• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal 4-qualifiable fluorene-based building blocks for potential optoelectronic applications

    2023-01-30 06:48:56XingAnJinghoYngMnXuLiliSunLuingBiKiWngZhiqingZhuoYingyingZhengJinyiLinXuehuDingYuyuLiuLinghiXieChengrongYinWeiHung
    Chinese Chemical Letters 2022年12期

    Xing An,Jingho Yng ,Mn Xu,Lili Sun,Luing Bi ,Ki Wng ,Zhiqing Zhuo ,Yingying Zheng ,Jinyi Lin,*,Xuehu Ding ,Yuyu Liu,Linghi Xie ,Chengrong Yin,Wei Hung ,,c,*

    a Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211816,China

    b State Key Laboratory of Organic Electronics and Information Displays&Institute of Advanced Materials(IAM),Nanjing University of Posts&Telecommunications,Nanjing 210023,China

    c Frontiers Science Center for Flexible Electronics(FSCFE),MIIT Key Laboratory of Fle xible Electronics(KLoFE),Northwestern Polytechnical University,Xi’a n 710072,China

    d Electrical Engineering College,Nanjing Vocational University of Industry Technology,Nanjing 210 023,China

    Keywords:Side-chain coupling Small molecular emitter Morphological stability Deep-blue emission Optoelectronic device

    ABSTRACT In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building block is crucial to design and manufacture high performance and stable conjugated molecules for optoelectronic application.Herein,we originally demonstrated a universal 4-qualifiable fluorene-based building block,which is a fundamental molecular segment to functionalize and obtain novel conjugated materials.Compared to the traditional modification at 9-site,additional 4-position functionalization provided an exciting blueprint to not only tune electronic structure and excited state via p-n molecular design engineering and space charge-transfer strategy,but also allow for optimizing intermolecular arrangement and obtaining solution-processing ability.The introduction of the 4-site substituent in fluorene based semiconductors may endow materials with unique properties.Finally,we successfully prepared two stable deep-blue light-emitting conjugated polymer,PODOPF and PODOF,by utilizing the 4-substituent fluorene based building block.It is believable that the performance,stability and processibility of reported outstanding fluorene-based conjugated molecules can be further optimized based on this universal building block.

    In last decades,conjugated materials are widely applied in organic light-emitting diodes(OLEDs),organic solar cell and organic field-effect transistor(OFET)and bio-chem sensor,associated with their easily structural modification,intrinsic low-cost processing and flexible ability[1–12].Similar to the industrial manufacturing,modular production of conjugated materials enables them to present a precise energy-level tunability,controllable structural modification,and low-cost large-scale preparation,analogous to Lego(Fig.1a).As an effective strategy to precisely tune electronic structures,p(D)-n(A)molecular design principle provide an universal tool to control the intramolecular electron delocalizationviacontrolling the fraction of p-or n-type segment,and bondedπbridge(Fig.1b)[13–18].Compared to directly chemical-bonded engineering,steric hindranceπ-bridge(included rigid and soft type)between two p-or n-type units is an alternative to not only modulate electronic structure and photophysical behavior,but also dominate the intermolecular arrangement and film morphological stability.Therefore,outstanding building block is an effective platform to design high-performance conjugated molecules,including both enhancement of optoelectronic property and device operation stability.In this regard,construction of novel building block is crucial to obtain novel and high-performance conjugated materials for optoelectronic applications.

    Fig.1.Modular production of conjugated materials.(a)Variable modular synthons for conjugated molecules.(b)Tuning electronic structure of conjugated materials via p-n design principle.(c)Chemical structure of conventional fluorene building blocks.

