• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces

    2023-01-30 06:49:06LinglingYngJiujuFngJiNingWngZhidGoJingwnXuMiYnYnSong
    Chinese Chemical Letters 2022年12期

    Lingling Yng ,Jiuju Fng ,Ji-Ning Wng ,Zhid Go ,Jingwn Xu,*,Y Mi ,c,d,*,Yn-Yn Song ,*

    a College of Sciences,Northeastern University,Shenyang 11000 4,China

    b State Key Laboratory of Precision Spectroscopy,School of Physics and Electronic Science,East China Normal University,Shanghai 200062,China

    c NYU-ECNU Center fo r Computational Chemistry at NYU Shanghai,Shanghai 20 0062,China

    d Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China

    e College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua 3210 0 4,China

    Keywords:Charge transfer Electrochromism Oxygen vacancies SERS substrate Solid/liquid interface

    ABSTRACT Although surface-enhanced Raman spectroscopy(SERS)has been applied for gathering fingerprint information,even in single molecule analysis,the decayed Raman signals in aqueous solutions largely obstruct the on-site insight reaction process.In this study,large-scaled semiconductor films with multiwalled(TiO2/WO3/TiO2)nanopore distribution are fabricated by combining electrochemical anodization and sputtering technique,and then employed as the SERS substrates for detection of molecules at the solid/liquid interfaces.Given the remarkably improved electrochromic property of the multi-walled film,such SERS substrates were endowed with tunable oxygen vacancy(VO)density and distribution via simply applying electrochemical bias voltage,which enabled one to achieve an enhanced charge transfer efficiency and thus a remarkably increased Raman signal even in solution.The VO-rich SERS substrate is highly repeatable,thus providing a reliable platform for in-situ monitoring of the target molecules or intermediates at the solid/liquid interfaces.

    Titanium oxide(TiO2),known by its high stability and electronic properties,constitutes a versatile platform in the fields of photocatalysis,energy storage,and biomedical applications[1–3].Operando monitoring of the reactions on a TiO2surface is extremely important for investigating the yields of TiO2-based photocatalysts.The full understanding of the reactions at the water/TiO2interface is crucial for further optimization of TiO2based photocatalysts or reactors[4].However,in-situmonitoring of the reactions on the TiO2surface,especially on-site reactions,under operando conditions is still a challenge.In that regard,surfaceenhanced Raman spectroscopy(SERS)is an ideal analytical technology for ultrasensitive surface chemical analysis[5–8].For example,SERS was successfully employed by Tianet al.to investigate the photoinduced reaction on the solid/gas interface of singlecrystal TiO2[9].As a matter of fact,most common TiO2-based catalysts are generally low-cost polycrystalline composites and TiO2nanomaterials are usually applied in a liquid environment.Meanwhile,compared with strong signals from a solid/gas interface,the largely decayed Raman signals in the liquid medium mean that the use of semiconductor-based SERS substrates in practice is diffi-cult[10].Therefore,improving the SERS activity of semiconductorbased substrate in liquid medium has become an urgent task.

    For semiconductor-based SERS substrates,it is generally agreed that the tuning of photoinduced charge-transfer(PICT)through band energy alignment between substrate and molecule plays a dominant role[11].Till now,lots of strategies have been developed to promote PICT efficiencies,such as n-/p-doping and stoichiometry[12–14].Especially,injecting oxygen vacancies(VO)as an important method in stoichiometry has been demonstrated to be useful for providing some additional defect levels in the bandgap of semiconductors,thus facilitating the exciton resonance in semiconductors,as well as the charge transfer(CT)between semiconductors and molecules[15–17].Recently,the SERS activities of selforganized TiO2nanotubes have been discovered by Weidinger and coworkers[18].Nevertheless,the Raman activity of TiO2nanotube arrays is significantly inferior to that of layered two-dimensional(2D)semiconductor materials,which have been demonstrated to possess a large number of structural defects[19–21].Besides the structural defects induced VO,Zhao and coworkers also utilized electrochromic technology to introduce VOinto the WO3substrate[22].Inspired by the intrinsic electrochromic capacity,feasibility,and widespread applicability of TiO2nanopore films(TiO2NPs)prepared by electrochemical anodization[23,24],we hypothesis that VOwould be also inserted by an electrochromic way,thus enabling TiO2NPs to be employed as alternative SERS substrates.

