• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chiral structures of 6,12-dibromochrysene on Au(111)and Cu(111)surfaces

    2023-01-30 06:48:58ShijieSunBijinLiBoyuFuZilinRunHuiZhngWeiXiongYongZhngGefeiNiuJinchenLuXioqingZuoLeiGoJinmingCi
    Chinese Chemical Letters 2022年12期

    Shijie Sun,Bijin Li ,Boyu Fu,Zilin Run,Hui Zhng ,Wei Xiong ,Yong Zhng ,Gefei Niu,Jinchen Lu,Xioqing Zuo ,Lei Go ,Jinming Ci ,*

    a Faculty of Materials Science and Engineering,Kunming University of Science and Techno logy,Kunming 6500 00,China

    b Faculty of Science,Kunming University of Science and Technology,Kunming 6500 0 0,China

    Keywords:Scanning tunneling microscope Scanning tunneling spectroscopy Non-contact atomic force microscope Surface chirality Chiral transition

    ABSTRACT Nanoscale low-dimensional chiral architectures are increasingly receiving scientific interest,because of their potential applications in many fields such as chiral recognition,separation and transformation.Using 6,12-dibromochrysene(DBCh),we successfully constructed and characterized the large-area twodimensional chiral networks on Au(111)and one-dimensional metal-liganded chiral chains on Cu(111)respectively.The reasons and processes of chiral transformation of chiral networks on Au(111)were analyzed.We used scanning tunneling spectroscopy(STS)to analyze the electronic state information of this chiral structure.This work combines scanning tunneling microscopy(STM)with non-contact atomic force microscopy(nc-AFM)techniques to achieve ultra-high-resolution characterization of chiral structures on low-dimensional surfaces,which may be applied to the bond analysis of functional nanofilms.Density functional theory(DFT)was used to simulate the adsorption behavior of the molecular and energy analysis in order to verify the experimental results.

    Low-dimensional supramolecular architectures constitute a significant section due to their fascinating new demonstrative applications in the fields of nanoscience and nanotechnology[1–3].The bottom-up approach to the atomically precise syntheses of two-dimensional(2D)materials has become a regular fabrication method based on molecular self-assembly[4–9],Ullmann reaction[10],Bergman cyclization[11]and Glaser reaction[12]are also powerful means to construct organic materials.Fine organization of chiral behaviors[13–15]on solid surfaces has advanced over the years,yet still faces the need for the controlled and selective production of advanced chiral materials[16–18].To date,the research of various chiral phenomena such as heteroatomdoped chiral graphene nanoribbons[19],chiral supramolecular bilayers[20]and on-surface synthesis hierarchical electronic structure[21]have become a new branch of nanoscience as well as begun to develop beyond the basic description.Real-space imaging at the single-molecule level is thus urgently required to understand the role of molecular chirality-related issues.Meanwhile,metal substrates with different catalytic properties have a great influence on the self-assembly of organic molecules on the surface[22,23].Self-assembly of surface coordination arrangements presents a flexible way to distribute equally sized element centers evenly on a metal surface.

    In this connection,probing low-dimensional architectures consisting of chiral or prochiral molecular select adsorbed at solid surfaces using scanning tunneling microscopy(STM)is considered as one of the most powerful and appropriate approaches to obtain an in-depth understanding of different chirality aspects at the molecule precise scale[24,25].On metal surfaces,STM research has revealed the selective and rival adsorption behavior on 2D molecular self-assemblies,the constitution of superstructures in crystal engineering is extremely managed by directional forces and is susceptible to the effects of substrate properties and the extrinsic environment.Besides plenty of reports in the literature as regards the structural transformation of super networks by tuning precursors[26],external electric field[27],which is caused by the deposition time and physicochemical catalysis with the metal substrate is still rarely discussed.Whilst self-assembled nanostructures were transformed into final products with differentiation because multiple reaction pathways might simultaneously occur.

    Fig.1.Analysis of chiral pore structure on Au(111).(a)STM image of DBCh molecule self-assembled structure on Au(111),DBCh molecular structure model overlaid on the high-resolution STM image.The green rhombus indicates the unit cell of chiral networks.(b)DFT simulated STM image and(c)DFT-optimized adsorption configurations correspond to(a).(d)STM image contains two chiral domains of the networks.(The blue dotted line indicates the mirror symmetry axis of the chiral hole.The blue hexagram mark the chiral hole structures of L-chiral and R-chiral).(e)High-resolution nc-AFM image after CO-modified tip(U bias voltage,2 mV;oscillation amplitude,70 pm).(f)Lateral height image along with the green unit cell in(a),ab=ad=(20±0.5)?A.(g)Theoretical calculated electron localization function of the DBCh networks.