    As one of the important p-type andπ-bridge aromatic unit,fluorene,which has large bang-gap,multi-functional sites and diverse topological structure,is a mostly building block to construct functional materials,including red-green-blue light-emitting,host or guest,charge-transport and interface modified materials,to meet the variable requirement of optoelectronic devices[10,13,14,18-26].Up to date,most fluorene based building blocks are obtainedviaintroducing various functional group at 9-sites,such as 9,9′-spirobifluorene(SBF)[13,26-28],9,9-diphenylfluorene(DBF)[19,22,29,30]and spiro[fluorene-9,9′-xanthene](SFX)(Fig.1c)[23,24,31,32].Generally speaking,2-and 7-sites of fluorene are used as active center to bond with other aromatic units,to tune intramolecular electronic structure and obtain multifunctional photoelectrical property(Fig.1c).For example,n-type units are introduced at 2-and 7-sites to reduce band-gap and improve charge transport ability[21],and heteroatomic aromatic group at 9-and 1-site always controlled the triplet energy levelviacontrolling space charge-transfer for constructing host and thermally activated delayed fluorescence(TADF)materials[18].More interestingly,unique multi-dimensional structure of the chiral sp3functional position at 9-site also provided a platform to control energy level,topological structure and conformation behavior,which are the key factors to improve photoelectrical property and morphological stability for optoelectronic applications.However,compared to widely functionalize at 1-,2-,7-and 9-site of fluorene,there is rare attention paid on designing fluorene-based moleculesviaintroducing the aromatic units at 4-site,attributed to the lack fast and efficient synthesis methods.In fact,beyond substituted at the other positions,exploration of additional 4-functionalization for fluorene-based materials present some advantages as follow:i)New substituted position provided more possible and space to tune electronic structure;ii)Asymmetrical substitute of fluorene at two side(backbone structure is the center line)can easily control hierarchical structure and enhance photophysical property,such as effectively suppress residual green-band emission(Fig.1c);iii)Flexible pendant side-chain at 4-site enable all reported small molecule to obtain solution-processing ability and simultaneous slightly influenced on the electronic structures.Herein,we demonstrated a novel 4-qualifiable fluorene-based building block,which is a fundamental synthon to obtain all fluorene-based conjugated materials for optoelectronic devices.

    Up to date,most of fluorene-based materials are obtained from original products,such as fluorene(obtained from coke tar)or fluorenone building blocks.The common synthetic route of 9-substituted fluorene has been shown in Schemes 1a-c.These general methods can effectively extend the number of substituents at 9-site and endow polymers with unique properties,such as theβ-conformation of PFO[33–35].However,only the substituents at 9-site exposes the other side that may create an intermolecular electronic coupling in the aggregation state.The formation of the residual aggregation defects is harmful to the emission spectral stability and property of deep-blue light-emitting films and devices.Fortunately,the modifiable 4-substituted fluorene was broadened by Baeyer-Villeger oxidative rearrangement(Scheme 2).The synergistic effect of 4-and 9-substituents may endow materials unique photophysical properties.A typical polyfluorene,PODPF,with an octyloxy substituent at 4-site,has been explored and proved to have a uniqueβ-conformation and good stability[36–38].The further investigation also suggested that 4-substituted fluorene is of great significance to the basic research and development of optoelectronics and flexible electronics[22,29,30,39,40].Nevertheless,after extensive experiments we also found that this synthetic route has its intrinsic defects that the type of 9-site substituents is extremely limited.Therefore,it is of great importance for developing optoelectronics and flexible electronics to explore a new synthetic route to construct a building block that can keep the number of 9-site substituents while introducing the modifiable substituents at 4-site.

    Scheme 1.The known common synthetic route of 9-substituted fluorene.

    In the previous synthetic route(Scheme 2),the limited variety of Grignard’s reagents may be the major obstacle to obtain the number of 9-site substituents while introducing the modifiable substitution to 4-site.As listed in Scheme 2,several monomers with different substitutions at 4-and 9-site were prepared by the traditional synthetic route.Although organolithium reagents can expand the selectivity of the 9-site substituents,strong electron donating of 9-site units may lead to a dehydration product.The target product 2 cannot be obtained by the previous synthetic route.As presented in Scheme 3a,product 2e’(88%yield)was gained by adding(4-methoxyphenyl)magnesium bromide to compound 1 at 85oC.For compound 2,the strong electron-donated substituents on the tertiary carbon may increase the leaving ability of the tertiary hydroxyl group,thus the dehydration products are formed.To verify our assumption,2a was put in an acidic condition to leave the tertiary hydroxyl group.As displayed in Scheme 3b,2a was solved by dichloromethane and stirred with an aqueous hydrochloric acid solution with pH 3,and 2a was completely reacted to form 2a’after 1 h(characterized by1H NMR,Fig.S12 in Supporting information).This result suggested that while the leaving ability of the tertiary hydroxyl group is enhanced,it is easy to dehydrate with the hydroxyl group at 2-site and obtain the dehydration product.For the double 9-substituted of fluorene,the dehydration reaction caused by strong electron donating groups is the greatest difficulty in the previous synthetic route.Beyond that,asymmetric substitutions at 9-site are also difficult to achieveviathe previous synthetic route(Scheme 2).Therefore,a new synthetic method to obtain a novel 4-aualifiable building block is necessary to explore for constructing a series of fluorene-based conjugated molecules.