    Fig.1.SEM images of(A)TiO2 NPs and(B,C)TiO2/WO3/TiO2NPs.(D)TEM,HAADF-STEM(inset),and(E,F)HR-TEM images of TiO2/WO3/TiO2NPs.(G)Current density vs.time curves of Ti O2 NPs(I),TiO2/TiO2NPs(II),and TiO2/WO3/TiO2 NPs(III)acquired during potential pulse cycling in a voltage range from–0.8 V to+0.8 V.(H)SERS spectra of TiO2/WO3/TiO2NPs after applying different bias voltage.(I)EPR spectra of TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs.

    For this purpose,we developed a facial and effective approach to prepare a large-scale porous semiconductor substrate with good electrochromic performance.The SERS measurements were carried out by employing bis(tetrabutylammonium)dihydrogen bis(isothi ocyanate)bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II)(N719)placed onto TiO2/WO3/TiO2NPs.The generation of tunable VOviaelectrochromic processing of the substrate resulted in the noticeable increase of the Raman signals of N719,and the PICT-mediated signal enhancement was attributed to the VOinduced by electrochromic effect.

    The multi-walled NPs were constructed on the self-ordered TiO2NPs that were prepared by electrochemical anodization.The scanning electron microscopy(SEM)images reveal the uniform nanotube structure of the as-formed TiO2NPs with the inner diameter of~100 nm and the length of 300 nm(Fig.1A and Fig.S1 in Supporting information).The W and Ti nanoparticles were subsequently applied onto the NPsviasputtering in sequence.This enabled one to increase the wall thickness and roughness of the NPs(Figs.1B and C).The final NPs exhibited a smaller inner diameter.The uniform distributions of W and Ti elements across the tube surface and walls were confirmedviathe morphological and elemental characterization(Fig.S2 in Supporting information),and the structural uniformity of NPs was crucial for obtaining the SERS substrates with good signal reproducibility.The annealing was carried out at 300°C to achieve the high degree of crystallinity of the hybrid NPs.The X-ray diffraction(XRD)experiments were carried out to demonstrate the annealing-induced crystalline phase transition.After annealing,the peaks attributed to a monoclinic WO3phase with preferential(002)orientation(2θ=23.0°)and anatase TiO2with(101)orientation(2θ=25.3°)could be detected(Fig.S3 in Supporting information).The morphology of TiO2/WO3/TiO2NPs was further characterized by transmission electron microscope(TEM)and high resolution(HR)-TEM in Figs.1D-F and Fig.S4(Supporting information).The crystal lattices of WO3(002)and TiO2(101)(004)can be identified at the wall of the resulted sample.These crystalline phases possess high conductivity and cyclic voltammetry stability[24].The current response and electrochromic switching ability were investigated within a potential window between+0.8 V and?0.8 V(Fig.1G).The amounts of inserted and extracted electrons during the voltage scanning were calculated based on the current-time curves.The TiO2/WO3/TiO2NPs exhibited the charge densityQcathodicof?95.9 mC/cm2,which was much higher than those of the samples without WO3coating(?37.8 mC/cm2for TiO2NPs and?68.5 mC/cm2for TiO2/TiO2NPs).Noticeably,the insertion of H+protons from the electrochromic materialsviathe application of negative bias voltage was accompanied by a reflectance change(Fig.S5 in Supporting information),which could be attributed to the lower valence states of W-and Ti-ions[25].Clearly,TiO2/WO3/TiO2NPs underwent the more pronounced reflectance changes than the other two samples under applying the same bias voltage,and the electrochromic performance can be simply tuned by applying different voltages(Fig.S6 in Supporting information).

    The SERS spectra of TiO2/WO3/TiO2NPs exposed to various negative bias voltages(labeled as VO-TiO2/WO3/TiO2NPs)are plotted in Fig.1H.It is worth mentioning that the Raman peaks of WO3broaden after the negative bias voltage(?0.5 V and?0.8 V)is applied,which can be explained by the generation of VOin the substrate[26].The introduction of VOin TiO2/WO3/TiO2NPs by applying with negative bias voltages was also verified by electron paramagnetic resonance(EPR)spectrum(Fig.1I),XRD analysis(Fig.S7 in Supporting information),Electrochemical impedance spectroscopy(Fig.S8 in Supporting information),andin-situgeneration of metal silver(Fig.S9 and Table S1 in Supporting information).It is important to note that plenty of VOin the SERS substrates are conducive thus facilitating the PICT between the probe molecules and the substrates[15].For semiconductors,the introduction of VOcan bring about a defect state that overlaps with the conduction band(CB),leading to the emergence of a band tail(Fig.S10 in Supporting information)[27].It is expected that the CT between the substrate and the adsorber would thus be facilitated,and leading to a preferable SERS activity.

