 to CB of TiO2(?4.21 eV)and WO3(?5.24 eV)[32]by an incident light of 532 nm(2.33 eV).(2)PICT from the HOMO of N719 to the defect levels(TiO2-xand WO3-x).In general,the defect levels induced by VOare usually located at~0.5?1.0 eV below the minimum value of CB[33].As a result,PICT from HOMO of N719 to defect levels(TiO2-xand WO3-x)can provide more available PICT pathways than the sample that only contains TiO2and WO3,which can further lead to a magnification of the Raman scattering cross section,thus greatly magnifying the polarization tensor of N719 molecules.(3)Electrons in the LUMO of N719 transfer from the photo-excited N719 molecules to CB of TiO2.In addition,because of the existence of the defect levels(WO3-x),the band gap of WO3can be narrowed as 1.7?2.2 eV[33].Therefore,electrons can be excited from VB to WO3-x(μex)by a 532-nm laser and the photogenerated holes in WO3-xsubsequently transfer to VB of TiO2.Meanwhile,excited electrons in CB of TiO2transfer to CB of WO3.Therefore,a built-in electric field at the interface of TiO2and WO3with the direction of the electric field pointing from WO3to TiO2is formed.Driven by the built-in electric field,photogenerated electron-hole pairs can be effectively separated,realizing spatial charge separation and prolongating the lifetime of charge carriers,and thus enhancing the SERS activity[17,34-37].

    To summarize,the electrochromic properties of the semiconductors were utilized to successfully produce the highly active SERS substrates that could be applied in aqueous electrolytes.Experiment data and theoretical calculation revealed that the abundant VOinduced by the electrochromic process facilitates the CT between the substrate and adsorbed molecules,thus enhancing their SERS activity.Especially,the as-proposed substrates were largely scalable,and their Raman signals were reproduced by controlling the applied bias voltage,thus providing an easily assessable and low-cost platform forin-situmonitoring of the reactions at the solid/liquid interfaces.