    Herein,we report on the use of enantiomerically enriched molecular building blocks to demonstrate the performance of their intrinsic chirality along a sequence of different substrates.To demonstrate the influence of the select adsorption on the solid substrates,6,12-dibromochrysene(DBCh)was selected as the starting molecular building block,we have successfully fabricated two chiral supramolecular structures on Au(111)and Cu(111)substrates through molecular beam epitaxy(MBE)method.The apparent chirality structures were observed in atomic-resolution images as hexagonal hole lattice and chiral chains with different asymmetry depending on the adsorption position.As well,we have carried out density functional theory(DFT)based first-principles calculations for the molecular systems.DFT has played an essential role in understanding these materials by calculating the adsorption energy and simulated STM image can be directly compared with the experiment[28,29].It has been revealed the significant influence of intermolecular halogen bonding and metal coordination on assembly behavior,which dominantly maintain the stability of diverse oligomers at low temperatures.

    After the deposition of DBCh molecules on the Au(111)surface held at room temperature(RT),we observed a large-scale chiral regular types structure by STM under ultrahigh vacuum conditions(Fig.S1 in Supporting information),The self-assembled 2D molecular island is similar for both sub-monolayer about 0.7 monolayer coverage.In the high-resolution STM image(Fig.1a),individual regular dart pores in the 2D porous molecular network are visible.The covered molecular model exhibits that the observed building units of the supramolecular hexagonal holes are molecular assemblies on their own.More interestingly,they contain exactly six molecules that are linked into a hexagonal supermolecule with a radius of 2 nm.To support the STM imagebased structure distribution,an extensive structure search was performed by DFT to find the most stable structure,in addition to determining the number of DBCh molecules and the geometric coordinates of Br atoms.The calculated adsorption conformation agrees with the experiment,the Br atoms prefer to stabilize at triangle forming a self-assembled structure connected by halogen bonds.The simulated STM image(Fig.1b)fully corroborates the experimental findings.Fig.1c shows the DFT optimized models of DBCh molecules,the unit cell mark as the green parallelogram to show the periodicity of the self-assembled superstructure.The black,white and brown balls represent carbon,hydrogen and bromine atoms,respectively.The adsorption energy of this structure is?4.277 eV/nm2by DFT energy analysis.According to the measurement results(Fig.1f)from WSxM software[30],the unit cell parameters ab=ad=(20±0.5)?A.

    Supramolecular self-assembly of adsorbed molecules is the result of a competition between molecule substrate interactions and noncovalent intermolecular attractions arising from van der Waals forces,hydrogen bonds,and electrostatic interactions.Through meticulous observation and repeated sample preparation process,we found that this two-dimensional organic molecular pore structure has obvious surface chirality,which is caused by the optimization of the non-covalent bond structure between molecules.DBCh is chiral and planar as a result of inherent structure which causes a twisting of the central tetracene backbone around its axis and forces the two halogen atoms to rotate around their bonds.Although previous studies are interested in the self-assembly process of DBCh[24],their chirality research scale and real space characterization have not reached an ultra-high resolution.The inherent chirality of molecules gradually expands with the increase of the number of molecular beam epitaxies,a mirror-symmetric structure is formed on the surface of Au(111).To show the specific position of the chiral structure in Fig.1d,we use counter-clockwise arrow to indicate left-handed(marked L)and clockwise arrow to indicate right-hand rotation(marked as R)respectively.The regular dart shape left on the symmetry axis(blue dotted line)has a counterclockwise arrangement of these lobes(L),while the one on the right follows a clockwise orientation(R),thus the domain of the molecule are mirror images of each other and reflect the chiral conformation of the molecule on the Au(111).The same chiral area distinguished by a blue dotted line in Fig.1d as the axis of symmetry reveals the existence of surface chirality.Chiral structures show disjointed chains-rings which are constructed out of tiny building blocks.These structures are commensurate with the hexagonal periodicity of the Au(111)substrate but are sustained by the domain walls of the herringbone-reconstructed surface and at step edges.The theoretical commensurability of the constructions rules out site-specific bonding to the surface and indicates that the observed supramolecular assembly is restricted by intermolecular forces.As previously observed with numerous other aromatic adsorbates,also for chiral holes,the face-centered-cubic(fcc)region has a higher electron potential than the hexagonal-closed-packing(hcp)region,so is it favorable for adsorption on the former.The spontaneous self-assembly of single DBCh molecule results in the configuration of complex supramolecular structures.One of the three epitaxial equivalent orientations of each chiral hole is favored by maximizing its adsorption length on the fcc section,which will show more soliton intersections and hcp adsorption regions.