    Fig.2.(A)Schematic of the electrochemical-SERS setup used in this study.(B)Atomic concentrations of N719 modified TiO2/WO3/TiO2NPs at take-off angles of 10°and 70°(inset:orientation of N719 on the sample).(C)SERS spectra of N719(3×10?3 mol/L)on pristine and VO-contained TiO2/WO3/TiO2NPs and TiO2/TiO2NPs.(D)Potential recovery of TiO2/TiO2NPs and TiO2/WO3/TiO2NPs after applying the negative bias voltage of?0.8 V for 30 s.

    As a proof-of-concept,the Raman spectra of N719 onto TiO2/WO3/TiO2NPs werein-situcollected in HCl electrolyte by using a custom-built electrochemical cell(Fig.2A).In this study,the NPs samples were exposed to a negative potential for 30 s to introduce VOin the substrate,and the Raman signals were then acquired at the open circuit potential.Considering the energy match between the incident photons and the absorption spectra of N719(Fig.S11 in Supporting information),a 532 nm laser was chosen as the excitation light source for the Raman measurements.The orientation of N719 on the TiO2surface was investigated using an angle X-ray photoelectron spectroscopy(XPS)at the take off anglesθof 10°and 70°(Fig.S12 in Supporting information).As shown in Fig.2B and Table S2(Supporting information),the O 1s(?COOH),N 1s,and S 2p signals exhibit the higher atomic concentrations at 70°(bulk models)than those at 10°.Meanwhile,the atomic population on the N 1s signals at 70°is obviously higher than those on the O 1s(?COOH)and S 2p signals.These results suggest that the?SCN groups are oriented far away from the Raman substrates,and N719 molecules have been anchored onto the TiO2surface in the form of a bridged configurationviathe two carboxyl groups.Such bidentate coordination was considered to provide a favorable way for the CT between the substrate and adsorbed molecules[28].Compared to the faint signals collected on the pristine samples(see the dot lines in Fig.2C),the prominent signals of N719 molecules at 1474,1545,and 1612 cm?1,corresponding to a typical 2,2′-bipyridyl(bpy)ring stretching mode[29],were acquired on the VO-containing samples(the solid lines in Fig.2C).In Fig.2C,VO-TiO2/WO3/TiO2NT exhibits a higher SERS activity than VO-TiO2/TiO2NPs.This phenomenon can be ascribed to the WO3thin layer.Owing to the large optical modulation capacity,long-term durability,and memory effect of WO3,the coating of WO3onto TiO2can efficiently improve the electrochromic efficiency(Fig.2D and Fig.S13 in Supporting information).Furthermore,an excessively thick WO3film could result in a rough surface and the higher charge-transfer resistance(Figs.S14 and S15 in Supporting information)[30].Therefore the W-sputtering thickness in this study was optimized at 5 nm(Figs.S16 and S17 in Supporting information).

    Fig.3.(A)SERS spectra of N719 adsorbed on TiO2/WO3/TiO2 NPs after exposed to the bias voltages of?0.8 V and+0.8 V alternately.(B)Raman intensity(at 1545 cm?1)of N719 on TiO2/WO3/TiO2NPs measured in air and in liquid.(C)SERS spectra of N719 collected from 20 randomly selected positions on VO-TiO2/WO3/TiO2NPs.(D)Intensity variation of the Raman peak at 1545 cm?1 in these 20 selected positions.

    The role of VOon the SERS signal of the substrates was further investigated by repeatedly applying positive and negative voltages cycles.In Fig.3A,an enhanced N719 signal can be observed when applying the voltage of?0.8 V.In turn,switching the voltage to+0.8 V causes the weak Raman signals.The repeatable SERS activities were achieved by switching the voltages back to?0.8 V,verifying the VOcan be electrochemically tuned with satisfactory feasibility and reproducibility.Meanwhile,these results also allow one to conclude whether the weakened SERS activity is derived from the vanishing of VOrather than from the shedding or desorption of N719 molecules from the substrates.