    Scheme 2.Scope of the previous synthetic route of 4-substituted fluorene by traditional Baeyer-Villeger oxidative rearrangement.

    Scheme 3.(a)The dehydration product 2e’obtained via the previous synthetic route.(b)The dehydration product 2a’obtained from 2a in acidic condition.

    Subsequently,novel 4-modifiable fluorene building blocks are developed by new preparative route,as shown in Scheme 4.This synthetic route contains three main steps,Baeyer-Villeger oxidative rearrangement,reduction ring-open reaction and oxidation cyclization reaction.A potential 4-site can be generated by the Baeyer-Villeger oxidative rearrangement.The reduction ring-open reaction is positive to release the 4-site for subsequent modification,and the oxidation cyclization reaction will finally form the building block with 4-site substituents.In the ring-open reaction(Scheme 4),1(1.06 g,3 mmol)was solved in THF(15 mL)in nitrogen,then 6 mL THF solution of LiAlH4(1 mol/L,2 equiv.)was added into the mixture.After stirred for 30 min,the mixture was quenched by 100 mL hydrochloric acid aqueous solution(0.25 mol/L)to give 5 in 98%yield.In this reaction,long reaction time under a high temperature may result into the formation of excessive byproducts,that the bromine atoms may be reduced to hydrogen.In the subsequent 4-site substitution reaction,the yield of 6a-6c was 86%~92%.Besides,we also explored two kinds of oxidation cyclization,one-step[41]and two-step oxidation cyclization[42].As shown in Scheme 5,in one-step cyclization reaction,3 equiv.ofn-BuOOH and 0.1 equiv.of TBAI were stirred with 6 in DCE at 100oC.However,the yield of 8 was only 20%~25%.In the twostep cyclization,first 0.1 equiv.of TEMPO and 1.2 equiv.of NaOCl were used to oxidize 6 to 7.The yield of 7 was more than 90%.In the subsequent cyclization reaction,0.1 equiv.of TBAB and 1.2 equiv.of K2S2O8were stirred with 7,providing 8 in 54%~62%yield.The total yield of 8 from two-step oxidation and cyclization reaction was 51%~56%,which is more than twice the yield of onestep oxidation cyclization.Therefore,the building block with a 4-site substituent was successfully prepared by oxidation-reductionoxidation method,and the total yield can be 38%~46%from 2,7-dibromo-9H-fluoren-9-one to the building block with 4-site substituent.

    Scheme 4.The novel synthetic method for 4-substituted fluorene-based building block.

    After obtaining the building block,4 and 9-substituted fluorenes can be preparedviathe common synthetic route in Scheme 1.Finally,two deep-blue light-emitting polymers,PODOPF and PODOF,were constructed by using 8a.As shown in Scheme 6a,9 was firstly prepared by solving 8a and phenol(10 equiv.)in chloroform(CHCl3)and reacting at 55oC for 24 h after adding 5 mL methanesulfonic acid.The yield of 9 can achieve 98%.The monomer of PODOPF was obtainedviathe nucleophilic substitution in EtOH,giving 10 in 91%yield.PODOPF was finally obtainedviaYamamoto coupling with a yield of 71%.To prepare PODOF,11 was first reduced from 8a by Et3SiH(6 equiv.)and BF3?Et2O(2 equiv.),as presented in Scheme 6b.The yield of 11 was 95%.Then the nucleophilic substitution reaction was initiated by the 9-site carbon of 11 in THF with 1-bromooctane,providing 12 in 88%yield.PODOF was also obtainedviaYamamoto coupling and had a yield of 73%.As displayed in Fig.S46(Supporting information),both the two polymers have a high decomposition temperature(Td)that more than 400oC,and the glass-transition temperature(Tg)of PODOF and PODOPF was at about 50oC and 150oC,respectively.

    Fig.2.(a)The absorption and PL spectra of PODOPF and PODOF film and diluted toluene solution(10-3 g/L).(b)The fluorescent lifetime of PODOPF and PODOF.

    Scheme 5.Scope of the new synthetic method.

    Scheme 6.The synthetic route of(a)PODOPF and(b)PODOF.

