• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal 4-qualifiable fluorene-based building blocks for potential optoelectronic applications

    2023-01-30 06:48:56XingAnJinghoYngMnXuLiliSunLuingBiKiWngZhiqingZhuoYingyingZhengJinyiLinXuehuDingYuyuLiuLinghiXieChengrongYinWeiHung
    Chinese Chemical Letters 2022年12期

    Xing An,Jingho Yng ,Mn Xu,Lili Sun,Luing Bi ,Ki Wng ,Zhiqing Zhuo ,Yingying Zheng ,Jinyi Lin,*,Xuehu Ding ,Yuyu Liu,Linghi Xie ,Chengrong Yin,Wei Hung ,,c,*

    a Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211816,China

    b State Key Laboratory of Organic Electronics and Information Displays&Institute of Advanced Materials(IAM),Nanjing University of Posts&Telecommunications,Nanjing 210023,China

    c Frontiers Science Center for Flexible Electronics(FSCFE),MIIT Key Laboratory of Fle xible Electronics(KLoFE),Northwestern Polytechnical University,Xi’a n 710072,China

    d Electrical Engineering College,Nanjing Vocational University of Industry Technology,Nanjing 210 023,China

    Keywords:Side-chain coupling Small molecular emitter Morphological stability Deep-blue emission Optoelectronic device

    ABSTRACT In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building block is crucial to design and manufacture high performance and stable conjugated molecules for optoelectronic application.Herein,we originally demonstrated a universal 4-qualifiable fluorene-based building block,which is a fundamental molecular segment to functionalize and obtain novel conjugated materials.Compared to the traditional modification at 9-site,additional 4-position functionalization provided an exciting blueprint to not only tune electronic structure and excited state via p-n molecular design engineering and space charge-transfer strategy,but also allow for optimizing intermolecular arrangement and obtaining solution-processing ability.The introduction of the 4-site substituent in fluorene based semiconductors may endow materials with unique properties.Finally,we successfully prepared two stable deep-blue light-emitting conjugated polymer,PODOPF and PODOF,by utilizing the 4-substituent fluorene based building block.It is believable that the performance,stability and processibility of reported outstanding fluorene-based conjugated molecules can be further optimized based on this universal building block.

    In last decades,conjugated materials are widely applied in organic light-emitting diodes(OLEDs),organic solar cell and organic field-effect transistor(OFET)and bio-chem sensor,associated with their easily structural modification,intrinsic low-cost processing and flexible ability[1–12].Similar to the industrial manufacturing,modular production of conjugated materials enables them to present a precise energy-level tunability,controllable structural modification,and low-cost large-scale preparation,analogous to Lego(Fig.1a).As an effective strategy to precisely tune electronic structures,p(D)-n(A)molecular design principle provide an universal tool to control the intramolecular electron delocalizationviacontrolling the fraction of p-or n-type segment,and bondedπbridge(Fig.1b)[13–18].Compared to directly chemical-bonded engineering,steric hindranceπ-bridge(included rigid and soft type)between two p-or n-type units is an alternative to not only modulate electronic structure and photophysical behavior,but also dominate the intermolecular arrangement and film morphological stability.Therefore,outstanding building block is an effective platform to design high-performance conjugated molecules,including both enhancement of optoelectronic property and device operation stability.In this regard,construction of novel building block is crucial to obtain novel and high-performance conjugated materials for optoelectronic applications.

    Fig.1.Modular production of conjugated materials.(a)Variable modular synthons for conjugated molecules.(b)Tuning electronic structure of conjugated materials via p-n design principle.(c)Chemical structure of conventional fluorene building blocks.

