• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal 4-qualifiable fluorene-based building blocks for potential optoelectronic applications

    2023-01-30 06:48:56XingAnJinghoYngMnXuLiliSunLuingBiKiWngZhiqingZhuoYingyingZhengJinyiLinXuehuDingYuyuLiuLinghiXieChengrongYinWeiHung
    Chinese Chemical Letters 2022年12期

    Xing An,Jingho Yng ,Mn Xu,Lili Sun,Luing Bi ,Ki Wng ,Zhiqing Zhuo ,Yingying Zheng ,Jinyi Lin,*,Xuehu Ding ,Yuyu Liu,Linghi Xie ,Chengrong Yin,Wei Hung ,,c,*

    a Key Laboratory of Flexible Electronics(KLOFE)&Institute of Advanced Materials(IAM),Nanjing Tech University(NanjingTech),Nanjing 211816,China

    b State Key Laboratory of Organic Electronics and Information Displays&Institute of Advanced Materials(IAM),Nanjing University of Posts&Telecommunications,Nanjing 210023,China

    c Frontiers Science Center for Flexible Electronics(FSCFE),MIIT Key Laboratory of Fle xible Electronics(KLoFE),Northwestern Polytechnical University,Xi’a n 710072,China

    d Electrical Engineering College,Nanjing Vocational University of Industry Technology,Nanjing 210 023,China

    Keywords:Side-chain coupling Small molecular emitter Morphological stability Deep-blue emission Optoelectronic device

    ABSTRACT In the design of conjugated molecules,modular production enables materials to easily realize structure modification and precisely tune their photoelectrical property.Construction of a novel and universal building block is crucial to design and manufacture high performance and stable conjugated molecules for optoelectronic application.Herein,we originally demonstrated a universal 4-qualifiable fluorene-based building block,which is a fundamental molecular segment to functionalize and obtain novel conjugated materials.Compared to the traditional modification at 9-site,additional 4-position functionalization provided an exciting blueprint to not only tune electronic structure and excited state via p-n molecular design engineering and space charge-transfer strategy,but also allow for optimizing intermolecular arrangement and obtaining solution-processing ability.The introduction of the 4-site substituent in fluorene based semiconductors may endow materials with unique properties.Finally,we successfully prepared two stable deep-blue light-emitting conjugated polymer,PODOPF and PODOF,by utilizing the 4-substituent fluorene based building block.It is believable that the performance,stability and processibility of reported outstanding fluorene-based conjugated molecules can be further optimized based on this universal building block.

    In last decades,conjugated materials are widely applied in organic light-emitting diodes(OLEDs),organic solar cell and organic field-effect transistor(OFET)and bio-chem sensor,associated with their easily structural modification,intrinsic low-cost processing and flexible ability[1–12].Similar to the industrial manufacturing,modular production of conjugated materials enables them to present a precise energy-level tunability,controllable structural modification,and low-cost large-scale preparation,analogous to Lego(Fig.1a).As an effective strategy to precisely tune electronic structures,p(D)-n(A)molecular design principle provide an universal tool to control the intramolecular electron delocalizationviacontrolling the fraction of p-or n-type segment,and bondedπbridge(Fig.1b)[13–18].Compared to directly chemical-bonded engineering,steric hindranceπ-bridge(included rigid and soft type)between two p-or n-type units is an alternative to not only modulate electronic structure and photophysical behavior,but also dominate the intermolecular arrangement and film morphological stability.Therefore,outstanding building block is an effective platform to design high-performance conjugated molecules,including both enhancement of optoelectronic property and device operation stability.In this regard,construction of novel building block is crucial to obtain novel and high-performance conjugated materials for optoelectronic applications.

    Fig.1.Modular production of conjugated materials.(a)Variable modular synthons for conjugated molecules.(b)Tuning electronic structure of conjugated materials via p-n design principle.(c)Chemical structure of conventional fluorene building blocks.