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.21874013,22074013 and 22073030),the Fundamental Research Funds for the Central Universities(Nos.N2105018 and N2005027),and the China Postdoctoral Science Foundation(No.2019M661109).The CPU time was supported by the Supercomputer Centre of East China Normal University(ECNU Public Platform for Innovation No.001).Special thanks are due to the instrumental or data analysis from Analytical and Testing Center,Northeastern University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.011.

    看黄色毛片网站| 日本熟妇午夜| 免费观看的影片在线观看| 午夜福利网站1000一区二区三区| 成年免费大片在线观看| 亚洲精品成人久久久久久| 久久草成人影院| 男女国产视频网站| 欧美日韩一区二区视频在线观看视频在线 | 日韩一区二区三区影片| 深夜a级毛片| 99热这里只有精品一区| 日本wwww免费看| 久久精品国产鲁丝片午夜精品| 综合色丁香网| 免费观看a级毛片全部| 特大巨黑吊av在线直播| 久久亚洲精品不卡| 黄色配什么色好看| 欧美极品一区二区三区四区| 日韩欧美精品免费久久| 精品午夜福利在线看| 成人毛片60女人毛片免费| 欧美日本视频| 国产久久久一区二区三区| 一级毛片我不卡| 国产精品无大码| 欧美高清成人免费视频www| 热99re8久久精品国产| 最近中文字幕高清免费大全6| 国内揄拍国产精品人妻在线| 国产午夜福利久久久久久| av专区在线播放| 精品欧美国产一区二区三| 国产av不卡久久| 婷婷色麻豆天堂久久 | 国产精品av视频在线免费观看| 国产精品一区二区性色av| 亚洲无线观看免费| 午夜精品国产一区二区电影 | 桃色一区二区三区在线观看| 69av精品久久久久久| 国产成人福利小说| 国内揄拍国产精品人妻在线| av在线蜜桃| kizo精华| av黄色大香蕉| 色视频www国产| 男女视频在线观看网站免费| 日韩强制内射视频| 99热网站在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产高清在线一区二区三| 日韩成人伦理影院| 国产综合懂色| av女优亚洲男人天堂| 青青草视频在线视频观看| 欧美日韩精品成人综合77777| 国产老妇女一区| 日韩,欧美,国产一区二区三区 | 人人妻人人澡欧美一区二区| 日本-黄色视频高清免费观看| 伦精品一区二区三区| 日韩视频在线欧美| 国产精品一二三区在线看| 亚洲国产精品成人综合色| 九九热线精品视视频播放| 99热网站在线观看| 只有这里有精品99| 精品不卡国产一区二区三区| 国产免费又黄又爽又色| 婷婷色av中文字幕| 亚洲人与动物交配视频| 亚洲欧美清纯卡通| 91久久精品国产一区二区成人| 国产亚洲最大av| 丰满人妻一区二区三区视频av| 免费看a级黄色片| 精品国产一区二区三区久久久樱花 | 国产一区二区在线观看日韩| 日日啪夜夜撸| 国产白丝娇喘喷水9色精品| 久久久久久久久中文| 国产成人a区在线观看| 高清毛片免费看| 特大巨黑吊av在线直播| 国产精品一二三区在线看| 亚洲综合精品二区| 少妇裸体淫交视频免费看高清| 亚洲精品乱久久久久久| 男人舔女人下体高潮全视频| 日产精品乱码卡一卡2卡三| 身体一侧抽搐| 久久精品国产亚洲av涩爱| 日韩视频在线欧美| 99热这里只有精品一区| 成年免费大片在线观看| av女优亚洲男人天堂| 国产亚洲av嫩草精品影院| 精品久久久久久久末码| 午夜亚洲福利在线播放| or卡值多少钱| 国产男人的电影天堂91| 日产精品乱码卡一卡2卡三| 成人毛片a级毛片在线播放| 国产白丝娇喘喷水9色精品| 国产精品野战在线观看| 国产在视频线在精品| 亚洲一区高清亚洲精品| 乱系列少妇在线播放| 久久久久久久亚洲中文字幕| 最近中文字幕高清免费大全6| АⅤ资源中文在线天堂| 亚洲欧美日韩无卡精品| ponron亚洲| 欧美最新免费一区二区三区| 国产精品99久久久久久久久| 可以在线观看毛片的网站| 直男gayav资源| a级毛色黄片| 2021少妇久久久久久久久久久| 嫩草影院新地址| 青青草视频在线视频观看| 丰满乱子伦码专区| av免费在线看不卡| 男女下面进入的视频免费午夜| 亚洲乱码一区二区免费版| 亚洲精品亚洲一区二区| 国产极品精品免费视频能看的| 插逼视频在线观看| 亚洲欧美成人精品一区二区| 亚洲丝袜综合中文字幕| 国产精品永久免费网站| 亚洲av电影不卡..