    The optical property of PODOPF and PODOF was shown in Fig.2.Absorption(Abs)and photoluminescence(PL)spectra of PODOPF and PODOF toluene solution were similar,owing to the same backbone structure.The Abs peak of PODOPF and PODOF in diluted toluene solution was both estimated at 391 nm.Corresponding PL spectra of PODOPF and PODOF solution both consisted of three emission peaks at 423 nm,450 nm and 484 nm,associated to the 0–0,0–1 and 0–2 vibronic transitions of a single polymer chain.Besides,the three vibronic transition emission peaks of PODOPF film were estimated at 430 nm,457 nm and 492 nm,respectively.The corresponding emission peaks of PODOF film were at 429 nm,456 nm and 487 nm,respectively.The Abs peak of PODOF was still at 391 nm,but PODOPF present a maximum Abs peak at 397 nm together with a shoulder peak at 386 nm,associated to the 0-0 and 0-1 vibronic transitions.As shown in Fig.2b,the fluorescent lifetime of PODOPF and PODPF was 319 ps and 289 ps,respectively.As listed in Table S1(Supporting information),the PLQY of PODOPF and PODOF spin-coated film was 36.8%and 26.2%,respectively.According to the fluorescent lifetime and PLQY,we calculated their radiative transition rate(kr)and non-radiative transition rate(knr).As listed in Table S1,thekrandknrof PODOPF was 1.15×109s-1and 1.98×109s-1,respectively.By contrast,PODOF has a lowerkr(9.07×108s-1)and higherknr(2.55×109s-1),which revealed the reason for the lower PLQY of PODOF.

    Finally,we prepared the polymer light-emitting device(PLED)by using PODOPF and PODOF as the emitter layer(EML).We first measured the energy levelsviacyclic voltammetry(CV).As shown in Fig.S47(Supporting information),the HOMO of PODOPF and PODOF was calculated as?5.762 eV and?5.713 eV,respectively,and the corresponding LUMO was about?2.007 eV and?1.938 eV,respectively.According to the HOMO and LUMO of the EMLs,devices with following structure were fabricated:ITO(50 nm)/PEDOT:PSS(30 nm)/EML(40 nm)/TPBi(25 nm)/LiF(1 nm)/Al(100 nm).The electroluminescence(EL)spectra of PODOPF and PODOF were shown Figs.3a and c.Both the two devices exhibited a deep-blue emission and had a tune-on voltage of 4.5 V.As shown in Figs.3b and d,the maximum luminance of PODOPF and PODOF was 753 cd/m2and 773 cd/m2.The external quantum efficiency(EQE),current efficiency(CE)and power efficiency(PE)curvesversuscurrent density of the two devices were shown in Fig.S48(Supporting information).For PODOPF device,the maximum EQE was 0.53%as the current density reaches 14.5 mA/cm2,associated with the CEmax=0.63 cd/A and PEmax=0.40 lm/W.For PODOF device,the maximum EQE was 0.62%,CEmax=0.57 cd/A and PEmax=0.35 lm/W.The CIE 1931 chromaticity coordinate of PODOPF and PODOF device was(0.17,0.11)and(0.16,0.09),respectively.The PLED results showed that polyfluorenes with 4-site modifiable substituent had exploring potential in optoelectronics.

    Fig.3.(a)EL spectrum of PODOPF.(b)Current density and luminance versus driving voltage characteristics of PODOPF.(c)EL spectrum of PODOF.(d)Current density and luminance versus driving voltage characteristics of PODOF.

    In summary,we demonstrated a universal synthetic method to construct 4-qualifiable fluorene-based building blocks for optoelectronic applications.Compared to previous units,variable substitutes at 4-site enable the reported fluorene-based materials to obtain easily structural modification and solution-processing ability but slightly influenced on the electronic structures.The new synthetic route contains three main steps with a high yield consisted of Baeyer-Villeger oxidative rearrangement,ring-open reaction(reduction)and cyclization reaction(oxidation).The total yield of the building blockviathe new synthetic method can be~50%.Finally,two efficient blue-light-emitting polymers,PODOPF and PODOF,are prepared by utilizing the building block 8a,and the PLEDs of the two polymers were successfully fabricated.This result also implied the significance and effectiveness of the fluorene based building block with 4-site modifiable substituent for optoelectronic application.

    Declaration of competing interest

    There is no conflict of interest of this work

    Acknowledgments

    The work was supported by the Natural Science Foundation of Jiangsu Province(No.BK20200700),National Natural Science Foundation of China(Nos.22075136,61874053),Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009),“High-Level Talents in Six Industries”of Jiangsu Province(No.XYDXX-019),Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX21_1097,KYCX21_0771),Nanjing Vocational University of Industry Technology Start-up Fund(No.YK21-02-07),the open research fund from Anhui Province Key Laboratory of Environment-friendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.102.