    Therefore,it is necessary for single-molecule and halogen atomic resolution characterization and recognition.Through CO tip modification and qPlus sensor atomic force imaging technology,we obtained the bond resolution nc-AFM image,as shown in Fig.1e,which reveals those structures with effective bonding angles of 60°are predominant on chiral dart holes.Fig.S2(Supporting information)shows the high-resolution characterization of different regions to corroborate the molecular arrangement of the chiral structure.The fuzzy features observed in the nc-AFM image caused by the hydrogen atoms passivated the edge.Distortion of the benzene ring due to high repulsive forces between the tip and molecule.Theoretical simulations of the structural local work function in Fig.1g reveal that no strongly interacting covalent bonds are formed between bromine atoms,but rather weakly interacting intermolecular halogen bonds.Interestingly,for brominated compounds,the halogen bond of Br-Br-Br dominates the self-assembly structure with triangular packing due to molecular charge distribution.

    Fig.2.Real-space electronic state detection.(a)Differential conductance(d I/d V)spectrum taken at the chiral porous structure marked by the different colored triangles in(b).The black curve represents the characteristic spectrum of the Au(111)surface.(b)STM topography image(U=?0.25 V,I=100 pA)of chiral porous structure.(c)d I/d V mapping collected at energetic positions of states HOMO(Highest occupied molecular orbital)and(d)LUMO(Lowest unoccupied molecular orbital).Open feedback parameters for the d I/d V spectra:U=?300 mV,I=150 pA.Tunneling parameters for the STM images and associated d I/d V maps:HOMO:U=?1.8 V,I=100 pA;LUMO:U=0.8 V,I=150 pA.

    In order to better understand the electronic state density information of the hole structure,we used density functional theory to combine real-space electronic detection to reveal that periodic lattice electrostatic landscape confines two-dimensional electron gas between molecular backbone lattice.Scanning tunneling spectroscopy characterizes this two-dimensional material result(Fig.2),and shows that the highest electron occupied orbital(HOMO)and the lowest electron occupied orbital(LUMO)of the structure are 1.8 V and 0.8 V with obvious peaks on the dI/dVspectrum line(Fig.2a)respectively.We observe the distinct peaks near the?0.45 V in Fig.2a which are caused by the work function of Au surface.These peaks also appear frequently in the STS curves in the previous literature.The black curve has only characteristic peak revealing the absence of adsorbed impurities on the tungsten tip.Due to the obvious difference in the electron filling distribution between the periodic pores and the molecular backbone,the two-dimensional material structure is similar to a nano-sieve,which can be used to filter organic substances or desalinate seawater.It can also be used as an organic substrate to participate in the research of the two-dimensional structure of the host and guest.

    Given that monomers and hexamer agglomerate into islands,the molecular environment(and thus the intermolecular interplays that could conceivably influence the racemization barriers)is expected to differ substantially for different molecular coverages.Due to the enantiomeric excess seems to be slightly amplification across subsequent stages,the changes remain beyond the structural carrying capacity,making this expansion nearly meaningful.Therefore,our results unambiguously confirm that the reactant chirality is transferred across the Au(111)substrate-supported reactions with the increasingly high arrangement denseness and longer evaporation time(Fig.3).We controlled the deposition time to 10 min,the chiral pores disappeared,and a tightly packed full monolayer structure was obtained,as shown in Fig.3b.This is due to the increase in the number of precursors,and the tightly packed have lower adsorption energy.The principle of thermodynamics promotes this chiral conversion.The concentration of molecule precursor controllable chirality transformation on the Au(111),there existed a single type of halogen bonding interactions between interplanar molecules.Through rationalizing the chiral transform mechanism at the molecular level,our findings are relevant for the recognition of cooperative supramolecular assembly in multiple-component systems.Fig.S3(Supporting information)shows the typical herringbone reconstruction of Au(111)is visible through the molecular island faintly,the Au reconstruction is neither modified nor elevated upon adsorption of the molecules,meaning a weak molecule-substrate interaction.Actually,the manipulation principle of the assembled structure by all the DFT calculations is based on minimized energy regulation.Calculating the adsorption energy of this tightly packed configuration as?5.631 eV/nm2,since the self-assembly systems prefer to low form energy close-packed patterns in a 2D layer,which are favored for enthalpy reasons[31].

    Fig.3.Enantiomeric excess causes surface chiral transition.(a)STM image of submonolayer structure with deposition time of 3 min.U=1 V,I=100 pA.(b)DBCh molecular structure model overlaid on the STM image obtained by depositing DBCh molecules 10 min,U=0.5 V,I=200 pA.(c)Structural model diagram before and after chiral transformation.The lower inset identifies the structure adsorption energy.