    As one of the important p-type andπ-bridge aromatic unit,fluorene,which has large bang-gap,multi-functional sites and diverse topological structure,is a mostly building block to construct functional materials,including red-green-blue light-emitting,host or guest,charge-transport and interface modified materials,to meet the variable requirement of optoelectronic devices[10,13,14,18-26].Up to date,most fluorene based building blocks are obtainedviaintroducing various functional group at 9-sites,such as 9,9′-spirobifluorene(SBF)[13,26-28],9,9-diphenylfluorene(DBF)[19,22,29,30]and spiro[fluorene-9,9′-xanthene](SFX)(Fig.1c)[23,24,31,32].Generally speaking,2-and 7-sites of fluorene are used as active center to bond with other aromatic units,to tune intramolecular electronic structure and obtain multifunctional photoelectrical property(Fig.1c).For example,n-type units are introduced at 2-and 7-sites to reduce band-gap and improve charge transport ability[21],and heteroatomic aromatic group at 9-and 1-site always controlled the triplet energy levelviacontrolling space charge-transfer for constructing host and thermally activated delayed fluorescence(TADF)materials[18].More interestingly,unique multi-dimensional structure of the chiral sp3functional position at 9-site also provided a platform to control energy level,topological structure and conformation behavior,which are the key factors to improve photoelectrical property and morphological stability for optoelectronic applications.However,compared to widely functionalize at 1-,2-,7-and 9-site of fluorene,there is rare attention paid on designing fluorene-based moleculesviaintroducing the aromatic units at 4-site,attributed to the lack fast and efficient synthesis methods.In fact,beyond substituted at the other positions,exploration of additional 4-functionalization for fluorene-based materials present some advantages as follow:i)New substituted position provided more possible and space to tune electronic structure;ii)Asymmetrical substitute of fluorene at two side(backbone structure is the center line)can easily control hierarchical structure and enhance photophysical property,such as effectively suppress residual green-band emission(Fig.1c);iii)Flexible pendant side-chain at 4-site enable all reported small molecule to obtain solution-processing ability and simultaneous slightly influenced on the electronic structures.Herein,we demonstrated a novel 4-qualifiable fluorene-based building block,which is a fundamental synthon to obtain all fluorene-based conjugated materials for optoelectronic devices.

    Up to date,most of fluorene-based materials are obtained from original products,such as fluorene(obtained from coke tar)or fluorenone building blocks.The common synthetic route of 9-substituted fluorene has been shown in Schemes 1a-c.These general methods can effectively extend the number of substituents at 9-site and endow polymers with unique properties,such as theβ-conformation of PFO[33–35].However,only the substituents at 9-site exposes the other side that may create an intermolecular electronic coupling in the aggregation state.The formation of the residual aggregation defects is harmful to the emission spectral stability and property of deep-blue light-emitting films and devices.Fortunately,the modifiable 4-substituted fluorene was broadened by Baeyer-Villeger oxidative rearrangement(Scheme 2).The synergistic effect of 4-and 9-substituents may endow materials unique photophysical properties.A typical polyfluorene,PODPF,with an octyloxy substituent at 4-site,has been explored and proved to have a uniqueβ-conformation and good stability[36–38].The further investigation also suggested that 4-substituted fluorene is of great significance to the basic research and development of optoelectronics and flexible electronics[22,29,30,39,40].Nevertheless,after extensive experiments we also found that this synthetic route has its intrinsic defects that the type of 9-site substituents is extremely limited.Therefore,it is of great importance for developing optoelectronics and flexible electronics to explore a new synthetic route to construct a building block that can keep the number of 9-site substituents while introducing the modifiable substituents at 4-site.

    Scheme 1.The known common synthetic route of 9-substituted fluorene.

    In the previous synthetic route(Scheme 2),the limited variety of Grignard’s reagents may be the major obstacle to obtain the number of 9-site substituents while introducing the modifiable substitution to 4-site.As listed in Scheme 2,several monomers with different substitutions at 4-and 9-site were prepared by the traditional synthetic route.Although organolithium reagents can expand the selectivity of the 9-site substituents,strong electron donating of 9-site units may lead to a dehydration product.The target product 2 cannot be obtained by the previous synthetic route.As presented in Scheme 3a,product 2e’(88%yield)was gained by adding(4-methoxyphenyl)magnesium bromide to compound 1 at 85oC.For compound 2,the strong electron-donated substituents on the tertiary carbon may increase the leaving ability of the tertiary hydroxyl group,thus the dehydration products are formed.To verify our assumption,2a was put in an acidic condition to leave the tertiary hydroxyl group.As displayed in Scheme 3b,2a was solved by dichloromethane and stirred with an aqueous hydrochloric acid solution with pH 3,and 2a was completely reacted to form 2a’after 1 h(characterized by1H NMR,Fig.S12 in Supporting information).This result suggested that while the leaving ability of the tertiary hydroxyl group is enhanced,it is easy to dehydrate with the hydroxyl group at 2-site and obtain the dehydration product.For the double 9-substituted of fluorene,the dehydration reaction caused by strong electron donating groups is the greatest difficulty in the previous synthetic route.Beyond that,asymmetric substitutions at 9-site are also difficult to achieveviathe previous synthetic route(Scheme 2).Therefore,a new synthetic method to obtain a novel 4-aualifiable building block is necessary to explore for constructing a series of fluorene-based conjugated molecules.