    日韩,欧美,国产一区二区三区 | 国产在线男女| 国产精品人妻久久久久久| 国产熟女欧美一区二区| 国产精品免费一区二区三区在线| 欧美性感艳星| 免费看av在线观看网站| 亚洲性久久影院| 老熟妇仑乱视频hdxx| 国产精品国产三级国产av玫瑰| 嫩草影院入口| 麻豆av噜噜一区二区三区| 亚洲三级黄色毛片| 老熟妇仑乱视频hdxx| 天堂动漫精品| 国产片特级美女逼逼视频| 国产又黄又爽又无遮挡在线| 伦理电影大哥的女人| 深夜a级毛片| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 一个人看的www免费观看视频| 国产真实伦视频高清在线观看| 日韩强制内射视频| 夜夜夜夜夜久久久久| 小蜜桃在线观看免费完整版高清| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 国产亚洲精品久久久com| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 国产精品久久久久久精品电影| 少妇猛男粗大的猛烈进出视频 | 伊人久久精品亚洲午夜| 99热这里只有是精品50| 国产精品不卡视频一区二区| 国产视频一区二区在线看| 自拍偷自拍亚洲精品老妇| 在线免费观看的www视频| 我要搜黄色片| 精品一区二区三区视频在线| 亚洲精品456在线播放app| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 国产精品一区二区性色av| 国内揄拍国产精品人妻在线| 久久久久久久午夜电影| 亚洲高清免费不卡视频| 国产视频内射| 国内精品久久久久精免费| 久久久久国产网址| 两性午夜刺激爽爽歪歪视频在线观看| 99riav亚洲国产免费| 午夜激情欧美在线| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品成人久久小说 | 夜夜看夜夜爽夜夜摸| 日本黄色视频三级网站网址| 老熟妇乱子伦视频在线观看| 日本与韩国留学比较| 成人漫画全彩无遮挡| 精品无人区乱码1区二区| 少妇的逼水好多| 久久欧美精品欧美久久欧美| 偷拍熟女少妇极品色| 韩国av在线不卡| 中文资源天堂在线| 永久网站在线| 全区人妻精品视频| 99热这里只有是精品在线观看| 熟女人妻精品中文字幕| 国模一区二区三区四区视频| 少妇熟女欧美另类| 最新在线观看一区二区三区| 啦啦啦啦在线视频资源| 尤物成人国产欧美一区二区三区| 国产激情偷乱视频一区二区| 欧美日韩国产亚洲二区| 1000部很黄的大片| 村上凉子中文字幕在线| 一区二区三区四区激情视频 | 啦啦啦韩国在线观看视频| 亚洲一区二区三区色噜噜| 亚洲av成人av| 最新在线观看一区二区三区| 欧美最新免费一区二区三区| 九色成人免费人妻av| 国产成人aa在线观看| 赤兔流量卡办理| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女| 国产91av在线免费观看| 国产成人精品久久久久久| 久久精品影院6| 午夜激情福利司机影院| 欧美不卡视频在线免费观看| 五月玫瑰六月丁香| 成年免费大片在线观看| 免费av不卡在线播放| 国产精品免费一区二区三区在线| 少妇熟女欧美另类| 波野结衣二区三区在线| 一级毛片电影观看 | 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 亚洲av五月六月丁香网| 国产亚洲91精品色在线| 国产单亲对白刺激| 熟女电影av网| 久久国产乱子免费精品| 18禁黄网站禁片免费观看直播| 三级毛片av免费| 久久久国产成人精品二区| 成年女人毛片免费观看观看9| 精品久久久久久久久久久久久| 天堂影院成人在线观看| 亚洲成人久久性| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 欧美激情国产日韩精品一区| 久久久久久伊人网av| 日本一二三区视频观看| 国产午夜精品论理片| av国产免费在线观看| 精品久久久久久久末码| 国产精品电影一区二区三区| 一a级毛片在线观看| 久久午夜福利片| 真实男女啪啪啪动态图| 免费看a级黄色片| 岛国在线免费视频观看| 亚洲在线观看片| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 看片在线看免费视频| 国产精品福利在线免费观看| 国模一区二区三区四区视频| 久久亚洲国产成人精品v| 在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 久久久久九九精品影院| 亚洲丝袜综合中文字幕| 少妇被粗大猛烈的视频| 国产真实乱freesex| 国产伦一二天堂av在线观看| 99热只有精品国产| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 