    As one of the important p-type andπ-bridge aromatic unit,fluorene,which has large bang-gap,multi-functional sites and diverse topological structure,is a mostly building block to construct functional materials,including red-green-blue light-emitting,host or guest,charge-transport and interface modified materials,to meet the variable requirement of optoelectronic devices[10,13,14,18-26].Up to date,most fluorene based building blocks are obtainedviaintroducing various functional group at 9-sites,such as 9,9′-spirobifluorene(SBF)[13,26-28],9,9-diphenylfluorene(DBF)[19,22,29,30]and spiro[fluorene-9,9′-xanthene](SFX)(Fig.1c)[23,24,31,32].Generally speaking,2-and 7-sites of fluorene are used as active center to bond with other aromatic units,to tune intramolecular electronic structure and obtain multifunctional photoelectrical property(Fig.1c).For example,n-type units are introduced at 2-and 7-sites to reduce band-gap and improve charge transport ability[21],and heteroatomic aromatic group at 9-and 1-site always controlled the triplet energy levelviacontrolling space charge-transfer for constructing host and thermally activated delayed fluorescence(TADF)materials[18].More interestingly,unique multi-dimensional structure of the chiral sp3functional position at 9-site also provided a platform to control energy level,topological structure and conformation behavior,which are the key factors to improve photoelectrical property and morphological stability for optoelectronic applications.However,compared to widely functionalize at 1-,2-,7-and 9-site of fluorene,there is rare attention paid on designing fluorene-based moleculesviaintroducing the aromatic units at 4-site,attributed to the lack fast and efficient synthesis methods.In fact,beyond substituted at the other positions,exploration of additional 4-functionalization for fluorene-based materials present some advantages as follow:i)New substituted position provided more possible and space to tune electronic structure;ii)Asymmetrical substitute of fluorene at two side(backbone structure is the center line)can easily control hierarchical structure and enhance photophysical property,such as effectively suppress residual green-band emission(Fig.1c);iii)Flexible pendant side-chain at 4-site enable all reported small molecule to obtain solution-processing ability and simultaneous slightly influenced on the electronic structures.Herein,we demonstrated a novel 4-qualifiable fluorene-based building block,which is a fundamental synthon to obtain all fluorene-based conjugated materials for optoelectronic devices.

    Up to date,most of fluorene-based materials are obtained from original products,such as fluorene(obtained from coke tar)or fluorenone building blocks.The common synthetic route of 9-substituted fluorene has been shown in Schemes 1a-c.These general methods can effectively extend the number of substituents at 9-site and endow polymers with unique properties,such as theβ-conformation of PFO[33–35].However,only the substituents at 9-site exposes the other side that may create an intermolecular electronic coupling in the aggregation state.The formation of the residual aggregation defects is harmful to the emission spectral stability and property of deep-blue light-emitting films and devices.Fortunately,the modifiable 4-substituted fluorene was broadened by Baeyer-Villeger oxidative rearrangement(Scheme 2).The synergistic effect of 4-and 9-substituents may endow materials unique photophysical properties.A typical polyfluorene,PODPF,with an octyloxy substituent at 4-site,has been explored and proved to have a uniqueβ-conformation and good stability[36–38].The further investigation also suggested that 4-substituted fluorene is of great significance to the basic research and development of optoelectronics and flexible electronics[22,29,30,39,40].Nevertheless,after extensive experiments we also found that this synthetic route has its intrinsic defects that the type of 9-site substituents is extremely limited.Therefore,it is of great importance for developing optoelectronics and flexible electronics to explore a new synthetic route to construct a building block that can keep the number of 9-site substituents while introducing the modifiable substituents at 4-site.

    Scheme 1.The known common synthetic route of 9-substituted fluorene.

    In the previous synthetic route(Scheme 2),the limited variety of Grignard’s reagents may be the major obstacle to obtain the number of 9-site substituents while introducing the modifiable substitution to 4-site.As listed in Scheme 2,several monomers with different substitutions at 4-and 9-site were prepared by the traditional synthetic route.Although organolithium reagents can expand the selectivity of the 9-site substituents,strong electron donating of 9-site units may lead to a dehydration product.The target product 2 cannot be obtained by the previous synthetic route.As presented in Scheme 3a,product 2e’(88%yield)was gained by adding(4-methoxyphenyl)magnesium bromide to compound 1 at 85oC.For compound 2,the strong electron-donated substituents on the tertiary carbon may increase the leaving ability of the tertiary hydroxyl group,thus the dehydration products are formed.To verify our assumption,2a was put in an acidic condition to leave the tertiary hydroxyl group.As displayed in Scheme 3b,2a was solved by dichloromethane and stirred with an aqueous hydrochloric acid solution with pH 3,and 2a was completely reacted to form 2a’after 1 h(characterized by1H NMR,Fig.S12 in Supporting information).This result suggested that while the leaving ability of the tertiary hydroxyl group is enhanced,it is easy to dehydrate with the hydroxyl group at 2-site and obtain the dehydration product.For the double 9-substituted of fluorene,the dehydration reaction caused by strong electron donating groups is the greatest difficulty in the previous synthetic route.Beyond that,asymmetric substitutions at 9-site are also difficult to achieveviathe previous synthetic route(Scheme 2).Therefore,a new synthetic method to obtain a novel 4-aualifiable building block is necessary to explore for constructing a series of fluorene-based conjugated molecules.