    As is clearly indicated from the STM measurements,the dehalogenation reaction of DBCh molecules deposited on a RT substrate has occurred due to the catalytic properties of the Cu substrate,which is consistent with the previous work[11,32].Cu(111)was engaged as a substrate because its catalytic activity is generally considered to be higher than Au(111).Upon deposition of DBCh on Cu(111)held at RT,one-dimensional(1D)chiral polymers were observed,regardless of the molecular coverage(Fig.4).We find that the stability of the structure benefits from the maximum number of hydrogen bonds and metal coordination bonds connected molecular backbone.The formation of this chain structure is due to the removal of halogens from the precursor molecules and the formation of metal coordination bonds between the molecular radicals and the copper substrate.It is apparent that the 1D polymer chains consist of two types of enantiomers linearly connected.The chiral symmetry property of the mirror image is marked with L and R respectively.In the high-resolution STM image in Fig.4a,individual monomers within the 1D chiral polymer can be distinguished,the free Br atom between the chiral 1D chain was observed.The depth of the Br atom amounts to about 1.8?A,which is equal to the height of a mono step of the precursor molecule(1.9?A).

    Fig.4.Analysis of one-dimensional chiral chains on Cu(111).(a)The high-resolution STM image.The blue dotted line represents the mirror symmetry axis,the two sides are marked with L and R respectively as a left-handed and right-handed 1D polymer chain.(b)Single metal coordination chain and(c)correspond DFT simulated STM image.(d)Top and side views of 1D chain after structure-optimized.The green parallelogram represents the structural unit cell.(e)STM image of low coverage and nc-AFM analysis area.(f)The bond-resolved STM image in constant height mode after CO modification of the tip corresponds to(e).(g)An nc-AFM image(U bias voltage,2 mV;oscillation amplitude,70 pm)of the same area in(e).The yellow circle marks the position of the metal coordination bond C-Cu-C.(h,i)The line profiles along the blue line and the pink line in(e)show the single molecular length and molecular spacing of the 1D chiral chain,respectively.(j)Points d I/d V spectrum of the labeled triangle in(b).

    For further energy analysis and structural simulation,we established the DFT model simulation with the green parallelogram in Fig.4b as the unit cell to obtain the STM image as shown in Fig.4c.The adsorption energy of the 1D chiral chain after structure optimization(Fig.4d)is?9.398 eV/nm2.The experimentally measured distance between two monomers is found to be 0.8±0.1 nm(Fig.4i),which is in excellent agreement with the simulative determined monomer-to-monomer distance for the optimized geometry of the Cu-coordinated dimer(0.8 nm).The point STS spectrum curves obtained from probing the three triangular positions marked in Fig.4b are shown in Fig.4j.The peak intensity of the electronic eigenstate on the C-Cu-C metal coordination bond is weaker than that on the Cu(111)surface while the intensity of the peak on the bromine atom largely disappears.The metal coordination bond(yellow circle marked in Fig.4f)is a bright spot in bond-resolved STM and a dark spot in nc-AFM image.It is due to the fact that metal atoms are located at a lower position and have a higher electronic density of states than small organic molecules.The simulated side view in Fig.4d shows that the 1D chains are periodically twisted due to the Cu atoms of the ligand bonds being closer to the surface.

    Therefore,it can be inferred that a 1D organometallic chiral polymer automatically forms on Cu(111)enabled through the debromination of DBCh at RT which is promoted by the comparably high catalytic activity of the Cu surface.In STM we observed the coexistence of both left-and right-handed polymers on Cu(111)in the same area.Analyzing the results gained for molecule assemble coupling of DBCh on Au(111)and Cu(111)we conclude that a chiral-selective configuration occurs for the 1D chiral polymers dependence of the substrate.An inherent judgment may be the establishment of different bonding motifs upon the on-surface coupling regression on Au(111)and Cu(111)(halogen bonds and C-Cu-C coordination bonds,respectively).For the case of the chiral 1D chiral polymers,the majority polymers align along within the[1ˉ10]directions of the Cu(111)surface.Fig.S4(Supporting information)shows the atomic resolution of the Cu(111)surface,marking the substrate orientation.For the chiral 1D polymer,the Cu adatoms order linearly and if a corresponding arrangement of the monomers is assumed the adatoms are then regularly adsorbed on the related lattice sites.In contrast,if achiral 1D organometallic polymers are formed,the Cu adatoms will describe a zigzag line and a commensurate organization of the adatoms will be no longer possible.Different adsorption sites of the adatoms for the achiral polymer could be slightingly less preferred and the chiral organometallic polymers would be favored consequently.Among others,the metal-organic coordination motifs,due to their specific coordination sizes,arrangements,and thermic stability,are much effective to manage the reaction pathway and the morphology of the resultant structures.Consideration of the registry between these films then allowed us to manage the chirality of the surface region,which is challenging with ensemble techniques that typically demand bulk single-crystal samples.As the architectural chirality sets the chirality of physical property in this family of materials,this capability is important in harnessing these novel chiral textures for future high-density storage applications.