亚洲自偷自拍三级| 中出人妻视频一区二区| 免费观看在线日韩| 校园人妻丝袜中文字幕| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 成年av动漫网址| 可以在线观看毛片的网站| 悠悠久久av| av免费在线看不卡| 亚洲va在线va天堂va国产| 国产精品永久免费网站| 99久久九九国产精品国产免费| 日韩中字成人| av在线播放精品| 女的被弄到高潮叫床怎么办| 成人高潮视频无遮挡免费网站| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 免费看日本二区| 国产成人一区二区在线| 久久久午夜欧美精品| 国产精品爽爽va在线观看网站| 99热全是精品| 国产亚洲精品综合一区在线观看| 日韩av不卡免费在线播放| 亚洲国产欧美人成| 精品人妻熟女av久视频| 免费一级毛片在线播放高清视频| 国产高潮美女av| 成年女人永久免费观看视频| 狂野欧美白嫩少妇大欣赏| 日韩精品中文字幕看吧| 成人特级av手机在线观看| 极品教师在线视频| 此物有八面人人有两片| 国产精品久久久久久av不卡| 欧美日本视频| 国产高清视频在线观看网站| 亚洲不卡免费看| 久久久久久九九精品二区国产| 天美传媒精品一区二区| 真人做人爱边吃奶动态| 久久久久久久久大av| 久久人人爽人人片av| 亚洲av五月六月丁香网| 国产一区二区三区在线臀色熟女| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 亚洲自拍偷在线| 乱人视频在线观看| 国产精品免费一区二区三区在线| 国产女主播在线喷水免费视频网站 | 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看 | 黄色视频,在线免费观看| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 午夜激情欧美在线| 不卡一级毛片| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看美女被高潮喷水网站| 国产大屁股一区二区在线视频| av在线观看视频网站免费| 在线观看午夜福利视频| 久久久久国产网址| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 色综合亚洲欧美另类图片| 久久精品国产亚洲网站| 亚洲成人久久性| av卡一久久| 午夜免费男女啪啪视频观看 | 国产精品人妻久久久久久| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 1000部很黄的大片| 最近手机中文字幕大全| 黄色一级大片看看| 一级毛片久久久久久久久女| 成人精品一区二区免费| 国产成年人精品一区二区| 久久草成人影院| 国产精品综合久久久久久久免费| 最后的刺客免费高清国语| 国产精品不卡视频一区二区| 哪里可以看免费的av片| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 中出人妻视频一区二区| 日本与韩国留学比较| 日韩亚洲欧美综合| 亚洲人成网站在线播放欧美日韩| 少妇猛男粗大的猛烈进出视频 | 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 婷婷精品国产亚洲av| 18禁在线播放成人免费| 精品久久久久久久人妻蜜臀av| 日韩制服骚丝袜av| 国产91av在线免费观看| 色在线成人网| 久久久久性生活片| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 嫩草影院新地址| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 欧美3d第一页| 久久精品人妻少妇| 亚洲国产精品成人久久小说 | 丰满人妻一区二区三区视频av| 成人二区视频| 蜜臀久久99精品久久宅男| 免费观看的影片在线观看| 久久久久国产精品人妻aⅴ院| 成人特级av手机在线观看| 亚洲天堂国产精品一区在线| 日本 av在线| 99热这里只有是精品在线观看| 亚洲一区二区三区色噜噜| 性插视频无遮挡在线免费观看| 国产午夜精品论理片| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| 男人的好看免费观看在线视频| 国内精品一区二区在线观看| 国产黄色小视频在线观看| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看 | 日韩欧美国产在线观看| 久久亚洲精品不卡| 晚上一个人看的免费电影| 亚洲精品在线观看二区| 老司机影院成人| 变态另类成人亚洲欧美熟女| 美女内射精品一级片tv| 国产黄片美女视频| 嫩草影院入口| 波野结衣二区三区在线| 