    To evaluate the application advantage of the proposed strategy in aqueous solutions,the Raman signals at 1545 cm?1(ν(C=C)(bpy),the stretching of the C=C bond in bpy)were collected at different N719 concentrations on TiO2/WO3/TiO2NPs in air and in aqueous solution(Fig.3B).Apparently,the Raman signals recorded in aqueous solution are much weaker than those acquired in air.Impressively,a 39-fold increase in the Raman signals was achieved from the SERS substrates with embedded VOunder a negative bias voltage.Notably,the Raman signals recorded on such a VOrich substrate in aqueous solution even exceeded those obtained in air.Moreover,the Raman signal was still conspicuous in the solution when the N719 concentration decreased to 10?6mol/L(Fig.S18 in Supporting information and Fig.3B),indicating high sensitivity of the VO-rich substrate.The enhancement factor(EF)of VO-TiO2/WO3/TiO2NPs was calculated to be 8.6×104(Fig.S19 in Supporting information).Additionally,Fig.3C shows the Raman signals of N719 at twenty randomly selected regions on VOTiO2/WO3/TiO2NPs.The relative standard deviation(RSD)of the Raman peak at 1545 cm?1is determined to be 6.65%(Fig.3D),indicating excellent reproducibility of the VO-rich substrates.

    Fig.4.(A)SERS spectra of N719 on TiO2/WO3/TiO2NPs before and after exposure to different bias voltages.(B)Schematic energy level diagram and CT pathways in the N719-VO-TiO2/WO3/TiO2NPs system.

    For a comprehensive understanding of the mechanism of VOinduced SERS activity,the Raman spectra of N719 were investigated under different voltages(Fig.4A).Owing to the increase in the VOcontent with increasing negative bias voltage,the Raman signal intensity from the substrates became substantially higher[26].The band structural analysis for VO-TiO2/WO3/TiO2NPs and N719 specimens was also carried out at different voltages(Figs.S20 and S21 and Table S3 in Supporting information).Compared to pristine samples,VO-TiO2/WO3/TiO2NPs exhibited the narrower bandgaps.The Mott-Schottky analysis also demonstrates that the charge-carrier density(Nd)calculated for VO-TiO2/WO3/TiO2NPs(3.45×1019cm?3)is larger than that of the pristine sample(1.84×1018cm?3),which is beneficial for the acceleration of PICT in VO-TiO2/WO3/TiO2NPs.Meanwhile,the contribution of CT in VOTiO2/WO3/TiO2NPs to the SERS signal of N719 was quantifiably determined based on the following equation[16]:

    According to the SERS spectra in Fig.S22(Supporting information),the degree of CT(ρCT)of N719 was calculated as 0.41 and 0.69 for TiO2/WO3/TiO2NPs and VO-TiO2/WO3/TiO2NPs,respectively(details were provided in supporting Information).The key role of CT in our system was further demonstratedviaattaching other Raman probes onto TiO2/WO3/TiO2NPs by chemical bonding(4-MBA)or physical absorption(Ru(bpy)32+and 2,2′-Bipyridine)(Fig.S23 in Supporting information).Compared to 4-MBA,the SERS signals of Ru(bpy)32+and 2,2′-Bipyridine were poor and didnot exhibit obvious enhancement on VO-Ti O2/WO3/TiO2NPs.Moreover,the signal of N719 was remarkably dropped when a thin layer of SiO2film was covered onto TiO2/WO3/TiO2NPs before N719 modification to block CT between substrate and molecules(Figs.S24 and S25 in Supporting information).All these results indicate that CT plays an important role in the improved SERS signals after applying the negative bias.

    Considering the location of the highest occupied molecular orbital(HOMO,?5.34 eV)and the lowest unoccupied molecular orbital(LUMO,?3.01 eV)of N719 molecules[31],the PICT could take place in following pathways(Fig.4B):(1)PICT from the HOMO of N719 to the CB of TiO2and WO3.The electrons can be directly excited from the HOMO of N719 to CB of TiO2(?4.21 eV)and WO3(?5.24 eV)[32]by an incident light of 532 nm(2.33 eV).(2)PICT from the HOMO of N719 to the defect levels(TiO2-xand WO3-x).In general,the defect levels induced by VOare usually located at~0.5?1.0 eV below the minimum value of CB[33].As a result,PICT from HOMO of N719 to defect levels(TiO2-xand WO3-x)can provide more available PICT pathways than the sample that only contains TiO2and WO3,which can further lead to a magnification of the Raman scattering cross section,thus greatly magnifying the polarization tensor of N719 molecules.(3)Electrons in the LUMO of N719 transfer from the photo-excited N719 molecules to CB of TiO2.In addition,because of the existence of the defect levels(WO3-x),the band gap of WO3can be narrowed as 1.7?2.2 eV[33].Therefore,electrons can be excited from VB to WO3-x(μex)by a 532-nm laser and the photogenerated holes in WO3-xsubsequently transfer to VB of TiO2.Meanwhile,excited electrons in CB of TiO2transfer to CB of WO3.Therefore,a built-in electric field at the interface of TiO2and WO3with the direction of the electric field pointing from WO3to TiO2is formed.Driven by the built-in electric field,photogenerated electron-hole pairs can be effectively separated,realizing spatial charge separation and prolongating the lifetime of charge carriers,and thus enhancing the SERS activity[17,34-37].