    Scheme 2.Scope of the previous synthetic route of 4-substituted fluorene by traditional Baeyer-Villeger oxidative rearrangement.

    Scheme 3.(a)The dehydration product 2e’obtained via the previous synthetic route.(b)The dehydration product 2a’obtained from 2a in acidic condition.

    Subsequently,novel 4-modifiable fluorene building blocks are developed by new preparative route,as shown in Scheme 4.This synthetic route contains three main steps,Baeyer-Villeger oxidative rearrangement,reduction ring-open reaction and oxidation cyclization reaction.A potential 4-site can be generated by the Baeyer-Villeger oxidative rearrangement.The reduction ring-open reaction is positive to release the 4-site for subsequent modification,and the oxidation cyclization reaction will finally form the building block with 4-site substituents.In the ring-open reaction(Scheme 4),1(1.06 g,3 mmol)was solved in THF(15 mL)in nitrogen,then 6 mL THF solution of LiAlH4(1 mol/L,2 equiv.)was added into the mixture.After stirred for 30 min,the mixture was quenched by 100 mL hydrochloric acid aqueous solution(0.25 mol/L)to give 5 in 98%yield.In this reaction,long reaction time under a high temperature may result into the formation of excessive byproducts,that the bromine atoms may be reduced to hydrogen.In the subsequent 4-site substitution reaction,the yield of 6a-6c was 86%~92%.Besides,we also explored two kinds of oxidation cyclization,one-step[41]and two-step oxidation cyclization[42].As shown in Scheme 5,in one-step cyclization reaction,3 equiv.ofn-BuOOH and 0.1 equiv.of TBAI were stirred with 6 in DCE at 100oC.However,the yield of 8 was only 20%~25%.In the twostep cyclization,first 0.1 equiv.of TEMPO and 1.2 equiv.of NaOCl were used to oxidize 6 to 7.The yield of 7 was more than 90%.In the subsequent cyclization reaction,0.1 equiv.of TBAB and 1.2 equiv.of K2S2O8were stirred with 7,providing 8 in 54%~62%yield.The total yield of 8 from two-step oxidation and cyclization reaction was 51%~56%,which is more than twice the yield of onestep oxidation cyclization.Therefore,the building block with a 4-site substituent was successfully prepared by oxidation-reductionoxidation method,and the total yield can be 38%~46%from 2,7-dibromo-9H-fluoren-9-one to the building block with 4-site substituent.

    Scheme 4.The novel synthetic method for 4-substituted fluorene-based building block.

    After obtaining the building block,4 and 9-substituted fluorenes can be preparedviathe common synthetic route in Scheme 1.Finally,two deep-blue light-emitting polymers,PODOPF and PODOF,were constructed by using 8a.As shown in Scheme 6a,9 was firstly prepared by solving 8a and phenol(10 equiv.)in chloroform(CHCl3)and reacting at 55oC for 24 h after adding 5 mL methanesulfonic acid.The yield of 9 can achieve 98%.The monomer of PODOPF was obtainedviathe nucleophilic substitution in EtOH,giving 10 in 91%yield.PODOPF was finally obtainedviaYamamoto coupling with a yield of 71%.To prepare PODOF,11 was first reduced from 8a by Et3SiH(6 equiv.)and BF3?Et2O(2 equiv.),as presented in Scheme 6b.The yield of 11 was 95%.Then the nucleophilic substitution reaction was initiated by the 9-site carbon of 11 in THF with 1-bromooctane,providing 12 in 88%yield.PODOF was also obtainedviaYamamoto coupling and had a yield of 73%.As displayed in Fig.S46(Supporting information),both the two polymers have a high decomposition temperature(Td)that more than 400oC,and the glass-transition temperature(Tg)of PODOF and PODOPF was at about 50oC and 150oC,respectively.

    Fig.2.(a)The absorption and PL spectra of PODOPF and PODOF film and diluted toluene solution(10-3 g/L).(b)The fluorescent lifetime of PODOPF and PODOF.

    Scheme 5.Scope of the new synthetic method.

    Scheme 6.The synthetic route of(a)PODOPF and(b)PODOF.