    In conclusion,we have successfully constructed large-scale,high-quality 2D self-assembled chiral networks on Au(111)and the 1D chiral chain on Cu(111)respectively.The two structures were characterized by ultrahigh atomic resolution.The configuration of the network is controlled by intermolecular halogen bonding.The molecule prefers the sites with the maximum number of halogen bonds,which serves to stabilize the network.The arrangement of chiral chains on the surface of Cu(111)is due to the formation of C-Cu-C bonds.The STS results of the chiral hole structure formed on the Au(111)surface show that the density of electronic states is different between the hole center and the molecular framework,which has obvious significance for the subsequent host-guest studies.This work provides a prototype for investigating on-surface chiral networks.Although there are still undoubted challenges in stereo imaging of chiral molecules,the above innovative studies through atomic-level imaging of surface chiral structures,including chirality transform in chiral molecule assemblies,have promoted revealing surface chirality.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.51861020,61901200 and 12064020),the National Recruitment Program for Young Professionals(No.132310976002),the Yunnan Province Science and Technology Plan Project(No.2019FD041),the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB30010000),the Reserve Talents for Yunnan Young and Middle Aged Academic and Technical Leaders(No.2017HB010),the Yunnan Province for Recruiting High-Caliber Technological Talents(No.1097816002).Yunnan Fundamental Research Projects(No.202101AU070043).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.082.