    Scheme 2.Scope of the previous synthetic route of 4-substituted fluorene by traditional Baeyer-Villeger oxidative rearrangement.

    Scheme 3.(a)The dehydration product 2e’obtained via the previous synthetic route.(b)The dehydration product 2a’obtained from 2a in acidic condition.

    Subsequently,novel 4-modifiable fluorene building blocks are developed by new preparative route,as shown in Scheme 4.This synthetic route contains three main steps,Baeyer-Villeger oxidative rearrangement,reduction ring-open reaction and oxidation cyclization reaction.A potential 4-site can be generated by the Baeyer-Villeger oxidative rearrangement.The reduction ring-open reaction is positive to release the 4-site for subsequent modification,and the oxidation cyclization reaction will finally form the building block with 4-site substituents.In the ring-open reaction(Scheme 4),1(1.06 g,3 mmol)was solved in THF(15 mL)in nitrogen,then 6 mL THF solution of LiAlH4(1 mol/L,2 equiv.)was added into the mixture.After stirred for 30 min,the mixture was quenched by 100 mL hydrochloric acid aqueous solution(0.25 mol/L)to give 5 in 98%yield.In this reaction,long reaction time under a high temperature may result into the formation of excessive byproducts,that the bromine atoms may be reduced to hydrogen.In the subsequent 4-site substitution reaction,the yield of 6a-6c was 86%~92%.Besides,we also explored two kinds of oxidation cyclization,one-step[41]and two-step oxidation cyclization[42].As shown in Scheme 5,in one-step cyclization reaction,3 equiv.ofn-BuOOH and 0.1 equiv.of TBAI were stirred with 6 in DCE at 100oC.However,the yield of 8 was only 20%~25%.In the twostep cyclization,first 0.1 equiv.of TEMPO and 1.2 equiv.of NaOCl were used to oxidize 6 to 7.The yield of 7 was more than 90%.In the subsequent cyclization reaction,0.1 equiv.of TBAB and 1.2 equiv.of K2S2O8were stirred with 7,providing 8 in 54%~62%yield.The total yield of 8 from two-step oxidation and cyclization reaction was 51%~56%,which is more than twice the yield of onestep oxidation cyclization.Therefore,the building block with a 4-site substituent was successfully prepared by oxidation-reductionoxidation method,and the total yield can be 38%~46%from 2,7-dibromo-9H-fluoren-9-one to the building block with 4-site substituent.

    Scheme 4.The novel synthetic method for 4-substituted fluorene-based building block.

    After obtaining the building block,4 and 9-substituted fluorenes can be preparedviathe common synthetic route in Scheme 1.Finally,two deep-blue light-emitting polymers,PODOPF and PODOF,were constructed by using 8a.As shown in Scheme 6a,9 was firstly prepared by solving 8a and phenol(10 equiv.)in chloroform(CHCl3)and reacting at 55oC for 24 h after adding 5 mL methanesulfonic acid.The yield of 9 can achieve 98%.The monomer of PODOPF was obtainedviathe nucleophilic substitution in EtOH,giving 10 in 91%yield.PODOPF was finally obtainedviaYamamoto coupling with a yield of 71%.To prepare PODOF,11 was first reduced from 8a by Et3SiH(6 equiv.)and BF3?Et2O(2 equiv.),as presented in Scheme 6b.The yield of 11 was 95%.Then the nucleophilic substitution reaction was initiated by the 9-site carbon of 11 in THF with 1-bromooctane,providing 12 in 88%yield.PODOF was also obtainedviaYamamoto coupling and had a yield of 73%.As displayed in Fig.S46(Supporting information),both the two polymers have a high decomposition temperature(Td)that more than 400oC,and the glass-transition temperature(Tg)of PODOF and PODOPF was at about 50oC and 150oC,respectively.

    Fig.2.(a)The absorption and PL spectra of PODOPF and PODOF film and diluted toluene solution(10-3 g/L).(b)The fluorescent lifetime of PODOPF and PODOF.

    Scheme 5.Scope of the new synthetic method.

    Scheme 6.The synthetic route of(a)PODOPF and(b)PODOF.