    The optical property of PODOPF and PODOF was shown in Fig.2.Absorption(Abs)and photoluminescence(PL)spectra of PODOPF and PODOF toluene solution were similar,owing to the same backbone structure.The Abs peak of PODOPF and PODOF in diluted toluene solution was both estimated at 391 nm.Corresponding PL spectra of PODOPF and PODOF solution both consisted of three emission peaks at 423 nm,450 nm and 484 nm,associated to the 0–0,0–1 and 0–2 vibronic transitions of a single polymer chain.Besides,the three vibronic transition emission peaks of PODOPF film were estimated at 430 nm,457 nm and 492 nm,respectively.The corresponding emission peaks of PODOF film were at 429 nm,456 nm and 487 nm,respectively.The Abs peak of PODOF was still at 391 nm,but PODOPF present a maximum Abs peak at 397 nm together with a shoulder peak at 386 nm,associated to the 0-0 and 0-1 vibronic transitions.As shown in Fig.2b,the fluorescent lifetime of PODOPF and PODPF was 319 ps and 289 ps,respectively.As listed in Table S1(Supporting information),the PLQY of PODOPF and PODOF spin-coated film was 36.8%and 26.2%,respectively.According to the fluorescent lifetime and PLQY,we calculated their radiative transition rate(kr)and non-radiative transition rate(knr).As listed in Table S1,thekrandknrof PODOPF was 1.15×109s-1and 1.98×109s-1,respectively.By contrast,PODOF has a lowerkr(9.07×108s-1)and higherknr(2.55×109s-1),which revealed the reason for the lower PLQY of PODOF.

    Finally,we prepared the polymer light-emitting device(PLED)by using PODOPF and PODOF as the emitter layer(EML).We first measured the energy levelsviacyclic voltammetry(CV).As shown in Fig.S47(Supporting information),the HOMO of PODOPF and PODOF was calculated as?5.762 eV and?5.713 eV,respectively,and the corresponding LUMO was about?2.007 eV and?1.938 eV,respectively.According to the HOMO and LUMO of the EMLs,devices with following structure were fabricated:ITO(50 nm)/PEDOT:PSS(30 nm)/EML(40 nm)/TPBi(25 nm)/LiF(1 nm)/Al(100 nm).The electroluminescence(EL)spectra of PODOPF and PODOF were shown Figs.3a and c.Both the two devices exhibited a deep-blue emission and had a tune-on voltage of 4.5 V.As shown in Figs.3b and d,the maximum luminance of PODOPF and PODOF was 753 cd/m2and 773 cd/m2.The external quantum efficiency(EQE),current efficiency(CE)and power efficiency(PE)curvesversuscurrent density of the two devices were shown in Fig.S48(Supporting information).For PODOPF device,the maximum EQE was 0.53%as the current density reaches 14.5 mA/cm2,associated with the CEmax=0.63 cd/A and PEmax=0.40 lm/W.For PODOF device,the maximum EQE was 0.62%,CEmax=0.57 cd/A and PEmax=0.35 lm/W.The CIE 1931 chromaticity coordinate of PODOPF and PODOF device was(0.17,0.11)and(0.16,0.09),respectively.The PLED results showed that polyfluorenes with 4-site modifiable substituent had exploring potential in optoelectronics.

    Fig.3.(a)EL spectrum of PODOPF.(b)Current density and luminance versus driving voltage characteristics of PODOPF.(c)EL spectrum of PODOF.(d)Current density and luminance versus driving voltage characteristics of PODOF.

    In summary,we demonstrated a universal synthetic method to construct 4-qualifiable fluorene-based building blocks for optoelectronic applications.Compared to previous units,variable substitutes at 4-site enable the reported fluorene-based materials to obtain easily structural modification and solution-processing ability but slightly influenced on the electronic structures.The new synthetic route contains three main steps with a high yield consisted of Baeyer-Villeger oxidative rearrangement,ring-open reaction(reduction)and cyclization reaction(oxidation).The total yield of the building blockviathe new synthetic method can be~50%.Finally,two efficient blue-light-emitting polymers,PODOPF and PODOF,are prepared by utilizing the building block 8a,and the PLEDs of the two polymers were successfully fabricated.This result also implied the significance and effectiveness of the fluorene based building block with 4-site modifiable substituent for optoelectronic application.

    Declaration of competing interest

    There is no conflict of interest of this work

    Acknowledgments

    The work was supported by the Natural Science Foundation of Jiangsu Province(No.BK20200700),National Natural Science Foundation of China(Nos.22075136,61874053),Natural Science Funds of the Education Committee of Jiangsu Province(No.18KJA430009),“High-Level Talents in Six Industries”of Jiangsu Province(No.XYDXX-019),Postgraduate Research&Practice Innovation Program of Jiangsu Province(Nos.KYCX21_1097,KYCX21_0771),Nanjing Vocational University of Industry Technology Start-up Fund(No.YK21-02-07),the open research fund from Anhui Province Key Laboratory of Environment-friendly Polymer Materials and Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.102.