    久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 国产爱豆传媒在线观看| 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 亚洲欧美成人精品一区二区| 国内少妇人妻偷人精品xxx网站| 97超视频在线观看视频| 日韩高清综合在线| 丝袜喷水一区| 国产成人精品久久久久久| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 国产真实乱freesex| 国产 一区 欧美 日韩| 欧美绝顶高潮抽搐喷水| www日本黄色视频网| 悠悠久久av| 深夜a级毛片| 亚洲最大成人av| 老司机影院成人| 天堂影院成人在线观看| 熟女电影av网| 十八禁网站免费在线| 插阴视频在线观看视频| 精品久久久久久久久久久久久| 少妇熟女aⅴ在线视频| 2021天堂中文幕一二区在线观| 色综合站精品国产| 三级毛片av免费| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 亚洲高清免费不卡视频| 日韩欧美国产在线观看| 色哟哟哟哟哟哟| 日韩欧美三级三区| 精品一区二区三区视频在线| 久久久精品大字幕| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 99热这里只有是精品在线观看| 久久久久久久久中文| 91久久精品电影网| or卡值多少钱| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 亚洲欧美日韩东京热| 村上凉子中文字幕在线| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 淫妇啪啪啪对白视频| 欧美区成人在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 免费无遮挡裸体视频| 国产 一区精品| 日韩欧美免费精品| 亚洲美女搞黄在线观看 | 禁无遮挡网站| 联通29元200g的流量卡| 亚洲一区二区三区色噜噜| 波多野结衣高清作品| 亚洲av免费高清在线观看| 丝袜喷水一区| 男人舔奶头视频| 久久久久久久午夜电影| 蜜桃亚洲精品一区二区三区| 亚洲av五月六月丁香网| 黑人高潮一二区| 国产亚洲精品久久久com| 最近最新中文字幕大全电影3| 国产高清不卡午夜福利| 99在线人妻在线中文字幕| 久久久国产成人免费| 精品国内亚洲2022精品成人| 日本五十路高清| av在线天堂中文字幕| 久久人人爽人人片av| 国产精品人妻久久久久久| 国产男靠女视频免费网站| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 亚洲欧美精品自产自拍| 中文字幕熟女人妻在线| 成年av动漫网址| 三级经典国产精品| 亚洲av免费在线观看| 日韩亚洲欧美综合| 国产午夜精品论理片| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 一级黄色大片毛片| 哪里可以看免费的av片| 乱系列少妇在线播放| 午夜视频国产福利| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 成年av动漫网址| 小说图片视频综合网站| 99热只有精品国产| aaaaa片日本免费| 国产成人一区二区在线| 丰满的人妻完整版| 国产麻豆成人av免费视频| 在线播放无遮挡| 国产三级在线视频| 亚洲精品久久国产高清桃花| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 日韩强制内射视频| 高清毛片免费看| 女同久久另类99精品国产91| 色综合站精品国产| 亚洲图色成人| 大型黄色视频在线免费观看| 夜夜爽天天搞| 一级毛片aaaaaa免费看小| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久| 在线观看66精品国产| 日日啪夜夜撸| 搡女人真爽免费视频火全软件 | 美女 人体艺术 gogo| 亚洲欧美成人精品一区二区| 99热网站在线观看| 秋霞在线观看毛片| 在线a可以看的网站| 亚州av有码| 国产成人aa在线观看| 亚洲无线观看免费| 亚洲一级一片aⅴ在线观看| 久99久视频精品免费| 亚洲欧美成人精品一区二区| 久久久久久久久大av| 欧美色视频一区免费| 免费av观看视频| av国产免费在线观看| 18禁在线无遮挡免费观看视频 | 日韩欧美免费精品| 十八禁国产超污无遮挡网站| 两个人的视频大全免费| 亚洲av熟女| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区性色av| 亚洲精品国产成人久久av| 免费看日本二区| 在线观看免费视频日本深夜| 超碰av人人做人人爽久久| 免费黄网站久久成人精品| 69人妻影院| 亚洲精品乱码久久久v下载方式| 日本黄色视频三级网站网址| 乱人视频在线观看| 99久久成人亚洲精品观看| 老熟妇仑乱视频hdxx| 综合色av麻豆| 亚洲国产精品国产精品| 波多野结衣高清无吗| 欧美激情在线99| 丝袜喷水一区| 搡老岳熟女国产| 午夜免费激情av| 麻豆一二三区av精品| 91av网一区二区| 亚洲欧美清纯卡通| 久久精品国产亚洲av涩爱 | 美女cb高潮喷水在线观看| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 女生性感内裤真人,穿戴方法视频| 国产单亲对白刺激| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 国产女主播在线喷水免费视频网站 | 啦啦啦啦在线视频资源| 寂寞人妻少妇视频99o| 中文字幕熟女人妻在线| 99热这里只有是精品50| 五月伊人婷婷丁香| 国产美女午夜福利| 亚洲人成网站在线播放欧美日韩| 久久综合国产亚洲精品| 可以在线观看毛片的网站| 搡老岳熟女国产| 亚洲av免费高清在线观看| 国产成人一区二区在线| 九色成人免费人妻av| 国产精品久久久久久久久免| 在线观看av片永久免费下载| 国模一区二区三区四区视频| 免费看光身美女| 久久久久久久久久黄片| 国产69精品久久久久777片| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 