    To summarize,the electrochromic properties of the semiconductors were utilized to successfully produce the highly active SERS substrates that could be applied in aqueous electrolytes.Experiment data and theoretical calculation revealed that the abundant VOinduced by the electrochromic process facilitates the CT between the substrate and adsorbed molecules,thus enhancing their SERS activity.Especially,the as-proposed substrates were largely scalable,and their Raman signals were reproduced by controlling the applied bias voltage,thus providing an easily assessable and low-cost platform forin-situmonitoring of the reactions at the solid/liquid interfaces.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(Nos.21874013,22074013 and 22073030),the Fundamental Research Funds for the Central Universities(Nos.N2105018 and N2005027),and the China Postdoctoral Science Foundation(No.2019M661109).The CPU time was supported by the Supercomputer Centre of East China Normal University(ECNU Public Platform for Innovation No.001).Special thanks are due to the instrumental or data analysis from Analytical and Testing Center,Northeastern University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.011.

    两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 久久草成人影院| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 国产片内射在线| 正在播放国产对白刺激| 淫妇啪啪啪对白视频| 成人精品一区二区免费| 亚洲av成人一区二区三| 日韩免费高清中文字幕av| 手机成人av网站| 老鸭窝网址在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 欧美一区二区三区| 亚洲中文字幕日韩| 另类亚洲欧美激情| 99riav亚洲国产免费| 色综合欧美亚洲国产小说| 国产精品一区二区免费欧美| 亚洲精品中文字幕在线视频| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| 熟女少妇亚洲综合色aaa.| 中文字幕精品免费在线观看视频| 一级a爱片免费观看的视频| 黄色视频,在线免费观看| 日韩有码中文字幕| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 亚洲第一青青草原| 交换朋友夫妻互换小说| 男女高潮啪啪啪动态图| 精品一区二区三区视频在线观看免费 | av免费在线观看网站| www.自偷自拍.com| 777久久人妻少妇嫩草av网站| a级毛片在线看网站| 电影成人av| 大香蕉久久成人网| 99热国产这里只有精品6| 99久久精品国产亚洲精品| 一级作爱视频免费观看| av超薄肉色丝袜交足视频| 大陆偷拍与自拍| 一个人免费在线观看的高清视频| 亚洲一码二码三码区别大吗| 久久性视频一级片| bbb黄色大片| 狂野欧美激情性xxxx| 淫妇啪啪啪对白视频| 欧美性长视频在线观看| 亚洲成人久久性| 国产真人三级小视频在线观看| 欧美最黄视频在线播放免费 | 午夜免费鲁丝| 国产1区2区3区精品| 不卡av一区二区三区| 亚洲成人免费电影在线观看| 精品人妻1区二区| 国产一卡二卡三卡精品| 久久精品人人爽人人爽视色| 日韩av在线大香蕉| 一区在线观看完整版| 99久久精品国产亚洲精品| 色尼玛亚洲综合影院| 国产1区2区3区精品| 亚洲三区欧美一区| 日本精品一区二区三区蜜桃| 午夜老司机福利片| 不卡av一区二区三区| 在线观看一区二区三区| 91国产中文字幕| 国产精品一区二区免费欧美| 国产深夜福利视频在线观看| 国产一区二区三区在线臀色熟女 | 日韩 欧美 亚洲 中文字幕| 亚洲一码二码三码区别大吗| 91老司机精品| 亚洲精品在线观看二区| 人成视频在线观看免费观看| 淫妇啪啪啪对白视频| 午夜视频精品福利| 亚洲av第一区精品v没综合| 人妻久久中文字幕网| 午夜激情av网站| 亚洲视频免费观看视频| 18禁黄网站禁片午夜丰满| 一级毛片高清免费大全| 最好的美女福利视频网| а√天堂www在线а√下载| 亚洲精品国产一区二区精华液| 国产精品免费视频内射| 