    国产 一区 欧美 日韩| 内射极品少妇av片p| 黄色一级大片看看| 日本与韩国留学比较| 色哟哟·www| 国产亚洲av嫩草精品影院| 亚洲男人的天堂狠狠| 亚洲精华国产精华液的使用体验 | 最近在线观看免费完整版| 亚洲精品久久国产高清桃花| 国产黄a三级三级三级人| 欧美性感艳星| 熟女人妻精品中文字幕| 九色国产91popny在线| 精品福利观看| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 能在线免费观看的黄片| 国产伦精品一区二区三区四那| 欧美三级亚洲精品| 精品乱码久久久久久99久播| 免费观看的影片在线观看| 黄色丝袜av网址大全| 天天一区二区日本电影三级| 国产男靠女视频免费网站| 国产一区二区在线av高清观看| 男插女下体视频免费在线播放| 亚洲精品乱码久久久v下载方式| 国产免费男女视频| 亚洲国产精品sss在线观看| 亚洲精品国产成人久久av| 一本一本综合久久| 精品一区二区三区av网在线观看| 国产免费一级a男人的天堂| 在线免费观看的www视频| 制服丝袜大香蕉在线| videossex国产| 欧美xxxx性猛交bbbb| 一区二区三区四区激情视频 | 97超视频在线观看视频| 黄色视频,在线免费观看| 日本 欧美在线| 国产真实乱freesex| 一卡2卡三卡四卡精品乱码亚洲| 乱码一卡2卡4卡精品| 中文字幕高清在线视频| 国产高清不卡午夜福利| 人人妻人人澡欧美一区二区| 国产av不卡久久| 乱人视频在线观看| 俺也久久电影网| 色尼玛亚洲综合影院| 国产精品野战在线观看| 白带黄色成豆腐渣| 亚洲av中文av极速乱 | 成人午夜高清在线视频| 人妻少妇偷人精品九色| 欧美国产日韩亚洲一区| 午夜久久久久精精品| 成人欧美大片| 国产精品亚洲美女久久久| 12—13女人毛片做爰片一| 日本爱情动作片www.在线观看 | 日韩强制内射视频| 免费搜索国产男女视频| 一进一出抽搐动态| 色av中文字幕| 午夜激情欧美在线| 国产爱豆传媒在线观看| 免费看光身美女| 人妻丰满熟妇av一区二区三区| 天堂网av新在线| 欧美另类亚洲清纯唯美| 国产又黄又爽又无遮挡在线| 亚洲天堂国产精品一区在线| 国内久久婷婷六月综合欲色啪| 内地一区二区视频在线| 欧美3d第一页| 蜜桃亚洲精品一区二区三区| 极品教师在线视频| 麻豆国产av国片精品| 变态另类丝袜制服| 国产精品,欧美在线| 美女免费视频网站| 全区人妻精品视频| 99久久九九国产精品国产免费| 国产精品伦人一区二区| 非洲黑人性xxxx精品又粗又长| 91久久精品国产一区二区三区| 91麻豆精品激情在线观看国产| 天堂√8在线中文| 男女之事视频高清在线观看| 国产视频内射| 男人狂女人下面高潮的视频| 欧美高清性xxxxhd video| 中文字幕免费在线视频6| 天堂网av新在线| av在线亚洲专区| 亚洲精品亚洲一区二区| 亚洲成人精品中文字幕电影| 中文资源天堂在线| 国内精品久久久久精免费| 淫妇啪啪啪对白视频| 中文字幕人妻熟人妻熟丝袜美| 在线播放国产精品三级| 如何舔出高潮| 高清在线国产一区| 日本撒尿小便嘘嘘汇集6| 国产一区二区亚洲精品在线观看| 日本五十路高清| 中文字幕av在线有码专区| 免费看av在线观看网站| 一个人免费在线观看电影| 美女高潮喷水抽搐中文字幕| 午夜福利在线在线| av.在线天堂| 久久久久久久久中文| 别揉我奶头~嗯~啊~动态视频| 搡老妇女老女人老熟妇| 久久婷婷人人爽人人干人人爱| 日本黄大片高清| 动漫黄色视频在线观看| 日韩一本色道免费dvd| 搡女人真爽免费视频火全软件 | 日本三级黄在线观看| 如何舔出高潮| 男人的好看免费观看在线视频| 亚州av有码| 日本黄大片高清| 国产av麻豆久久久久久久| 国产精品久久电影中文字幕| 中出人妻视频一区二区| 一个人免费在线观看电影| 国产欧美日韩精品亚洲av| 搡老岳熟女国产| 欧美又色又爽又黄视频| 日本-黄色视频高清免费观看| 日韩在线高清观看一区二区三区 | 给我免费播放毛片高清在线观看| 亚洲无线在线观看| 色综合亚洲欧美另类图片| 国内精品美女久久久久久| 亚洲av中文字字幕乱码综合| 人妻制服诱惑在线中文字幕| 全区人妻精品视频| 丰满人妻一区二区三区视频av| av视频在线观看入口| x7x7x7水蜜桃| 国产精品不卡视频一区二区| 国产av在哪里看| 美女黄网站色视频| 亚洲欧美日韩卡通动漫| 亚洲精品久久国产高清桃花| 欧美高清成人免费视频www| 久久久国产成人精品二区| 亚洲va在线va天堂va国产| a在线观看视频网站| 人妻少妇偷人精品九色| 免费在线观看日本一区| 在线天堂最新版资源| 五月伊人婷婷丁香| 我要看日韩黄色一级片| 精品人妻熟女av久视频| 又黄又爽又刺激的免费视频.