    The optical property of PODOPF and PODOF was shown in Fig.2.Absorption(Abs)and photoluminescence(PL)spectra of PODOPF and PODOF toluene solution were similar,owing to the same backbone structure.The Abs peak of PODOPF and PODOF in diluted toluene solution was both estimated at 391 nm.Corresponding PL spectra of PODOPF and PODOF solution both consisted of three emission peaks at 423 nm,450 nm and 484 nm,associated to the 0–0,0–1 and 0–2 vibronic transitions of a single polymer chain.Besides,the three vibronic transition emission peaks of PODOPF film were estimated at 430 nm,457 nm and 492 nm,respectively.The corresponding emission peaks of PODOF film were at 429 nm,456 nm and 487 nm,respectively.The Abs peak of PODOF was still at 391 nm,but PODOPF present a maximum Abs peak at 397 nm together with a shoulder peak at 386 nm,associated to the 0-0 and 0-1 vibronic transitions.As shown in Fig.2b,the fluorescent lifetime of PODOPF and PODPF was 319 ps and 289 ps,respectively.As listed in Table S1(Supporting information),the PLQY of PODOPF and PODOF spin-coated film was 36.8%and 26.2%,respectively.According to the fluorescent lifetime and PLQY,we calculated their radiative transition rate(kr)and non-radiative transition rate(knr).As listed in Table S1,thekrandknrof PODOPF was 1.15×109s-1and 1.98×109s-1,respectively.By contrast,PODOF has a lowerkr(9.07×108s-1)and higherknr(2.55×109s-1),which revealed the reason for the lower PLQY of PODOF.

    Finally,we prepared the polymer light-emitting device(PLED)by using PODOPF and PODOF as the emitter layer(EML).We first measured the energy levelsviacyclic voltammetry(CV).As shown in Fig.S47(Supporting information),the HOMO of PODOPF and PODOF was calculated as?5.762 eV and?5.713 eV,respectively,and the corresponding LUMO was about?2.007 eV and?1.938 eV,respectively.According to the HOMO and LUMO of the EMLs,devices with following structure were fabricated:ITO(50 nm)/PEDOT:PSS(30 nm)/EML(40 nm)/TPBi(25 nm)/LiF(1 nm)/Al(100 nm).The electroluminescence(EL)spectra of PODOPF and PODOF were shown Figs.3a and c.Both the two devices exhibited a deep-blue emission and had a tune-on voltage of 4.5 V.As shown in Figs.3b and d,the maximum luminance of PODOPF and PODOF was 753 cd/m2and 773 cd/m2.The external quantum efficiency(EQE),current efficiency(CE)and power efficiency(PE)curvesversuscurrent density of the two devices were shown in Fig.S48(Supporting information).For PODOPF device,the maximum EQE was 0.53%as the current density reaches 14.5 mA/cm2,associated with the CEmax=0.63 cd/A and PEmax=0.40 lm/W.For PODOF device,the maximum EQE was 0.62%,CEmax=0.57 cd/A and PEmax=0.35 lm/W.The CIE 1931 chromaticity coordinate of PODOPF and PODOF device was(0.17,0.11)and(0.16,0.09),respectively.The PLED results showed that polyfluorenes with 4-site modifiable substituent had exploring potential in optoelectronics.

    Fig.3.(a)EL spectrum of PODOPF.(b)Current density and luminance versus driving voltage characteristics of PODOPF.(c)EL spectrum of PODOF.(d)Current density and luminance versus driving voltage characteristics of PODOF.

    In summary,we demonstrated a universal synthetic method to construct 4-qualifiable fluorene-based building blocks for optoelectronic applications.Compared to previous units,variable substitutes at 4-site enable the reported fluorene-based materials to obtain easily structural modification and solution-processing ability but slightly influenced on the electronic structures.The new synthetic route contains three main steps with a high yield consisted of Baeyer-Villeger oxidative rearrangement,ring-open reaction(reduction)and cyclization reaction(oxidation).The total yield of the building blockviathe new synthetic method can be~50%.Finally,two efficient blue-light-emitting polymers,PODOPF and PODOF,are prepared by utilizing the building block 8a,and the PLEDs of the two polymers were successfully fabricated.This result also implied the significance and effectiveness of the fluorene based building block with 4-site modifiable substituent for optoelectronic application.

    Declaration of competing interest

    There is no conflict of interest of this work

    Acknowledgments

    The work was supported by the Natural Science Foundation of Jiangsu Province(No.BK20200700),National Natural Science Foundation of China(Nos.22075136,61874053),Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009),“High-Level Talents in Six Industries”of Jiangsu Province(No.XYDXX-019),Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX21_1097,KYCX21_0771),Nanjing Vocational University of Industry Technology Start-up Fund(No.YK21-02-07),the open research fund from Anhui Province Key Laboratory of Environment-friendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.102.