18禁在线无遮挡免费观看视频 | 国产精品免费一区二区三区在线| 极品教师在线视频| 此物有八面人人有两片| 免费观看的影片在线观看| 国产成人一区二区在线| 亚洲国产欧美人成| 国产 一区 欧美 日韩| 欧美日本亚洲视频在线播放| 免费观看的影片在线观看| 国产成人一区二区在线| 女生性感内裤真人,穿戴方法视频| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 日本a在线网址| 天堂网av新在线| 成人三级黄色视频| 久久人人爽人人片av| 国产老妇女一区| 综合色av麻豆| 青春草视频在线免费观看| 国产一区二区在线观看日韩| 热99re8久久精品国产| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 日本五十路高清| 99久久精品国产国产毛片| 欧美绝顶高潮抽搐喷水| 久久人人爽人人爽人人片va| 成年av动漫网址| 亚洲精品日韩在线中文字幕 | 国产综合懂色| 久久精品国产自在天天线| 别揉我奶头~嗯~啊~动态视频| 久久鲁丝午夜福利片| 天堂√8在线中文| 成熟少妇高潮喷水视频| 国产精品福利在线免费观看| 久99久视频精品免费| .国产精品久久| 中国国产av一级| 国产综合懂色| 久久婷婷人人爽人人干人人爱| 在线看三级毛片| 国产极品精品免费视频能看的| 69人妻影院| 国产精品野战在线观看| 国产高清视频在线观看网站| 天堂影院成人在线观看| 日本 av在线| 少妇熟女欧美另类| 国产高潮美女av| 男女视频在线观看网站免费| 国产免费男女视频| 国产精品精品国产色婷婷| av在线老鸭窝| 99久久精品热视频| 精品日产1卡2卡| 久久热精品热| 高清毛片免费观看视频网站| 亚洲专区国产一区二区| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 亚洲av.av天堂| 极品教师在线视频| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 午夜福利在线观看吧| 午夜免费男女啪啪视频观看 | 97超级碰碰碰精品色视频在线观看| 中文在线观看免费www的网站| 一级黄色大片毛片| 亚洲精品色激情综合| 日韩 亚洲 欧美在线| 日韩成人伦理影院| 黄片wwwwww| 午夜福利视频1000在线观看| 人妻丰满熟妇av一区二区三区| 国产老妇女一区| 免费观看人在逋| 真人做人爱边吃奶动态| АⅤ资源中文在线天堂| 男女那种视频在线观看| 一进一出抽搐gif免费好疼| 亚洲激情五月婷婷啪啪| 成人亚洲欧美一区二区av| 在线观看一区二区三区| av卡一久久| 国产av一区在线观看免费| 婷婷精品国产亚洲av| 久久人人爽人人爽人人片va| 又爽又黄a免费视频| 深夜a级毛片| 国产中年淑女户外野战色| 国产午夜福利久久久久久| 99久久无色码亚洲精品果冻| 婷婷亚洲欧美| 91在线精品国自产拍蜜月| 亚洲中文日韩欧美视频| 久久久久久大精品| 国产乱人视频| 久久国内精品自在自线图片| 中文亚洲av片在线观看爽| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 日本a在线网址| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 欧美bdsm另类| 成年av动漫网址| 亚洲精品日韩av片在线观看| 国产精品伦人一区二区| 日产精品乱码卡一卡2卡三| 简卡轻食公司| 国产精品综合久久久久久久免费| 老司机影院成人| 国产精品久久久久久久电影| 男人的好看免费观看在线视频| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 国产伦一二天堂av在线观看| 深爱激情五月婷婷| 在线播放无遮挡| a级毛片免费高清观看在线播放| 亚洲在线观看片| 成人国产麻豆网| 欧美成人精品欧美一级黄| 村上凉子中文字幕在线| 成人二区视频| 日本色播在线视频| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 午夜福利成人在线免费观看| 成人国产麻豆网| 国产91av在线免费观看| 国产伦精品一区二区三区视频9| 欧美极品一区二区三区四区| 久久精品国产自在天天线| 亚洲精品456在线播放app| 亚洲精品在线观看二区| 熟女人妻精品中文字幕| av天堂中文字幕网| 国产精品精品国产色婷婷| 国产av麻豆久久久久久久| 久久精品国产清高在天天线| 成人二区视频| 亚洲av中文av极速乱| 乱系列少妇在线播放| 91久久精品电影网| 午夜激情欧美在线| 国产三级在线视频| 91精品国产九色| 97人妻精品一区二区三区麻豆| 夜夜夜夜夜久久久久| av天堂在线播放| 免费在线观看成人毛片| 国产男靠女视频免费网站| 97超级碰碰碰精品色视频在线观看| 日日啪夜夜撸| 成人二区视频| 男女下面进入的视频免费午夜| 色av中文字幕| 亚洲欧美成人综合另类久久久 | 久久午夜福利片| 国产精品1区2区在线观看.| 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 女人十人毛片免费观看3o分钟| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 国产成人a∨麻豆精品| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 网址你懂的国产日韩在线| 欧美成人a在线观看| 免费无遮挡裸体视频| 欧美成人a在线观看| av天堂中文字幕网| 久久九九热精品免费| 精品一区二区三区人妻视频| 日韩亚洲欧美综合| 97碰自拍视频| 麻豆av噜噜一区二区三区| 国产av在哪里看| 成年免费大片在线观看| 国产一区二区在线观看日韩| 国产乱人偷精品视频| av免费在线看不卡| 欧美最黄视频在线播放免费| 九九热线精品视视频播放| 免费av观看视频| 欧美一区二区亚洲| 国内精品一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 亚洲婷婷狠狠爱综合网| 午夜福利在线观看免费完整高清在 | 国产人妻一区二区三区在| av在线蜜桃| 99久国产av精品国产电影| 九九在线视频观看精品| 久久久久国内视频| 国产亚洲精品久久久久久毛片| videossex国产| 国产高清不卡午夜福利| 久久久久九九精品影院| 日本黄色视频三级网站网址| 