| 国内精品一区二区在线观看| 久久人人精品亚洲av| 少妇的逼好多水| 成人无遮挡网站| 亚洲美女搞黄在线观看 | 免费看美女性在线毛片视频| 欧美成人a在线观看| 色视频www国产| 国产欧美日韩精品一区二区| 午夜福利高清视频| 色吧在线观看| 中亚洲国语对白在线视频| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验 | 人人妻人人澡欧美一区二区| 亚洲成av人片在线播放无| 午夜激情欧美在线| av视频在线观看入口| 偷拍熟女少妇极品色| 一区二区三区免费毛片| 午夜久久久久精精品| 日本成人三级电影网站| avwww免费| 黄色视频,在线免费观看| 99热这里只有是精品在线观看| 欧美最黄视频在线播放免费| 日韩欧美 国产精品| 亚洲av免费在线观看| 中国美女看黄片| 精品久久久久久成人av| 少妇高潮的动态图| 久久精品久久久久久噜噜老黄 | 日韩高清综合在线| 在线免费观看不下载黄p国产 | 人妻少妇偷人精品九色| 精品一区二区三区视频在线| 黄色视频,在线免费观看| 我要看日韩黄色一级片| 亚洲无线在线观看| 亚洲av成人av| 我的女老师完整版在线观看| 久久这里只有精品中国| 国产91精品成人一区二区三区| 男女边吃奶边做爰视频| 亚洲av第一区精品v没综合| 亚洲精品成人久久久久久| av天堂在线播放| 国内少妇人妻偷人精品xxx网站| 国内精品美女久久久久久| 日本黄色视频三级网站网址| 窝窝影院91人妻| 免费无遮挡裸体视频| 国产一区二区三区视频了| 成人av一区二区三区在线看| 国语自产精品视频在线第100页| 亚洲美女搞黄在线观看 | 丝袜美腿在线中文| 欧美zozozo另类| 性色avwww在线观看| 成人鲁丝片一二三区免费| 窝窝影院91人妻| 网址你懂的国产日韩在线| 一a级毛片在线观看| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 熟妇人妻久久中文字幕3abv| 国产三级在线视频| 乱人视频在线观看| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产真实伦视频高清在线观看 | 可以在线观看的亚洲视频| 乱系列少妇在线播放| 最后的刺客免费高清国语| 日本一二三区视频观看| 最近视频中文字幕2019在线8| 久久久成人免费电影| 少妇猛男粗大的猛烈进出视频 | 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx在线观看| 日韩亚洲欧美综合| 午夜免费男女啪啪视频观看 | 看十八女毛片水多多多| 国产午夜福利久久久久久| 日韩欧美国产一区二区入口| 一夜夜www| 性色avwww在线观看| 国产av不卡久久| 国产精品久久久久久久电影| 伦精品一区二区三区| 日本三级黄在线观看| 欧美中文日本在线观看视频| 欧美色欧美亚洲另类二区| 色视频www国产| av黄色大香蕉| 啦啦啦观看免费观看视频高清| 欧美人与善性xxx| 日本黄色视频三级网站网址| 精品国产三级普通话版| 亚洲最大成人手机在线| 亚洲最大成人中文| 亚洲综合色惰| 简卡轻食公司| 日韩精品中文字幕看吧| 免费高清视频大片| 国产精品美女特级片免费视频播放器| 老熟妇乱子伦视频在线观看| 校园人妻丝袜中文字幕| 级片在线观看| 最近最新中文字幕大全电影3| av专区在线播放| 成人鲁丝片一二三区免费| 精品人妻熟女av久视频| 日韩欧美国产在线观看| 国产毛片a区久久久久| 91午夜精品亚洲一区二区三区 | 国产一级毛片七仙女欲春2| 亚洲精品在线观看二区| 99在线人妻在线中文字幕| 日韩高清综合在线| 亚洲av电影不卡..在线观看| 日本撒尿小便嘘嘘汇集6| 国产又黄又爽又无遮挡在线| 久久久精品大字幕| 国产成人a区在线观看| 中文字幕av在线有码专区| 国产免费男女视频| 成人国产一区最新在线观看| 亚洲黑人精品在线| 真人一进一出gif抽搐免费| 亚洲精品乱码久久久v下载方式| 欧美高清成人免费视频www| 日韩欧美 国产精品| 黄片wwwwww| 有码 亚洲区| 日本 欧美在线| 日本黄色片子视频| 18+在线观看网站| 国产高潮美女av| 香蕉av资源在线| 亚洲自偷自拍三级| 国产黄色小视频在线观看| 亚洲四区av| 热99re8久久精品国产| 日本一本二区三区精品| 免费无遮挡裸体视频| 亚洲精品日韩av片在线观看| 国产三级在线视频| 18禁在线播放成人免费| 成人av在线播放网站| 性欧美人与动物交配| 欧美潮喷喷水| 亚洲av二区三区四区| 麻豆久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 国产国拍精品亚洲av在线观看| 男女视频在线观看网站免费| 狂野欧美白嫩少妇大欣赏| 欧美一级a爱片免费观看看| 老熟妇乱子伦视频在线观看| 国产午夜精品久久久久久一区二区三区 | 