国产黄a三级三级三级人| av福利片在线| 亚洲一区二区三区不卡视频| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 男人的好看免费观看在线视频 | 中文字幕另类日韩欧美亚洲嫩草| 国产高清国产精品国产三级| 久久久久久人人人人人| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 欧美一区二区精品小视频在线| 国产免费现黄频在线看| 免费久久久久久久精品成人欧美视频| 女人被躁到高潮嗷嗷叫费观| 高清黄色对白视频在线免费看| 日韩欧美在线二视频| 一边摸一边做爽爽视频免费| 久久久久久久午夜电影 | 精品国产美女av久久久久小说| 国产色视频综合| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| 满18在线观看网站| 精品国产乱子伦一区二区三区| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 国产成人系列免费观看| 嫁个100分男人电影在线观看| 亚洲精品久久午夜乱码| av中文乱码字幕在线| 亚洲欧美一区二区三区黑人| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 最近最新免费中文字幕在线| 色尼玛亚洲综合影院| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 久久人人爽av亚洲精品天堂| 老熟妇仑乱视频hdxx| 国产av精品麻豆| 日韩欧美在线二视频| 精品一区二区三区视频在线观看免费 | 制服诱惑二区| 在线国产一区二区在线| 男女下面进入的视频免费午夜 | 亚洲第一青青草原| 欧美黄色淫秽网站| 激情视频va一区二区三区| 国产一区二区在线av高清观看| 最新在线观看一区二区三区| 中文亚洲av片在线观看爽| 天堂√8在线中文| 精品熟女少妇八av免费久了| 首页视频小说图片口味搜索| 丝袜美腿诱惑在线| 久久亚洲真实| 极品人妻少妇av视频| 精品第一国产精品| 国产亚洲精品综合一区在线观看 | 亚洲自拍偷在线| 亚洲熟妇熟女久久| 十八禁人妻一区二区| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 亚洲一区二区三区色噜噜 | 高清毛片免费观看视频网站 | 午夜两性在线视频| 在线观看免费视频网站a站| 久久精品91无色码中文字幕| 99精品在免费线老司机午夜| 欧美黑人精品巨大| av福利片在线| 久热爱精品视频在线9| 亚洲av成人av| 成人亚洲精品av一区二区 | 97超级碰碰碰精品色视频在线观看| 欧美日韩av久久| 亚洲精品美女久久av网站| 女人精品久久久久毛片| 亚洲一区二区三区色噜噜 | 成人精品一区二区免费| 午夜免费观看网址| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 亚洲黑人精品在线| 日日摸夜夜添夜夜添小说| 国产一区在线观看成人免费| av福利片在线| 一边摸一边做爽爽视频免费| 精品免费久久久久久久清纯| 亚洲 欧美一区二区三区| 亚洲第一av免费看| bbb黄色大片| 国产乱人伦免费视频| 国产黄a三级三级三级人| 91麻豆av在线| 大型黄色视频在线免费观看| 麻豆av在线久日| 中文字幕高清在线视频| 亚洲第一青青草原| 欧美成人免费av一区二区三区| 久久精品91蜜桃| 99精国产麻豆久久婷婷| 亚洲精品久久午夜乱码| 国产蜜桃级精品一区二区三区| 国产极品粉嫩免费观看在线| 九色亚洲精品在线播放| 欧美激情高清一区二区三区| 免费观看精品视频网站| 亚洲激情在线av| 女人精品久久久久毛片| 午夜精品国产一区二区电影| www.www免费av| 午夜91福利影院| 国产免费av片在线观看野外av| 视频区图区小说| 久热爱精品视频在线9| 亚洲人成77777在线视频| svipshipincom国产片| 大型黄色视频在线免费观看| 午夜精品在线福利| 亚洲色图av天堂| 琪琪午夜伦伦电影理论片6080| 日韩欧美在线二视频| 波多野结衣高清无吗| 久久精品91无色码中文字幕| 欧美日韩瑟瑟在线播放| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 国产成人系列免费观看| aaaaa片日本免费| 精品少妇一区二区三区视频日本电影| 国产亚洲精品久久久久5区| 黄色a级毛片大全视频| 美女大奶头视频| 国产精品偷伦视频观看了| 一本综合久久免费| 视频区欧美日本亚洲| 亚洲精品国产色婷婷电影| 免费看a级黄色片| a在线观看视频网站| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产 | 亚洲成人国产一区在线观看| 成人亚洲精品av一区二区 | 法律面前人人平等表现在哪些方面| ponron亚洲| 亚洲一区二区三区欧美精品| 老司机亚洲免费影院| 琪琪午夜伦伦电影理论片6080| 国产高清videossex| 新久久久久国产一级毛片| 一区二区三区精品91| 色婷婷久久久亚洲欧美| 丝袜美腿诱惑在线| 亚洲av成人一区二区三| 美女高潮到喷水免费观看| 国产高清videossex| 亚洲国产精品sss在线观看 | 99久久久亚洲精品蜜臀av| 电影成人av| 一本综合久久免费| 91成年电影在线观看| 久久国产精品人妻蜜桃| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 亚洲av成人不卡在线观看播放网| 欧美色视频一区免费| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区久久| 琪琪午夜伦伦电影理论片6080| 