在线观看| 热99re8久久精品国产| 国产人妻一区二区三区在| 99久久无色码亚洲精品果冻| 青青草视频在线视频观看| 麻豆国产97在线/欧美| 高清av免费在线| 日韩制服骚丝袜av| 日韩精品有码人妻一区| 婷婷色麻豆天堂久久 | 视频中文字幕在线观看| 丰满乱子伦码专区| 欧美一区二区国产精品久久精品| 国产精品国产三级国产av玫瑰| 国产三级在线视频| 午夜福利在线在线| 久久热精品热| 日本黄大片高清| 欧美日韩一区二区视频在线观看视频在线 | 日韩 亚洲 欧美在线| 能在线免费看毛片的网站| 最近中文字幕高清免费大全6| 午夜亚洲福利在线播放| 少妇裸体淫交视频免费看高清| 亚洲av一区综合| 国产成人福利小说| 黑人高潮一二区| 国产精品人妻久久久影院| 久久99热这里只有精品18| 欧美日韩在线观看h| 只有这里有精品99| 亚洲自拍偷在线| 久久久亚洲精品成人影院| 2022亚洲国产成人精品| 成人毛片60女人毛片免费| 99久久九九国产精品国产免费| 久久久久免费精品人妻一区二区| 天堂av国产一区二区熟女人妻| 又爽又黄a免费视频| 国产精品永久免费网站| 晚上一个人看的免费电影| 桃色一区二区三区在线观看| 久久久国产成人精品二区| 久久久久性生活片| 日本黄色片子视频| 99热全是精品| 秋霞在线观看毛片| 久久99热6这里只有精品| 1024手机看黄色片| 国产老妇伦熟女老妇高清| 亚洲国产精品成人久久小说| 国产精品一二三区在线看| 少妇熟女欧美另类| 99热这里只有是精品在线观看| 成人二区视频| 欧美成人精品欧美一级黄| 99热这里只有精品一区| 国产色爽女视频免费观看| 久久人妻av系列| 久久久欧美国产精品| 内射极品少妇av片p| www.av在线官网国产| 在线a可以看的网站| 成人毛片60女人毛片免费| 亚洲激情五月婷婷啪啪| 久久国产乱子免费精品| 国产私拍福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 最近视频中文字幕2019在线8| 日本免费a在线| 天天躁日日操中文字幕| 久久久久九九精品影院| 好男人在线观看高清免费视频| 日日摸夜夜添夜夜添av毛片| 久久这里有精品视频免费| av专区在线播放| 国产探花极品一区二区| h日本视频在线播放| 全区人妻精品视频| 高清日韩中文字幕在线| 精品免费久久久久久久清纯| 成人午夜高清在线视频| 女人十人毛片免费观看3o分钟| 丰满乱子伦码专区| 伊人久久精品亚洲午夜| 精品久久久久久久人妻蜜臀av| 亚洲av中文字字幕乱码综合| 一边摸一边抽搐一进一小说| 97热精品久久久久久| 亚洲欧美日韩高清专用| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 国产免费又黄又爽又色| 内射极品少妇av片p| 亚洲中文字幕一区二区三区有码在线看| 国产极品天堂在线| 亚洲怡红院男人天堂| 久久久久久国产a免费观看| 免费观看性生交大片5| 亚洲国产精品成人久久小说| 一卡2卡三卡四卡精品乱码亚洲| 国产探花在线观看一区二区| 高清视频免费观看一区二区 | 中文资源天堂在线| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 3wmmmm亚洲av在线观看| 久久久成人免费电影| 有码 亚洲区| 午夜福利在线观看吧| 99热全是精品| 久久久a久久爽久久v久久| 国产精品99久久久久久久久| 国产免费福利视频在线观看| 91av网一区二区| 国产亚洲午夜精品一区二区久久 | 麻豆成人av视频| av天堂中文字幕网| 日韩一本色道免费dvd| av免费观看日本| 少妇的逼好多水| 69人妻影院| 久久久国产成人免费| 欧美成人免费av一区二区三区| 中文在线观看免费www的网站| 免费av观看视频| 插逼视频在线观看| 国产亚洲5aaaaa淫片| 精品久久久久久电影网 | 久久精品国产亚洲av天美| 国产激情偷乱视频一区二区| 在线a可以看的网站| 亚洲乱码一区二区免费版| 国产成年人精品一区二区| 国产精品爽爽va在线观看网站| 一区二区三区乱码不卡18| 男人狂女人下面高潮的视频| 夜夜爽夜夜爽视频| 日韩,欧美,国产一区二区三区 | 国模一区二区三区四区视频| 免费黄色在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频国产福利| 国产高清不卡午夜福利| 神马国产精品三级电影在线观看| 国产精品人妻久久久影院| 两个人视频免费观看高清| 国产老妇伦熟女老妇高清| 国产精品永久免费网站| 日日摸夜夜添夜夜添av毛片| 国产午夜福利久久久久久| 亚洲欧美精品专区久久| 久久久久久久午夜电影| 禁无遮挡网站| 亚洲av电影不卡..