99久久精品一区二区三区| 中文亚洲av片在线观看爽| 成人三级黄色视频| 听说在线观看完整版免费高清| 在线免费观看不下载黄p国产 | 日本在线视频免费播放| 韩国av一区二区三区四区| 国产精品亚洲美女久久久| av中文乱码字幕在线| 99在线人妻在线中文字幕| 国产一区二区三区在线臀色熟女| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合久久99| 成人综合一区亚洲| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久成人| 真人做人爱边吃奶动态| 成人高潮视频无遮挡免费网站| 熟妇人妻久久中文字幕3abv| 夜夜看夜夜爽夜夜摸| 村上凉子中文字幕在线| 亚洲18禁久久av| 久久6这里有精品| 麻豆国产av国片精品| 亚洲男人的天堂狠狠| a级一级毛片免费在线观看| 国产午夜福利久久久久久| 3wmmmm亚洲av在线观看| 午夜精品久久久久久毛片777| 九九爱精品视频在线观看| 我的老师免费观看完整版| 亚洲av免费高清在线观看| 2021天堂中文幕一二区在线观| 美女大奶头视频| 性色avwww在线观看| 亚洲中文日韩欧美视频| avwww免费| 在现免费观看毛片| 免费看光身美女| 无遮挡黄片免费观看| 亚洲第一区二区三区不卡| 亚洲成av人片在线播放无| 久久久久国产精品人妻aⅴ院| 国产一区二区三区视频了| 亚洲美女黄片视频| 日本精品一区二区三区蜜桃| 午夜影院日韩av| 春色校园在线视频观看| 国产免费男女视频| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 国产 一区 欧美 日韩| 国产乱人视频| 在线观看午夜福利视频| 国产精品不卡视频一区二区| 亚洲熟妇中文字幕五十中出| 亚洲av电影不卡..在线观看| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 日本 av在线| 好男人在线观看高清免费视频| 国产午夜精品论理片| 国产精品久久久久久精品电影| bbb黄色大片| 日韩精品中文字幕看吧| 成人无遮挡网站| 午夜视频国产福利| 亚洲性夜色夜夜综合| 久久久久免费精品人妻一区二区| 床上黄色一级片| 久久99热6这里只有精品| 日日摸夜夜添夜夜添av毛片 | 黄色女人牲交| 亚洲四区av| 网址你懂的国产日韩在线| 无遮挡黄片免费观看| videossex国产| 免费看光身美女| 亚洲国产欧美人成| av在线老鸭窝| 欧美精品国产亚洲| 久久精品国产亚洲av天美| 亚洲av中文av极速乱 | 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影| 69人妻影院| 亚洲在线观看片| 精品久久国产蜜桃| 成人美女网站在线观看视频| 男女做爰动态图高潮gif福利片| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 亚洲精品久久国产高清桃花| 国产探花极品一区二区| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 国产一区二区激情短视频| 男女那种视频在线观看| 国产主播在线观看一区二区| av女优亚洲男人天堂| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 精品人妻熟女av久视频| av.在线天堂| 日本 欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区激情短视频| 国产在线精品亚洲第一网站| eeuss影院久久| 亚洲第一电影网av| 99在线人妻在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 村上凉子中文字幕在线| a在线观看视频网站| 又黄又爽又免费观看的视频| 成人二区视频| 日韩欧美 国产精品| 性插视频无遮挡在线免费观看| 韩国av一区二区三区四区| 日本与韩国留学比较| 一卡2卡三卡四卡精品乱码亚洲| 男人舔奶头视频| 国产亚洲av嫩草精品影院| 亚洲色图av天堂| 国产男人的电影天堂91| 男女那种视频在线观看| 久久久久久久久大av| 九色国产91popny在线| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 精品一区二区三区人妻视频| 久久久久国内视频| 欧美激情久久久久久爽电影| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 在线播放无遮挡| 亚洲精品粉嫩美女一区| 国产精品一区二区免费欧美| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 