亚洲av免费高清在线观看| 精品一区二区三区人妻视频| 别揉我奶头~嗯~啊~动态视频| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 午夜精品在线福利| 国产精品一区二区性色av| 毛片女人毛片| 精品一区二区三区人妻视频| 久久精品夜色国产| 2021天堂中文幕一二区在线观| 女人被狂操c到高潮| 国产三级在线视频| 免费看日本二区| 欧美bdsm另类| 国产av一区在线观看免费| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 99热网站在线观看| 精品一区二区三区av网在线观看| 国国产精品蜜臀av免费| 看黄色毛片网站| 嫩草影院精品99| av在线亚洲专区| 亚洲av一区综合| 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| 欧美不卡视频在线免费观看| 久久午夜福利片| 九九在线视频观看精品| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 国产黄色视频一区二区在线观看 | 欧美一级a爱片免费观看看| 国产一区亚洲一区在线观看| 国产精品电影一区二区三区| a级毛片a级免费在线| 亚洲精华国产精华液的使用体验 | 国模一区二区三区四区视频| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 日韩人妻高清精品专区| a级毛色黄片| 深夜a级毛片| 亚洲美女搞黄在线观看 | 观看免费一级毛片| 国产精品一区二区三区四区久久| 麻豆一二三区av精品| 中国国产av一级| 看免费成人av毛片| 男插女下体视频免费在线播放| 不卡一级毛片| 熟女人妻精品中文字幕| 久久人人精品亚洲av| 99热这里只有精品一区| 亚洲国产欧洲综合997久久,| 日韩成人伦理影院| 久久午夜福利片| 日韩欧美 国产精品| 欧美色欧美亚洲另类二区| 欧美xxxx黑人xx丫x性爽| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 国产精品,欧美在线| 极品教师在线视频| 国产精品福利在线免费观看| 在线免费观看不下载黄p国产| 日本-黄色视频高清免费观看| 高清毛片免费观看视频网站| 欧美最新免费一区二区三区| 一个人观看的视频www高清免费观看| 天天一区二区日本电影三级| 亚洲av一区综合| 久久久久久久久中文| 国产高清三级在线| 免费av毛片视频| 国产乱人偷精品视频| 九九久久精品国产亚洲av麻豆| 九九爱精品视频在线观看| eeuss影院久久| 精品日产1卡2卡| av国产免费在线观看| 成年女人毛片免费观看观看9| 午夜福利18| 免费看日本二区| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 国产 一区精品| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 99热这里只有是精品在线观看| 2021天堂中文幕一二区在线观| 亚洲美女搞黄在线观看 | 一本精品99久久精品77| 久久久久久国产a免费观看| 日韩精品中文字幕看吧| 亚洲最大成人手机在线| 人人妻人人澡欧美一区二区| 亚洲天堂国产精品一区在线| 中国国产av一级| 成人亚洲欧美一区二区av| 最近的中文字幕免费完整| 国内揄拍国产精品人妻在线| 99久久精品一区二区三区| 欧美zozozo另类| 99久久久亚洲精品蜜臀av| 久久草成人影院| 99热只有精品国产| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 日韩欧美 国产精品| 女的被弄到高潮叫床怎么办| 天堂动漫精品| 看免费成人av毛片| 国产真实乱freesex| 看非洲黑人一级黄片| 欧美一级a爱片免费观看看| 天美传媒精品一区二区| 免费观看在线日韩| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 国产精品野战在线观看| 亚洲最大成人av| 伊人久久精品亚洲午夜| 老司机影院成人| 日本与韩国留学比较| 99久国产av精品| 日本 av在线| 亚洲丝袜综合中文字幕| 91久久精品国产一区二区成人| 久久久久久九九精品二区国产| 校园春色视频在线观看| 久久精品综合一区二区三区| 人人妻人人澡人人爽人人夜夜 | 精品熟女少妇av免费看| 亚洲一区高清亚洲精品| 国产高清视频在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 在现免费观看毛片| 美女免费视频网站| 国产探花在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 久久久久久国产a免费观看| 国内精品一区二区在线观看| 国产精品一区www在线观看| 国产高清激情床上av| 久久久欧美国产精品| 成人无遮挡网站| 日产精品乱码卡一卡2卡三| 观看免费一级毛片| 搡老妇女老女人老熟妇| 免费在线观看影片大全网站| 免费黄网站久久成人精品| 淫秽高清视频在线观看| 国产精品久久久久久久电影| 久久草成人影院| 色哟哟·www| 亚洲精品一卡2卡三卡4卡5卡| 一级黄片播放器| 国产精品国产三级国产av玫瑰| 内射极品少妇av片p| 别揉我奶头~嗯~啊~动态视频| 热99在线观看视频| 91在线观看av| 春色校园在线视频观看| 美女免费视频网站| 亚洲av中文字字幕乱码综合| 久久久久国内视频| 国产 一区精品| 国产欧美日韩精品一区二区| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 中文字幕久久专区| 天天躁日日操中文字幕| 婷婷精品国产亚洲av在线| 观看免费一级毛片| 久久6这里有精品| 久久欧美精品欧美久久欧美| 又黄又爽又刺激的免费视频.| 校园人妻丝袜中文字幕| 99久久久亚洲精品蜜臀av| 直男gayav资源| 偷拍熟女少妇极品色| 一区二区三区高清视频在线| 国产av一区在线观看免费| 午夜亚洲福利在线播放| 日本免费一区二区三区高清不卡| 国产在视频线在精品| 午夜亚洲福利在线播放| 久久热精品热| 久久久a久久爽久久v久久| 女人十人毛片免费观看3o分钟| 神马国产精品三级电影在线观看| av在线老鸭窝| 免费人成视频x8x8入口观看| 亚洲精品一区av在线观看| 联通29元200g的流量卡|