    亚洲国产精品一区二区三区在线| 大码成人一级视频| 久久亚洲国产成人精品v| 久久久久久久国产电影| 久久久久国产精品人妻一区二区| 久久久久网色| 国产精品久久久久成人av| 天美传媒精品一区二区| 亚洲伊人久久精品综合| 香蕉丝袜av| 国产毛片在线视频| 久久精品国产鲁丝片午夜精品| 啦啦啦啦在线视频资源| 日本欧美国产在线视频| xxx大片免费视频| 久久精品国产自在天天线| 国产精品一国产av| 国产精品 国内视频| 国产福利在线免费观看视频| 女人久久www免费人成看片| 欧美+日韩+精品| 亚洲精品久久成人aⅴ小说| 亚洲欧美色中文字幕在线| 99久久人妻综合| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 久久人妻熟女aⅴ| 伦理电影大哥的女人| 精品人妻熟女毛片av久久网站| 97精品久久久久久久久久精品| 亚洲高清免费不卡视频| 日本午夜av视频| 宅男免费午夜| 亚洲人与动物交配视频| 在线观看美女被高潮喷水网站| 日本猛色少妇xxxxx猛交久久| 欧美精品一区二区免费开放| 亚洲av欧美aⅴ国产| 最近最新中文字幕大全免费视频 | 在线观看一区二区三区激情| 精品亚洲成国产av| 国产亚洲精品第一综合不卡 | 看非洲黑人一级黄片| 日韩人妻精品一区2区三区| 免费观看在线日韩| 亚洲国产毛片av蜜桃av| 亚洲欧美中文字幕日韩二区| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| 日韩电影二区| 久久人人97超碰香蕉20202| 女性被躁到高潮视频| 91在线精品国自产拍蜜月| 国产精品三级大全| 桃花免费在线播放| 日本午夜av视频| 亚洲av国产av综合av卡| 国产精品一区二区在线观看99| 男女无遮挡免费网站观看| 十八禁高潮呻吟视频| 飞空精品影院首页| 建设人人有责人人尽责人人享有的| 国产精品久久久久成人av| 国产免费视频播放在线视频| 在线观看美女被高潮喷水网站| 久久青草综合色| 亚洲婷婷狠狠爱综合网| 午夜老司机福利剧场| 精品国产国语对白av| 又黄又粗又硬又大视频| 国产免费视频播放在线视频| 欧美另类一区| 99热国产这里只有精品6| 婷婷色综合大香蕉| 我的女老师完整版在线观看| 午夜福利在线观看免费完整高清在| 大话2 男鬼变身卡| 日韩av不卡免费在线播放| av在线观看视频网站免费| 成人国产麻豆网| 亚洲综合色惰| 桃花免费在线播放| 午夜激情久久久久久久| 夫妻午夜视频| 狂野欧美激情性xxxx在线观看| 国产精品欧美亚洲77777| 中文字幕最新亚洲高清| 亚洲精品456在线播放app| 狂野欧美激情性xxxx在线观看| 日韩av在线免费看完整版不卡| 午夜福利,免费看| 亚洲国产看品久久| 97精品久久久久久久久久精品| 精品第一国产精品| 少妇人妻 视频| 欧美日韩成人在线一区二区| 欧美精品一区二区大全| 国产黄频视频在线观看| 日本色播在线视频| 亚洲国产av新网站| 中文精品一卡2卡3卡4更新| 男女边吃奶边做爰视频| 五月玫瑰六月丁香| 亚洲精品国产色婷婷电影| 免费av中文字幕在线| 午夜免费鲁丝| 日本猛色少妇xxxxx猛交久久| av免费在线看不卡| 狠狠婷婷综合久久久久久88av| 国产色婷婷99| 亚洲精品中文字幕在线视频| 夜夜骑夜夜射夜夜干| 黑人欧美特级aaaaaa片| 一边亲一边摸免费视频| 激情五月婷婷亚洲| 91在线精品国自产拍蜜月| 日本爱情动作片www.在线观看| 男女高潮啪啪啪动态图| 亚洲精品乱久久久久久| 极品人妻少妇av视频| 精品国产乱码久久久久久小说| 亚洲美女视频黄频| 国产一区二区三区av在线| 国产成人精品在线电影| 国产毛片在线视频| 考比视频在线观看| 免费人成在线观看视频色| 午夜影院在线不卡| 丝袜喷水一区| 新久久久久国产一级毛片| 午夜免费观看性视频| 欧美激情极品国产一区二区三区 | 亚洲av福利一区| 国产成人精品婷婷| 国产激情久久老熟女| 汤姆久久久久久久影院中文字幕| 国产男女超爽视频在线观看| 99国产精品免费福利视频| 国产午夜精品一二区理论片| 国产av一区二区精品久久| 亚洲国产成人一精品久久久| 日日啪夜夜爽| 日韩一区二区视频免费看| 精品少妇黑人巨大在线播放| 亚洲av电影在线进入| 国产女主播在线喷水免费视频网站| 精品人妻偷拍中文字幕| 免费人妻精品一区二区三区视频| 免费女性裸体啪啪无遮挡网站| 亚洲成av片中文字幕在线观看 | av.