国产亚洲精品久久久久久毛片| 亚洲性夜色夜夜综合| 国产白丝娇喘喷水9色精品| 男女之事视频高清在线观看| 色5月婷婷丁香| 男女边吃奶边做爰视频| 国产精品电影一区二区三区| 亚洲av美国av| 级片在线观看| 国产三级在线视频| 亚洲国产色片| 国产女主播在线喷水免费视频网站 | 性色avwww在线观看| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| 舔av片在线| 色综合婷婷激情| 久久久久久国产a免费观看| 国产成人a区在线观看| 在线观看一区二区三区| 亚洲人成网站在线播| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 成人毛片a级毛片在线播放| 午夜精品在线福利| 国产午夜福利久久久久久| 午夜免费激情av| 女同久久另类99精品国产91| 最后的刺客免费高清国语| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 夜夜看夜夜爽夜夜摸| 22中文网久久字幕| 国产精品自产拍在线观看55亚洲| 亚洲人与动物交配视频| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 国产精品亚洲美女久久久| 91av网一区二区| 国产成人影院久久av| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲| 亚洲美女搞黄在线观看 | av在线天堂中文字幕| 国产色婷婷99| 免费看a级黄色片| 午夜激情欧美在线| 色综合色国产| 日本a在线网址| 日韩欧美在线乱码| 国产亚洲91精品色在线| 91麻豆av在线| 黄片wwwwww| 校园春色视频在线观看| 国产国拍精品亚洲av在线观看| 国内精品久久久久精免费| 免费看美女性在线毛片视频| 看免费成人av毛片| 亚洲av美国av| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 亚洲成av人片在线播放无| 一区福利在线观看| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片| 在线a可以看的网站| 午夜激情欧美在线| 人人妻人人澡欧美一区二区| 啦啦啦啦在线视频资源| 亚洲 国产 在线| 好男人在线观看高清免费视频| 国产女主播在线喷水免费视频网站 | 日韩一区二区视频免费看| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 有码 亚洲区| 十八禁国产超污无遮挡网站| 免费观看人在逋| 日韩,欧美,国产一区二区三区 | 国产精品嫩草影院av在线观看 | 一级a爱片免费观看的视频| 欧美色欧美亚洲另类二区| 国产三级在线视频| 最新在线观看一区二区三区| 亚洲乱码一区二区免费版| 最新在线观看一区二区三区| 午夜福利18| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 久久久久久久精品吃奶| 99久久九九国产精品国产免费| 狂野欧美激情性xxxx在线观看| 中文字幕av在线有码专区| a级毛片免费高清观看在线播放| 午夜视频国产福利| 国产黄a三级三级三级人| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| 成人欧美大片| 国产一区二区亚洲精品在线观看| 日本三级黄在线观看| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 久久久久性生活片| 九色国产91popny在线| 国产毛片a区久久久久| 国产欧美日韩精品亚洲av| 99久久成人亚洲精品观看| 国产91精品成人一区二区三区| 十八禁国产超污无遮挡网站| 一进一出好大好爽视频| 老女人水多毛片| 亚洲熟妇熟女久久| 精品久久久久久久人妻蜜臀av| 91av网一区二区| 日本撒尿小便嘘嘘汇集6| 村上凉子中文字幕在线| 日本一二三区视频观看| 国产午夜福利久久久久久| 久久天躁狠狠躁夜夜2o2o| .国产精品久久| 有码 亚洲区| 中国美白少妇内射xxxbb| 日本免费a在线| 亚洲国产精品合色在线| 亚洲va在线va天堂va国产| 国产精品乱码一区二三区的特点| 中国美女看黄片| 国产一级毛片七仙女欲春2| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线在线| 婷婷丁香在线五月| 午夜福利欧美成人| 色尼玛亚洲综合影院| 极品教师在线免费播放| 久久久久久久亚洲中文字幕| 久久中文看片网| 国产毛片a区久久久久| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区久久| 亚洲经典国产精华液单|