在线观看| 91狼人影院| 国产精品久久久久久久电影| www日本黄色视频网| 97在线视频观看| 97热精品久久久久久| 三级国产精品片| 一级毛片aaaaaa免费看小| 精品不卡国产一区二区三区| 3wmmmm亚洲av在线观看| 18禁在线播放成人免费| 好男人在线观看高清免费视频| 女的被弄到高潮叫床怎么办| 波多野结衣巨乳人妻| 日本-黄色视频高清免费观看| 久久久久精品久久久久真实原创| 91久久精品国产一区二区三区| 亚洲综合精品二区| 欧美另类亚洲清纯唯美| 久久久久免费精品人妻一区二区| av在线蜜桃| 美女国产视频在线观看| 亚洲婷婷狠狠爱综合网| 精品99又大又爽又粗少妇毛片| 久久久久免费精品人妻一区二区| 又粗又爽又猛毛片免费看| 欧美又色又爽又黄视频| 亚洲自偷自拍三级| 国产在视频线精品| 欧美极品一区二区三区四区| 中文资源天堂在线| 久久热精品热| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| av国产免费在线观看| 高清av免费在线| 国产亚洲av嫩草精品影院| 久久久久久久国产电影| 久久久久久久久久成人| 亚洲av中文av极速乱| 久久精品影院6| 丰满少妇做爰视频| 免费黄网站久久成人精品| 色5月婷婷丁香| 日韩欧美 国产精品| 中文精品一卡2卡3卡4更新| 男人的好看免费观看在线视频| 久久草成人影院| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 国产一区二区在线av高清观看| 国产片特级美女逼逼视频| 国产色爽女视频免费观看| 国产黄片美女视频| 精品国产三级普通话版| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 亚洲,欧美,日韩| 国产精品福利在线免费观看| 噜噜噜噜噜久久久久久91| 久久精品久久久久久久性| 亚洲人成网站在线观看播放| 国产爱豆传媒在线观看| 日韩大片免费观看网站 | 亚洲综合精品二区| 内地一区二区视频在线| 91久久精品电影网| 日韩制服骚丝袜av| 久久精品久久精品一区二区三区| 久久精品久久久久久久性| 亚洲欧美成人精品一区二区| 国产爱豆传媒在线观看| 亚洲国产欧美人成| 国产美女午夜福利| 亚洲三级黄色毛片| 高清午夜精品一区二区三区| 国内揄拍国产精品人妻在线| 亚洲av电影在线观看一区二区三区 | 一区二区三区四区激情视频| 中文字幕精品亚洲无线码一区| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 精品人妻熟女av久视频| 亚洲天堂国产精品一区在线| 看免费成人av毛片| 男人舔奶头视频| 九色成人免费人妻av| 亚洲欧美清纯卡通| 国产综合懂色| 国产爱豆传媒在线观看| 噜噜噜噜噜久久久久久91| 免费看日本二区| 欧美最新免费一区二区三区| 亚州av有码| 能在线免费观看的黄片| 亚洲精华国产精华液的使用体验| 日本与韩国留学比较| 99国产精品一区二区蜜桃av| 日韩欧美国产在线观看| 麻豆久久精品国产亚洲av| a级毛片免费高清观看在线播放| 人妻系列 视频| 大香蕉久久网| 精品久久久久久电影网 | 久久久久国产网址| 久久久久精品久久久久真实原创| 亚洲va在线va天堂va国产| 精品久久久噜噜| 久久精品人妻少妇| 日本av手机在线免费观看| 在线播放国产精品三级| 身体一侧抽搐| 18禁在线播放成人免费| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 色噜噜av男人的天堂激情| 国产亚洲av嫩草精品影院| 亚洲三级黄色毛片| 欧美又色又爽又黄视频| 两个人视频免费观看高清| 中文字幕人妻熟人妻熟丝袜美| 永久免费av网站大全| 欧美性猛交黑人性爽| 极品教师在线视频| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 国产单亲对白刺激| 国产成人精品久久久久久| or卡值多少钱| 青春草国产在线视频| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 亚洲四区av| 国产又色又爽无遮挡免| 国产一区二区三区av在线| 一区二区三区免费毛片| 日韩视频在线欧美| 欧美日本亚洲视频在线播放| 少妇猛男粗大的猛烈进出视频 | 国产亚洲5aaaaa淫片| 国产视频首页在线观看| 国产亚洲一区二区精品| 国产精品.久久久| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| 18+在线观看网站| 亚洲美女视频黄频| 久久久久九九精品影院| 熟女电影av网| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 日韩欧美精品v在线| 精品久久久久久久末码| 国产淫语在线视频| 国产一区二区三区av在线| 欧美成人一区二区免费高清观看| 男人和女人高潮做爰伦理| 亚洲久久久久久中文字幕| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 久久久久久久国产电影| 欧美精品一区二区大全| 一夜夜www| 成人一区二区视频在线观看| 黄片wwwwww| 成人av在线播放网站| www.av在线官网国产| 亚洲av成人av| 18禁动态无遮挡网站| 人妻夜夜爽99麻豆av| av在线播放精品| av专区在线播放| 国产精品一区二区在线观看99 | 欧美极品一区二区三区四区| 欧美激情国产日韩精品一区| 日韩大片免费观看网站 | 联通29元200g的流量卡| 国产三级中文精品| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 国产精品.