午夜福利在线观看吧| 亚洲精华国产精华液的使用体验 | 亚洲成人久久爱视频| 波多野结衣高清作品| 久久人人爽人人片av| 伊人久久精品亚洲午夜| 亚洲熟妇中文字幕五十中出| 又爽又黄无遮挡网站| 午夜福利在线观看免费完整高清在 | 菩萨蛮人人尽说江南好唐韦庄 | 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 青春草视频在线免费观看| 久久国产乱子免费精品| 亚洲四区av| 欧美人与善性xxx| 香蕉av资源在线| 秋霞在线观看毛片| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 国产91av在线免费观看| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频 | 日韩国内少妇激情av| 国产男人的电影天堂91| 晚上一个人看的免费电影| 成人av一区二区三区在线看| 美女内射精品一级片tv| 三级男女做爰猛烈吃奶摸视频| 嫩草影院新地址| 国产伦一二天堂av在线观看| 日本免费a在线| 欧美日本视频| 日韩欧美免费精品| 日韩国内少妇激情av| 亚洲av一区综合| 国产亚洲精品av在线| 久久久精品94久久精品| 麻豆一二三区av精品| 九色成人免费人妻av| 黄色欧美视频在线观看| 有码 亚洲区| 精品久久久噜噜| 亚州av有码| 天堂影院成人在线观看| 日韩欧美三级三区| 中文字幕久久专区| 久久精品综合一区二区三区| 赤兔流量卡办理| 欧美性猛交黑人性爽| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 午夜久久久久精精品| 2021天堂中文幕一二区在线观| 国产精品久久视频播放| 亚洲在线观看片| av.在线天堂| 长腿黑丝高跟| 如何舔出高潮| 两个人的视频大全免费| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站| 在线免费十八禁| 一区二区三区高清视频在线| 亚洲人与动物交配视频| 人人妻人人澡欧美一区二区| 91精品国产九色| 国产 一区精品| 国产单亲对白刺激| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 草草在线视频免费看| 国产久久久一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲不卡免费看| 久久99热这里只有精品18| 国产乱人偷精品视频| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 床上黄色一级片| 国产伦精品一区二区三区四那| 色哟哟·www| 麻豆一二三区av精品| 亚洲精品国产成人久久av| 国产亚洲精品综合一区在线观看| 午夜亚洲福利在线播放| 亚洲色图av天堂| 国产成人a∨麻豆精品| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 97碰自拍视频| 欧美中文日本在线观看视频| 欧美bdsm另类| 久久久久精品国产欧美久久久| 丰满的人妻完整版| 黄色欧美视频在线观看| 露出奶头的视频| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 大香蕉久久网| 男插女下体视频免费在线播放| 亚洲一区二区三区色噜噜| 人妻少妇偷人精品九色| av天堂在线播放| 最新在线观看一区二区三区| 日韩精品有码人妻一区| 观看免费一级毛片| 五月玫瑰六月丁香| 在线国产一区二区在线| 一夜夜www| 黄色一级大片看看| 亚洲欧美清纯卡通| 国产免费一级a男人的天堂| 久99久视频精品免费| 午夜福利在线在线| 日本黄色片子视频| 搡女人真爽免费视频火全软件 | 欧美日韩精品成人综合77777| 成年av动漫网址| 91麻豆精品激情在线观看国产| 国产在线精品亚洲第一网站| 九九热线精品视视频播放| 国产精品不卡视频一区二区| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 久久午夜亚洲精品久久| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 九九久久精品国产亚洲av麻豆| 真实男女啪啪啪动态图| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验 | 欧美极品一区二区三区四区| 成人漫画全彩无遮挡| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| 国产成人精品久久久久久| 国产精品美女特级片免费视频播放器| 国产一区二区三区av在线 | 欧美日韩综合久久久久久| 日韩亚洲欧美综合| 人人妻人人澡欧美一区二区| 亚洲不卡免费看| 亚洲精品色激情综合| 麻豆一二三区av精品| 综合色丁香网| 国产老妇女一区| 亚洲国产精品成人久久小说 | 欧美日韩乱码在线| 在线a可以看的网站| 男人和女人高潮做爰伦理| 男人舔奶头视频| 极品教师在线视频| 日韩欧美三级三区| 18+在线观看网站| 最近中文字幕高清免费大全6| 国产高清不卡午夜福利| 亚洲欧美中文字幕日韩二区| 亚洲精品日韩av片在线观看| 国产大屁股一区二区在线视频| 女生性感内裤真人,穿戴方法视频| 亚洲性久久影院| 六月丁香七月| 国产爱豆传媒在线观看| 极品教师在线视频| 亚洲自偷自拍三级| 日日摸夜夜添夜夜添av毛片| av卡一久久| 人妻夜夜爽99麻豆av| 国产日本99.