国产日韩一区二区三区精品不卡| 国产又色又爽无遮挡免费看| 精品无人区乱码1区二区| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 精品久久久久久久毛片微露脸| 两个人看的免费小视频| 日韩欧美一区二区三区在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久av美女十八| e午夜精品久久久久久久| 成人av一区二区三区在线看| 91国产中文字幕| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清 | 十八禁网站免费在线| √禁漫天堂资源中文www| 无遮挡黄片免费观看| 人人妻人人澡人人看| 日本黄色视频三级网站网址| 十八禁人妻一区二区| 9热在线视频观看99| 国产亚洲精品久久久久5区| 精品高清国产在线一区| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 欧美成人免费av一区二区三区| 精品人妻1区二区| 日韩有码中文字幕| 日韩免费av在线播放| 久久性视频一级片| 亚洲人成网站在线播放欧美日韩| 最近最新免费中文字幕在线| 97人妻天天添夜夜摸| 欧美激情高清一区二区三区| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 精品高清国产在线一区| 国产成人精品在线电影| 丝袜美足系列| 久久精品人人爽人人爽视色| 亚洲中文日韩欧美视频| 国产精品日韩av在线免费观看 | 久久精品国产99精品国产亚洲性色 | 不卡av一区二区三区| 国产xxxxx性猛交| 久久久久国内视频| 国产99久久九九免费精品| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 黄片播放在线免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 国产男靠女视频免费网站| 免费人成视频x8x8入口观看| 91老司机精品| 色在线成人网| 18禁裸乳无遮挡免费网站照片 | 亚洲久久久国产精品| www国产在线视频色| 精品一区二区三区视频在线观看免费 | 夜夜夜夜夜久久久久| 国产深夜福利视频在线观看| x7x7x7水蜜桃| 免费看a级黄色片| 亚洲人成伊人成综合网2020| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 三上悠亚av全集在线观看| 99在线视频只有这里精品首页| 热re99久久精品国产66热6| 日韩高清综合在线| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看| 日韩中文字幕欧美一区二区| 一区二区三区精品91| 一边摸一边做爽爽视频免费| 欧美乱妇无乱码| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 高清毛片免费观看视频网站 | 国产成人精品无人区| 亚洲专区字幕在线| 久久人妻熟女aⅴ| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 亚洲欧美一区二区三区久久| 国产伦人伦偷精品视频| 曰老女人黄片| 人成视频在线观看免费观看| 曰老女人黄片| 日韩高清综合在线| 亚洲精品国产区一区二| 在线观看日韩欧美| 波多野结衣高清无吗| 精品久久久久久电影网| 村上凉子中文字幕在线| 老司机福利观看| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 男女做爰动态图高潮gif福利片 | 亚洲国产欧美网| 露出奶头的视频| 91在线观看av| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡| 久久久久久久久久久久大奶| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频 | 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 一a级毛片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产一卡二卡三卡精品| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 高清欧美精品videossex| 免费观看人在逋| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 中亚洲国语对白在线视频| 国产精品免费视频内射| 18禁裸乳无遮挡免费网站照片 | 啦啦啦在线免费观看视频4| 色综合站精品国产| 午夜91福利影院| 欧美激情高清一区二区三区| 精品福利观看| 91国产中文字幕| 女人被躁到高潮嗷嗷叫费观| 三级毛片av免费| 国产三级在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本 av在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品免费一区二区三区在线| av国产精品久久久久影院| 琪琪午夜伦伦电影理论片6080| 亚洲午夜理论影院| 51午夜福利影视在线观看| 欧美日韩精品网址| 欧美成狂野欧美在线观看| 女人被躁到高潮嗷嗷叫费观| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 精品第一国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 久久影院123| 国产精品二区激情视频| 99久久99久久久精品蜜桃| 