久久久| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 日本一二三区视频观看| 欧美人与善性xxx| 国产高清视频在线观看网站| 婷婷色av中文字幕| 欧美三级亚洲精品| 最近中文字幕高清免费大全6| 午夜视频国产福利| 日本黄大片高清| 最近中文字幕高清免费大全6| 国产淫语在线视频| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 国产老妇女一区| 偷拍熟女少妇极品色| 久久久a久久爽久久v久久| 婷婷色综合大香蕉| 韩国av在线不卡| 99视频精品全部免费 在线| av卡一久久| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| 超碰97精品在线观看| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 久久久a久久爽久久v久久| 亚洲欧美精品专区久久| 成人性生交大片免费视频hd| 国产黄片美女视频| 一个人免费在线观看电影| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 热99re8久久精品国产| 在线天堂最新版资源| 一夜夜www| 国产亚洲精品av在线| 天堂√8在线中文| 国产亚洲av片在线观看秒播厂 | 精品久久久久久久人妻蜜臀av| av免费在线看不卡| 国产91av在线免费观看| 欧美又色又爽又黄视频| 国产老妇伦熟女老妇高清| 国产老妇女一区| 国产黄片视频在线免费观看| 97超碰精品成人国产| 国产成人免费观看mmmm| 99热这里只有精品一区| 深夜a级毛片| 国产中年淑女户外野战色| 1000部很黄的大片| 最近手机中文字幕大全| 国产精品.久久久| 搡老妇女老女人老熟妇| 欧美日本视频| 亚洲av电影在线观看一区二区三区 | 18+在线观看网站| 97超视频在线观看视频| 亚洲久久久久久中文字幕| 国产一区二区三区av在线| 午夜激情福利司机影院| 成人毛片a级毛片在线播放| 久久国内精品自在自线图片| 黄色日韩在线| 91精品伊人久久大香线蕉| 看免费成人av毛片| 综合色丁香网| 色5月婷婷丁香| 舔av片在线| 国产日韩欧美在线精品| 久久亚洲精品不卡| 建设人人有责人人尽责人人享有的 | 一区二区三区免费毛片| 特级一级黄色大片| 欧美性猛交黑人性爽| 精品久久久噜噜| 亚洲国产欧洲综合997久久,| 观看免费一级毛片| 国产精品,欧美在线| 国产大屁股一区二区在线视频| 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| 国产av在哪里看| 中文字幕精品亚洲无线码一区| 久久久亚洲精品成人影院| 午夜爱爱视频在线播放| 国产爱豆传媒在线观看| 简卡轻食公司| 午夜福利高清视频| 水蜜桃什么品种好| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 22中文网久久字幕| 国产成人aa在线观看| 欧美一区二区精品小视频在线| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 丰满少妇做爰视频| av天堂中文字幕网| 一本久久精品| 精品熟女少妇av免费看| 精品久久久久久久末码| 少妇高潮的动态图| 91久久精品国产一区二区成人| 久久久久国产网址| av在线播放精品| 日韩国内少妇激情av| 激情 狠狠 欧美| 久久久久免费精品人妻一区二区| 国产精品爽爽va在线观看网站| 亚洲人成网站在线观看播放| 国产黄a三级三级三级人| 成人一区二区视频在线观看| 久久久久久国产a免费观看| 成人综合一区亚洲| 国产男人的电影天堂91| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 成人综合一区亚洲| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 久久久久久久午夜电影| 人人妻人人看人人澡| 中文字幕熟女人妻在线| 久久久久久久久中文| 亚洲欧洲日产国产| 日韩一区二区视频免费看| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 久久久久久伊人网av| 午夜久久久久精精品| 在线免费观看的www视频| 欧美97在线视频| 久久久久久国产a免费观看| 18+在线观看网站| 超碰av人人做人人爽久久| 久久久久久久久久成人| 69av精品久久久久久|