在线天堂| 丁香六月天网| 一边亲一边摸免费视频| 高清视频免费观看一区二区| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 国产高清三级在线| 天堂8中文在线网| 欧美日韩一区二区视频在线观看视频在线| av黄色大香蕉| 日日摸夜夜添夜夜爱| 国产国语露脸激情在线看| 寂寞人妻少妇视频99o| 欧美+日韩+精品| 久久久a久久爽久久v久久| 国产精品国产三级国产专区5o| 综合色丁香网| 日韩av免费高清视频| 黑人欧美特级aaaaaa片| videossex国产| 嫩草影院入口| 18禁在线无遮挡免费观看视频| 看免费av毛片| 91在线精品国自产拍蜜月| 亚洲情色 制服丝袜| 亚洲精品色激情综合| 少妇人妻久久综合中文| 亚洲av.av天堂| 亚洲四区av| 国产 精品1| 天堂俺去俺来也www色官网| 热re99久久精品国产66热6| 欧美 日韩 精品 国产| 久久久精品区二区三区| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久精品电影小说| a 毛片基地| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| a 毛片基地| 在现免费观看毛片| 高清毛片免费看| 国产精品国产av在线观看| 久久久久久久久久久免费av| 男女免费视频国产| 如日韩欧美国产精品一区二区三区| 色吧在线观看| 黄片播放在线免费| 在线观看三级黄色| 中文天堂在线官网| 超色免费av| 视频区图区小说| 高清av免费在线| av国产久精品久网站免费入址| 亚洲成人手机| 亚洲四区av| 午夜精品国产一区二区电影| 男人添女人高潮全过程视频| 欧美激情极品国产一区二区三区 | 日本vs欧美在线观看视频| 日本猛色少妇xxxxx猛交久久| av卡一久久| 欧美成人午夜精品| 自线自在国产av| 国产精品国产av在线观看| 日本免费在线观看一区| 亚洲熟女精品中文字幕| 少妇的逼好多水| 人妻人人澡人人爽人人| 国产精品一二三区在线看| 三上悠亚av全集在线观看| 在现免费观看毛片| 国产日韩欧美视频二区| 男人爽女人下面视频在线观看| 午夜老司机福利剧场| 国产在视频线精品| 毛片一级片免费看久久久久| 国产精品女同一区二区软件| 国产1区2区3区精品| 免费日韩欧美在线观看| 亚洲国产精品成人久久小说| 日韩一区二区三区影片| 伊人久久国产一区二区| 不卡视频在线观看欧美| 免费观看av网站的网址| 午夜av观看不卡| 久久久精品94久久精品| 国内精品宾馆在线| 国产爽快片一区二区三区| 免费在线观看完整版高清| 伊人亚洲综合成人网| 久久久久久伊人网av| 国产av国产精品国产| 99久久精品国产国产毛片| 丰满少妇做爰视频| 久久午夜综合久久蜜桃| av电影中文网址| 一二三四在线观看免费中文在 | 国产一区有黄有色的免费视频| 人妻 亚洲 视频| 亚洲中文av在线| 亚洲精品aⅴ在线观看| 蜜臀久久99精品久久宅男| 精品国产一区二区久久| 欧美另类一区| 成人漫画全彩无遮挡| 国精品久久久久久国模美| 国产亚洲精品久久久com| 一本—道久久a久久精品蜜桃钙片| 精品国产乱码久久久久久小说| 99视频精品全部免费 在线| 亚洲精品aⅴ在线观看| av免费在线看不卡| 精品国产国语对白av| 韩国av在线不卡| 久热这里只有精品99| 国产免费一级a男人的天堂| 亚洲成国产人片在线观看| 综合色丁香网| 国产精品久久久久久精品古装| 日韩成人伦理影院| 日本色播在线视频| 亚洲高清免费不卡视频| 精品亚洲成a人片在线观看| 亚洲国产毛片av蜜桃av| 99久久人妻综合| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 成年女人在线观看亚洲视频| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| 色哟哟·www| 高清av免费在线| 日韩一区二区三区影片| 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 97超碰精品成人国产| 亚洲精品日韩在线中文字幕| 免费久久久久久久精品成人欧美视频 | 国产午夜精品一二区理论片| 精品国产露脸久久av麻豆| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 国产精品国产三级国产专区5o| 日韩一区二区视频免费看| 日本免费在线观看一区| 蜜臀久久99精品久久宅男| 色婷婷av一区二区三区视频| 看非洲黑人一级黄片| 国产精品免费大片| 丝袜美足系列| 久久久精品区二区三区| 亚洲国产毛片av蜜桃av| 在线精品无人区一区二区三| 成人毛片a级毛片在线播放| 亚洲国产av新网站| 久久精品久久精品一区二区三区| 51国产日韩欧美| 国产日韩欧美在线精品| 熟女电影av网| 国产欧美日韩综合在线一区二区| 久久ye,这里只有精品| 国内精品宾馆在线| 亚洲伊人色综图| 久久久久精品人妻al黑| 欧美日韩精品成人综合77777| 中国国产av一级| 