免费观看| 日韩精品有码人妻一区| 青春草视频在线免费观看| 欧美性感艳星| 女同久久另类99精品国产91| 久久精品夜色国产| 日韩精品有码人妻一区| 大又大粗又爽又黄少妇毛片口| 日韩强制内射视频| 亚洲av二区三区四区| 久久久色成人| 色在线成人网| 最近最新中文字幕大全电影3| 丰满乱子伦码专区| 黄色一级大片看看| 麻豆成人午夜福利视频| 18禁黄网站禁片免费观看直播| 小说图片视频综合网站| 国产亚洲精品久久久com| 人人妻,人人澡人人爽秒播| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 欧美绝顶高潮抽搐喷水| 给我免费播放毛片高清在线观看| av在线观看视频网站免费| 日本在线视频免费播放| 久久久精品94久久精品| 网址你懂的国产日韩在线| 别揉我奶头~嗯~啊~动态视频| 国产 一区精品| 久久久a久久爽久久v久久| 久久久精品欧美日韩精品| 三级经典国产精品| 日韩 亚洲 欧美在线| 亚洲成人中文字幕在线播放| 午夜精品一区二区三区免费看| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 一进一出抽搐动态| 久久精品久久久久久噜噜老黄 | 久久久a久久爽久久v久久| 舔av片在线| 亚洲成人av在线免费| 非洲黑人性xxxx精品又粗又长| 热99在线观看视频| 少妇的逼水好多| 欧美成人a在线观看| 精品人妻偷拍中文字幕| 亚洲不卡免费看| 久久久久久国产a免费观看| 国产精品一区二区三区四区免费观看 | 欧美激情久久久久久爽电影| 久久久色成人| 欧美日韩精品成人综合77777| 午夜精品一区二区三区免费看| 日本免费a在线| 永久网站在线| 国产v大片淫在线免费观看| 亚洲国产欧洲综合997久久,| 日韩国内少妇激情av| 精品欧美国产一区二区三| 97人妻精品一区二区三区麻豆| 真实男女啪啪啪动态图| 午夜亚洲福利在线播放| 国产精品一区二区性色av| 蜜桃亚洲精品一区二区三区| 国产亚洲91精品色在线| 黄色一级大片看看| 一进一出抽搐动态| 色综合亚洲欧美另类图片| 日韩在线高清观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久欧美精品欧美久久欧美| 一本精品99久久精品77| 在线观看美女被高潮喷水网站| 永久网站在线| 成熟少妇高潮喷水视频| 国产一区二区亚洲精品在线观看| 免费av不卡在线播放| 麻豆乱淫一区二区| 在线免费观看的www视频| 内射极品少妇av片p| 日韩亚洲欧美综合| 一区福利在线观看| 看黄色毛片网站| 最后的刺客免费高清国语| 午夜福利18| 人妻丰满熟妇av一区二区三区| 亚洲欧美日韩卡通动漫| 国产乱人视频| av黄色大香蕉| 一个人免费在线观看电影| 日本黄大片高清| 欧美极品一区二区三区四区| 亚洲无线在线观看| 精品不卡国产一区二区三区| a级毛色黄片| 五月玫瑰六月丁香| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 亚洲av.av天堂| 国产午夜精品论理片| 好男人在线观看高清免费视频| 最新中文字幕久久久久| 亚洲精华国产精华液的使用体验 | 免费观看精品视频网站| av卡一久久| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 男女视频在线观看网站免费| av天堂在线播放| 成人美女网站在线观看视频| 色播亚洲综合网| 欧美又色又爽又黄视频| 国产成人a区在线观看| 久久6这里有精品| 嫩草影视91久久| 真实男女啪啪啪动态图| 亚洲av熟女| 欧美又色又爽又黄视频| 精品久久久久久久久久免费视频| 久久6这里有精品| 欧美又色又爽又黄视频| 亚洲在线自拍视频| 夜夜爽天天搞| 午夜福利18| 国产欧美日韩精品一区二区| 欧美成人一区二区免费高清观看| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清在线视频| 六月丁香七月| 深夜a级毛片| 少妇的逼水好多| 亚洲四区av| 久久精品国产亚洲av香蕉五月| 国产精品亚洲美女久久久| 国产真实乱freesex| 香蕉av资源在线| 久久久久国产网址| 麻豆乱淫一区二区| 亚洲熟妇熟女久久|