日本免费a在线| 手机成人av网站| 18禁裸乳无遮挡免费网站照片 | 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 欧美精品啪啪一区二区三区| 麻豆av在线久日| 亚洲精品国产区一区二| 啦啦啦 在线观看视频| 亚洲人成电影免费在线| 精品久久久久久电影网| 亚洲一区二区三区色噜噜 | 亚洲成a人片在线一区二区| 久久人人97超碰香蕉20202| 免费在线观看黄色视频的| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 女同久久另类99精品国产91| av超薄肉色丝袜交足视频| 国产精品乱码一区二三区的特点 | 亚洲精品粉嫩美女一区| 日韩欧美在线二视频| 亚洲国产精品sss在线观看 | 无限看片的www在线观看| 国产精品爽爽va在线观看网站 | 久久天堂一区二区三区四区| 欧美一级毛片孕妇| 91成人精品电影| 国产极品粉嫩免费观看在线| 精品一区二区三区视频在线观看免费 | 日韩高清综合在线| netflix在线观看网站| 天天影视国产精品| 精品无人区乱码1区二区| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 亚洲三区欧美一区| 精品久久久久久电影网| 日本 av在线| 淫妇啪啪啪对白视频| 精品久久久久久久毛片微露脸| 女性被躁到高潮视频| 嫁个100分男人电影在线观看| 三上悠亚av全集在线观看| 女人被狂操c到高潮| 久久精品国产亚洲av香蕉五月| 久久人人爽av亚洲精品天堂| 99国产综合亚洲精品| 九色亚洲精品在线播放| 在线观看免费午夜福利视频| 欧美在线黄色| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 成人手机av| 日韩精品青青久久久久久| 久久久国产一区二区| 亚洲,欧美精品.| 美女福利国产在线| 亚洲黑人精品在线| 一进一出抽搐gif免费好疼 | www.999成人在线观看| 午夜日韩欧美国产| 亚洲人成77777在线视频| 午夜激情av网站| 69精品国产乱码久久久| 日本欧美视频一区| √禁漫天堂资源中文www| 国产高清激情床上av| 欧美中文综合在线视频| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 欧美激情 高清一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲男人天堂网一区| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 午夜亚洲福利在线播放| 亚洲一区中文字幕在线| 麻豆av在线久日| 午夜两性在线视频| 久久香蕉激情| 91字幕亚洲| 操美女的视频在线观看| 丁香欧美五月| 一级片'在线观看视频| 亚洲片人在线观看| 国产亚洲欧美精品永久| av欧美777| 亚洲欧洲精品一区二区精品久久久| 久久精品国产清高在天天线| 最近最新中文字幕大全电影3 | 性少妇av在线| 国产男靠女视频免费网站| 久久这里只有精品19| 99国产极品粉嫩在线观看| 日本撒尿小便嘘嘘汇集6| 日本五十路高清| 亚洲一区高清亚洲精品| 欧美在线黄色| 国产精品永久免费网站| 久久精品国产清高在天天线| 丰满迷人的少妇在线观看| 宅男免费午夜| 国产精品一区二区免费欧美| 长腿黑丝高跟| 国产1区2区3区精品| 久久久国产精品麻豆| 国产熟女xx| 男女之事视频高清在线观看| 色老头精品视频在线观看| 亚洲五月天丁香| 变态另类成人亚洲欧美熟女 | 国内久久婷婷六月综合欲色啪| 久久久久久久午夜电影 | 99热国产这里只有精品6| 日韩精品免费视频一区二区三区| 久久国产亚洲av麻豆专区| 中亚洲国语对白在线视频| 亚洲伊人色综图| 最近最新中文字幕大全电影3 | 精品国产一区二区三区四区第35| 丁香六月欧美| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 操美女的视频在线观看| 欧美在线黄色| 黄色a级毛片大全视频| 美女高潮到喷水免费观看| 咕卡用的链子| 一夜夜www| 9热在线视频观看99| 一级,二级,三级黄色视频| 侵犯人妻中文字幕一二三四区| 国产精品久久视频播放| 日韩中文字幕欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产深夜福利视频在线观看| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 丰满人妻熟妇乱又伦精品不卡| 美女福利国产在线| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 少妇裸体淫交视频免费看高清 | 一本综合久久免费| 亚洲av熟女| 亚洲专区国产一区二区| 亚洲精品av麻豆狂野| 国产黄a三级三级三级人| 9191精品国产免费久久| 国产成人精品久久二区二区91| 麻豆成人av在线观看| 如日韩欧美国产精品一区二区三区| 精品电影一区二区在线| 欧美中文日本在线观看视频| 日韩欧美一区视频在线观看| 9色porny在线观看| 美女高潮到喷水免费观看| 成人永久免费在线观看视频| 一级片免费观看大全| 久久婷婷成人综合色麻豆| aaaaa片日本免费| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 久久性视频一级片| 男人舔女人下体高潮全视频| 黑人操中国人逼视频| 真人一进一出gif抽搐免费| 日韩精品免费视频一区二区三区| 亚洲午夜理论影院| tocl精华| 日本 av在线| 一本综合久久免费| 久久久久九九精品影院| 亚洲伊人色综图| 多毛熟女@视频| 亚洲av成人av|