一区二区三区乱码不卡18| 18禁观看日本| kizo精华| 午夜日本视频在线| 久久影院123| 如何舔出高潮| 丝袜美足系列| 午夜福利,免费看| 黄片无遮挡物在线观看| 国产亚洲欧美精品永久| av国产久精品久网站免费入址| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 国产成人精品福利久久| 欧美精品一区二区免费开放| 精品久久国产蜜桃| 国内精品宾馆在线| 久久久a久久爽久久v久久| 伦精品一区二区三区| 免费高清在线观看日韩| 中文欧美无线码| 亚洲欧洲日产国产| 国产精品久久久久成人av| 成人二区视频| 国产精品不卡视频一区二区| 亚洲av欧美aⅴ国产| 高清av免费在线| 日韩欧美精品免费久久| 99热全是精品| 久久精品aⅴ一区二区三区四区 | 日本91视频免费播放| 边亲边吃奶的免费视频| 亚洲精品国产色婷婷电影| 女的被弄到高潮叫床怎么办| 亚洲人成77777在线视频| av又黄又爽大尺度在线免费看| 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久久久免| 波野结衣二区三区在线| 少妇的丰满在线观看| 亚洲 欧美一区二区三区| 国产69精品久久久久777片| 少妇被粗大的猛进出69影院 | 精品午夜福利在线看| a 毛片基地| 欧美+日韩+精品| 亚洲综合色惰| 国产精品久久久久久精品电影小说| 国产精品麻豆人妻色哟哟久久| 人妻 亚洲 视频| 免费人妻精品一区二区三区视频| 啦啦啦中文免费视频观看日本| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 国产精品免费大片| 亚洲成人一二三区av| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 欧美国产精品一级二级三级| 久久99热6这里只有精品| 久久久久精品人妻al黑| 日韩大片免费观看网站| 侵犯人妻中文字幕一二三四区| 国产在线免费精品| 美女国产视频在线观看| 日韩欧美精品免费久久| 中文字幕免费在线视频6| 亚洲久久久国产精品| 国产 一区精品| 最近中文字幕高清免费大全6| 黄色 视频免费看| 国产熟女欧美一区二区| 亚洲国产欧美在线一区| 一二三四在线观看免费中文在 | 亚洲第一av免费看| 亚洲成av片中文字幕在线观看 | 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 多毛熟女@视频| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区四区第35| 久久久久久久久久久免费av| 街头女战士在线观看网站| 看免费av毛片| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 欧美3d第一页| 亚洲精品美女久久av网站| 日韩伦理黄色片| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 性色avwww在线观看| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 熟女人妻精品中文字幕| 捣出白浆h1v1| 色吧在线观看| 亚洲成人一二三区av| 男女免费视频国产| 综合色丁香网| 如何舔出高潮| 天堂中文最新版在线下载| av天堂久久9| 亚洲图色成人| 伊人亚洲综合成人网| 久久午夜福利片| 精品一品国产午夜福利视频| 美女脱内裤让男人舔精品视频| 草草在线视频免费看| 99久久综合免费| 99久久人妻综合| 国产精品无大码| 天美传媒精品一区二区| 啦啦啦啦在线视频资源| 国产一区二区三区综合在线观看 | 欧美成人午夜精品| 80岁老熟妇乱子伦牲交| 两性夫妻黄色片 | 亚洲五月色婷婷综合| 亚洲成av片中文字幕在线观看 | 在线天堂最新版资源| 高清av免费在线| 亚洲av在线观看美女高潮| 只有这里有精品99| 精品国产国语对白av| av福利片在线| 一本久久精品| 国产伦理片在线播放av一区| 国产成人91sexporn| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 夫妻午夜视频| 亚洲美女搞黄在线观看| 伊人亚洲综合成人网| 免费观看无遮挡的男女| 日本欧美视频一区| 日韩av在线免费看完整版不卡| 久久青草综合色| 九九爱精品视频在线观看| 色网站视频免费| 亚洲国产欧美在线一区| 哪个播放器可以免费观看大片| 狠狠婷婷综合久久久久久88av| 久久热在线av| 免费少妇av软件| 26uuu在线亚洲综合色| 亚洲人与动物交配视频| 亚洲欧美一区二区三区黑人 | 久久久国产一区二区| 香蕉精品网在线| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 亚洲国产看品久久| 精品一区二区三区四区五区乱码 | 欧美日韩精品成人综合77777| 婷婷色综合www| 午夜福利,免费看| 亚洲国产精品专区欧美| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 天堂8中文在线网| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 久久久精品区二区三区| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 久久精品国产a三级三级三级| 国产成人精品无人区| 亚洲,一卡二卡三卡| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av综合色区一区| 天天操日日干夜夜撸| 亚洲色图综合在线观看| 午夜福利乱码中文字幕| 桃花免费在线播放| 999精品在线视频| 亚洲精品乱码久久久久久按摩| 91精品国产国语对白视频| 欧美日本中文国产一区发布| 多毛熟女@视频| 新久久久久国产一级毛片| 美女主播在线视频| 99热全是精品| 狠狠婷婷综合久久久久久88av| 日本av手机在线免费观看| 亚洲第一av免费看| 99久久中文字幕三级久久日本| 亚洲精品456在线播放app| 国产成人精品福利久久| 国产一区二区三区av在线| 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 午夜久久久在线观看| av国产久精品久网站免费入址| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费| 亚洲熟女精品中文字幕| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| 最新的欧美精品一区二区| 亚洲精品av麻豆狂野| 夜夜爽夜夜爽视频| 欧美bdsm另类| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看| 日韩三级伦理在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美一区二区三区国产| 中文字幕人妻丝袜制服| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 丝袜美足系列| 亚洲中文av在线| 久久97久久精品| 国产在线视频一区二区| 免费大片18禁| 亚洲性久久影院| 精品第一国产精品| 国产不卡av网站在线观看| 午夜久久久在线观看| 黑人巨大精品欧美一区二区蜜桃 | 最近手机中文字幕大全| 日韩成人伦理影院| 一级片'在线观看视频| 曰老女人黄片| 香蕉丝袜av| 日韩成人av中文字幕在线观看| 丁香六月天网| 两性夫妻黄色片 | av不卡在线播放| 免费看光身美女| 天堂中文最新版在线下载| 亚洲丝袜综合中文字幕| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 免费人妻精品一区二区三区视频| 一级黄片播放器| 大香蕉久久成人网| 免费看av在线观看网站| av播播在线观看一区| 国产亚洲一区二区精品| 18在线观看网站| 黄色视频在线播放观看不卡| 国产男女超爽视频在线观看| 国产av国产精品国产| 免费看不卡的av| 多毛熟女@视频| 日韩电影二区| 国产男女内射视频| 精品一区二区三卡| 久久久国产一区二区| 男人添女人高潮全过程视频| xxx大片免费视频| 80岁老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 日本欧美视频一区| 亚洲av男天堂| 国产精品蜜桃在线观看| 最黄视频免费看| 久久人人97超碰香蕉20202| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 一级毛片 在线播放| 国产深夜福利视频在线观看| 久久久久久伊人网av| 丁香六月天网| 中文精品一卡2卡3卡4更新| 国产乱人偷精品视频| 色吧在线观看| 午夜影院在线不卡| 久久久久视频综合| 男人添女人高潮全过程视频| 亚洲欧洲日产国产| 尾随美女入室| 一区二区三区四区激情视频| av有码第一页| 王馨瑶露胸无遮挡在线观看| 国产熟女欧美一区二区| 午夜91福利影院| 欧美日韩综合久久久久久| 性色avwww在线观看| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 日本免费在线观看一区| 国产亚洲精品久久久com| 中文字幕人妻丝袜制服| 亚洲四区av| 国产女主播在线喷水免费视频网站| 国产精品熟女久久久久浪|